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Abstract: Diabetes has since become global pandemic – which must be diagnosed early enough if the patients are to 

survive a while longer. Traditional means of detection has its limitations and defects. The adoption of data mining tools 

and adaptation of machine intelligence is to yield an approach of predictive diagnosis that offers solution to task, which 

traditional means do not proffer low-cost-effective results. The significance thus, is to investigate data feats rippled with 

ambiguities and noise as well as simulate model tractability in order to yield a low-cost and robust solution. Thus, we 

explore a deep learning ensemble for detection of diabetes as a decision support. Model achieved a 95-percent accuracy, 

with a sensitivity of 0.98. It also agrees with other studies that age, obesity, environ-conditions and family relation to the 

first/second degrees are critical factors to be watched for type-I and type-II management. While, mothers with/without 

previous case of gestational diabetes is confirmed if there is: (a) history of babies with weight above 4.5kg at birth, (b) 

resistant to insulin showing polycystic ovary syndrome, and (c) have abnormal tolerance to insulin. 
 

Index Terms: Diabetes, Type-I, Type-II, Gestational, deep neural network, modular learning, Silent killer 

 

 

1. Introduction 

Diabetes is a group of metabolic diseases characterized by high levels sugar in blood when the pancreas does not 

make enough insulin (hormone produced by the pancreas to control blood sugar) – to help its cells respond to insulin 

normally. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of 

different organs, especially the eyes, kidneys, nerves, heart, and blood vessels. Symptoms of marked hyperglycemia 

include polyuria, polydipsia, weight loss, sometimes with polyphagia, and blurred vision [1-3]. 

Diabetes set today as a global epidemic and now affects some 300-million people worldwide. It is also estimated that 

most people who have diabetes know their condition. There are 4 million deaths per year related to diabetes and its 

complications, representing 9% of world mortality [4]. Diabetes is associated with major socio-economic impact for both 

the individual and society. Their high costs are mainly related to a high frequency of acute and chronic complications, 

such as higher incidence of cardiovascular and cerebrovascular diseases, blindness, kidney failure and non-traumatic 

amputations of lower limbs, which are causes of hospitalization, greater needs for medical care, disability, lost 

productivity and premature death of life [5-7]. 

Diabetes prevalence continues to grow and people with this chronic disorder requires continued medical care, 

support to prevent acute complications, reduce the risks associated with long-term complications and ongoing patient 

self-management education,. On average, their medical expense approximates to twice higher than regular patient, not 

including indirect costs due to factors such as absenteeism, reduced productivity, and lost productive capacity due to early 

mortality [8-11]. Here in this study, we are propose a deep learning model to effectively classify with consistent outcome, 

early diagnosis of diabetes, combining stochastic rules of the various dataset feats carefully selected via a multi-criteria 

decision agent-based model to yield a solution that effectively classifies dataset (as well as dataset not present from the 

outset) into the various diabetes classes (i.e. type-I, type-II and gestational) with marginal error rates. 
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A. Literature Review 

Diabetes mellitus (also known as the silent sugar killer) is a metabolic disorder characterized by presence of 

hyperglycemia from defective insulin secretion, action or both. This metabolic disease features high glucose level in a 

body with insufficient insulin to breakdown glucose, or in a body that is resistant to the effects of insulin [2]. To improve 

its early diagnosis, various studies have used data mining tools to help experts effectively classify the disorder with 

criteria based on glycemia thresholds associated with micro-vascular disease and especially with the retinopathy. 

Individuals with diabetes are grouped into: chronic hyperglycemia (a relatively specific long-term micro-vascular 

disorder affecting the eyes, kidneys and nerves with increased risk for cardiovascular defect), and prediabetes (a practical, 

convenient term for impaired fasting glucose, impaired glucose tolerance or glycated hemoglobin of 6.0% to 6.4%). Both 

of these classes, places patient at a high risk of developing diabetes [1-2, 12]. 

Also, [1, 3-7] classified diabetes into: (a) Type-I (as prone to ketoacidosis and results from pancreatic beta cell 

destruction as measured from etiology and cases due to autoimmune process), (b) Type-II ranges from predominant 

insulin resistance of a body to a more serious case of the predominant, secretory defect with insulin resistance, and (c) 

Gestational diabetes refers to glucose intolerance with onset or first recognition of pregnancy. Other types [13] are a 

variety of relative uncommon conditions and specific-gene-type, some of which are associated with other diseases or drug 

use. Its diagnostic criteria are based on glucose threshold, is as measured from its etiologic classification so that 

differentiating type-1 from type-2 is critical due to management. This is quite a difficult task in some cases [14]. Studies 

reveal that signs such as insulin resistance and the use of autoimmune markers antibodies (anti-glutamic acid 

decarboxylase, or anti-islet cell antibody) can help in its early diagnosis [9-11, 15] – though, these have not been 

adequately studied as diagnostic tests. Low C-peptide levels measured after months of clinical stabilization favors type-I 

(but not for acute hyperglycemia). Ultimately, clinical judgment and follow-up has always been a prudent method to treat 

and manage the disorder [13-15]. 

The complex nature of diabetes, its complications along with its varied types – often makes early diagnosis critical so 

as to help with drug-use administering and aid faster treatment. This has made manual diagnostic somewhat redundant, 

difficult, often inconclusive and time-wasting [refer to studies in 3-15]. Early prediction of diabetes thus, is a complex 

task due to the chaotic nature of its classification [16-17]. Studies continue to advance early and accurate detection of 

diabetes – even though, it is a challenging task [18]. Predictions are only an improvised means via which a model allows 

propagation of a set of observed dataset as the user seeks feats of interest. The dataset often contains ambiguities, noise 

and assumptions as inputted, so that the model yields an output of outcomes simulated via optimization methods and 

taxonomy [19-20]. We thus explore a deep learning reinforcement model to enhance accurate classification aimed at 

optimal solution of the task, chosen from a set of possible solution space – to yield output guaranteed of high quality and 

void of ambiguities. Models are tuned to be robust so they can perform quantitative processing to ensure as its new 

language, a qualitative knowledge and experience [21-24]. 

B. Study Motivation and Objective 

Our study is motivated as thus [6-8]: 

 

1. Many studies had previously aimed at production of a single heuristic to globally classify various diabetes-types. 

Our proposed model employs rule-based linguistic universe discourse to generate over 82-rules that are trained 

via the memetic deep learning neural network as in Section II.  

2. Neural network models have often been known to employ hill climbing methods that often gets their solution 

trapped at local minima because their speed shrinks as such models often approaches its optima. However, this is 

curbed with the use of deep learning methods as in Section II with results as in Section III. Deep learning allows 

faster convergence of dataset classification – even though model as a decision support is a hybrid of genetic 

algorithm. This, allows better rule optimization, greater flexibility and adaptation of the rules as well as 

improved navigation of the model. 

3. It has been noted that many stochastic models are rippled with (false-positive and true-negative) errors in 

diagnostic results. These may have been generated due to drug use and in some instance, symptoms of related 

disorders that mimics symptoms of the various diabetes-classes. To reduce such errors in classification (as in 

Section II/III), we employ a modular design that improves network intelligence, learning time of the network 

and its computational efficiency. 

4. With hybrids (for this reinforced model), there issue of resolving conflicts in structured learning and from 

statistical dependencies imposed by data encoding as data signals are transmitted within the model is achieved 

via modularization that allows for greater efficiency as in Section II – though quite a tedious feat. 

 

Thus, the goal of the study is to model selected data features of interest using a deep modular network design that 

simulates the generation of rules that will effectively classify data as well as reduce errors in result classifications. 
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2. Materials and Methods 

A. Data Gathering / Sampling 

We extend the study [2] via frameworks modelled in [25-27], we use dataset as presented in table 1 – obtained via a 

survey of questionnaires, consisting of two phases: (a) demographic data, and (b) tele-medical data. A total of a hundred 

questionnaires were distributed to various medical (diabetic) professional across forty teaching hospitals in six (6) 

Geo-political zones in Nigeria. Even with the insurgency, the sixth geo-political zone (North-North) gave a fair 

representation of the dataset retrieved. To generate the rule-based, selected dataset feats were tuned utilizing the proposed 

equation: 

 

𝑃𝐹𝐶𝑀𝑈𝐷𝐸 =  ∑(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) ∗ 𝑋                                                                       (1) 

 

A,B,C,D,E = picked questions option; X(0.02) = assigned questions option fuzzy range value, and X(0.00) = 

unpicked option. 

Table 1. Rule-based Dataset Encoded For each class of Diabetes Dataset Values 

Code Fuzzy Set Linguistic Variable 
Membership Function Degree 

Type-1 Type-2 Gestational 

P01 Frequent Urination 0.50 0.00 0.00 

P02 Unusual Thirst 0.50 0.00 0.50 

P03 Extreme Hunger 0.50 0.00 0.00 

P04 Unusual Weight Loss 0.50 0.50 0.00 

P05 Extreme Fatigue 0.50 0.00 0.50 

P06 Serious Irritation 0.00 0.00 0.50 

P07 Frequent Infection 0.00 0.00 0.50 

P08 Blurred Vision 0.00 0.50 0.00 

P09 Slow Healing of bruises/cuts 0.00 0.50 0.00 

P10 Tingle/numb hands/feet  0.00 0.50 0.00 

P11 Skin/bladder infection 0.00 0.50 0.50 

P12 Nausea/vomiting 0.00 0.00 0.50 

P13 Haemoglobin test > 10 0.20 0.20 0.20 

P14 Leg cramp 0.20 0.20 0.20 
(Source: Ojugo et al. 2015) 

 

B. Hybrid Reinforcement Learning Ensemble 

The Modular Neural Network (MNN) as detailed in [25-27] is an improved deep learning neural network with 

learning that features an independent series of intermediary components and module operating under a certain 

architecture. It advances a model that receives individual network module output as input that helps compute final output, 

resolved via tangent activation function. The large network is divided into potentially, smaller and more manageable 

network [25] with enhanced efficiency via connected units that exponentially increases, as independent networks are 

added. This complicates the network structure; But, also improves its computational efficiency, reduces time convergence 

on individual task assigned to segmented modules, and allows tasks to be executed in parallel with module that are 

re-organized to improve flexibility and adaptability [26].  

The network enhances intelligence and increases time efficiency by reducing the network’s learning time – achieved 

via an independent training algorithms applied at each module with training dataset implemented independently and more 

quickly. This makes the model more flexible, adaptable and robust as rules can be re-used independently at various 

networks. Re-usability of rules has been a tedious experienced with such large and complex networks. But, with 

appropriate data encoding and carefully selected feats – network experiences improved performance, improves flexibility 

of compartmentalization via removal of partitions of the interfaces and eliminates redundancy [27].  

The MNN architecture is a larger network, comprising of smaller network. Its modularization allows for easy 

learning and understandability of the underlying feats of interest, grants model greater flexibility via task execution 

parallelism via compartmentalization, flexibility, eases code reuse and adaptability [28]. MNN passes data input via task 

decomposition and training modules via a multi-objective, multi-agent and multi-region support module that aids 

effective classification. MNN can be implemented using the multilayered perceptron, adaptive resonance theory and 

self-organizing maps. The network is trained via either the supervised, unsupervised or reinforcement learning [29].  

For the study, our hybrid framework is divided into three (3) components: (a) a supervised cultural genetic algorithm, 

(b) an unsupervised Kohenen network, and (c) a knowledgebase – as in figure 1, as explained in the section below for the 

supervised genetic algorithm and the Kohonen self-organizing map neural network. 
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Fig. 1. Schematics Diagram of Genetic Algorithm Trained Modular Neural Network 

 Supervised Cultural Genetic Algorithm (CGA): GA model is inspired by Darwinian evolution of survival of 

fittest, it consists of a chosen population with potential solutions to specific task. Each potential optimal solution 

is found via four operators [36] and individuals with genes close to its optimal, are said to be fit. Fitness function 

determines how close an individual is to optimal solution. Basic operators of GA includes initialize, fitness 

function and select, crossover and mutation [28-30]. Cultural GA as a variant, has some belief spaces defined 

thus: (a) normative belief (has specific value ranges to which an individual is bound), (b) domain belief (has data 

about task domain), (c) temporal belief (has data about events’ space is available), and (d) spatial belief (has 

topographical data). In addition, an influence function mediates between belief space and the pool – to ensure and 

alter individuals in the pool to conform to belief space. CGA is chosen to yield a pool that does not violate its 

belief space and helps reduce number of possible individuals GA generates till an optimum is found [31-33]. 

 Kohonen Self-Organizing Map Neural Network is a feed-forward 2-layer network – arranged like in a grid. The 

first layer receives the initial input and transmits it unbound to second layer, which then provides competitive 

computation via the activation of its transfer function. Also, similarities among patterns are mapped into relations 

on the competitive layer. After training, the pattern relations are observed from this layer which are used as the 

result determination [26-27]. 

 

However, to achieve deep learning – we adapt the selected parameters and carefully constructing our Kohonen 

multi-layer network using a deep architecture at its input, hidden and output layers. We employ a hidden layer that 

transforms non-linearly from a previous layer to the next. We adopt the deep neural network approach in [34], which is 

trained via two phases: (a) pre-trained, and (b) fine-tuned processes. 

The Auto-Encoder is an unsupervised multi-layered neural network consisting both an encoder and a decoder 

network. Its encoder seeks to transform inputs data-points from a high unto a low-dimension via an encoding function 

fencoder as in Eq. 2 – where x
m
 is a data point, and h

m
 is the encoding vector obtained. Conversely, its decoder network seeks 

to reconstruct the function using fdecoder as in Eq. 3 with  x
m
 as decoding vector from h

m
. Thus, reverts the operations of the 

encoder. Ojugo and Eboka [34] in Gilrot and Bengio [35] details specific algorithms for encoding as well as decoding 

functions respectively as in Eq. 2 and Eq. 3 respectively. 
  

ℎ𝑚 =  𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑋𝑚)                                                                           (2) 
 

𝑋𝑚 =  𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟(ℎ𝑚)                                                                           (3) 
 

At pre-training phase, N autoencoders can be stacked on to an N-hidden-layer so that with input accepted, the input 

layer and first hidden layer acts an encoders of the first auto-encoder. They are trained to minimize reconstruction error. 

Training parameter(s) of the encoder are used to initialize first hidden layer before proceeding to second hidden layer. 

There, the first and second hidden layers are selected as encoder(s) and as in earlier stage, the second hidden layer is 
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initialized by the second trained auto-encoder. This process continues till Nth auto-encoder is trained to initialize final 

hidden layer. With all hidden layers stacked in the auto-encoder at each training N-times, they are thus regarded as 

pre-trained. This feat is significantly better than random initialization. It also achieves better generalization [34-39]. 

Fine-tuning is a supervised phase to enhance deep learning by retraining the optimized data labels. It computes errors 

as using back-propagated stochastic gradient descent (SGD), which randomly selects data, and iteratively update gradient 

direction with the weight parameters. It converges faster and does not require the entire dataset to simulate tractability – 

making it suitable for such complex structure. Eq. 4 yields E as a loss function, y is label and t is output for the proposed 

deep learning network [34, 36-38]: 

2

1

1
  ( )
2

i i

j

E M y t



                                                                           (4) 

 

The gradient of the weight w is obtained as a derivative of the error equation – so that an updated SGD is given by Eq. 

5 with ŋ is step-size, h is number of hidden layers [29, 47]: 
 

     . . 1 .
new old

ij ij j j j i iW W y t y y h   ŋ                                                           (5) 

 

C. Experimental Proposed GAMNN Model 

The experimental model is trained as thus: 

 

a. Input is received via GA-block (basic operators such as encoder, selector, swapper, changer, and CGA 

terminator is used to train dataset. On completion, trained (optimized) dataset feats are held within knowledge 

base [28]. 

b. The MNN receives optimal dataset from knowledgebase with successive labeled/unlabeled rules perceived 

learnt instances [25-27]. The optimized-rules are propagated as IF-THEN rules (enhanced data with predefined 

variables) classified into various diabetes classes. Rules are modeled as a production system with four 

components: (i) rule set contains in each rule how to apply rule(s), and task(s) to be performed, (b) 

knowledgebase of optimized selected data stored as IF-THEN rules (diabetes) classes, (c) a control strategy to 

specify the order in which rules are compared to those in the knowledgebase to find a match and it seeks also a 

way to resolve conflicts that arise when several rules are matched at the same time, and (d) a rule applier. Also, 

the MNN provides a self-learning capability and acts as the principal component analyzer with rules optimized 

by CGA’s recombination and mutation operators so that the trained model or network can effectively, 

autonomously classify transaction into both class types. 

c. Last stage of the network acts as a decision support and recognition system, with predicted values (output) and 

the automatic update of rules-knowledgebase, as transactions are diagnoses on encounter of new data, and 

consequently classified into class-types. 

3. Result Findings and Discussion 

A. Parametric Estimation, Tuning and Findings 

Dataset is divided into 60:40 ratio. 60% for training and 40% for testing. The prowess cum predictive capability of 

the model is identified via data labels amongst the rule-based optimized dataset. Our deep learning Kohonen map uses 

14-neurons at its input layer (a neuron for each feat). We also use 3-neurons for output layer (a neuron for each possible 

class of type-I, type-II and gestational). Other parameters are: (a) number of epochs, (b) activation function, (c) learning 

rate and (d) hidden layer topology. We used the Rectified Linear Unit (ReLU) Activation Function with 500-epochs. 

Optimal values were reached at 100, 300 and 500 epochs taking into account accuracy and training time. We seek 

minimum training error that will result in best fit, selecting the number of hidden layers was done via a trail-and-error 

method, and examining the results [25]. 

Figure 2 shows fitness score values for the generated rules. The rules generated that were fit was generally 

82-transaction rules. These were partitioned into row values, each of which corresponds to an array of chromosomes for 

rules classified into diabetes classes. 
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Fig.2. Fitness Score graph of the model 

B. Discussion of Findings  

The best possible number of layers was achieved by running tests on a single layer with 1 to 14-neurons at first 

instances – to yield greatest f-score with the least amount of training loss time. Addition of a second hidden layer of 

neurons from 1 to 17 yielded scores also; And, addition of a third hidden layer using the best possible number of neurons 

produced the greatest f-score. Thus, we selected the overall best possible hidden layer configuration. Results of first 

hidden layer with configuration of 14-neurons and f-score of 92% at 9th-iteration with a training loss of 1.140. F-score 

shows accuracy of each run – since we used an unbalanced dataset to train/test model with more records in normal class 

than in benign class [26-38]. 

Table 2. First hidden layer configuration analysis 

Hidden Layer Precision Recall F1-Score Iteration Training Loss Epoch 

1 0.84 0.92 0.88 44 0.294 500 

2 0.84 0.92 0.87 24 0.278 500 
3 0.84 0.92 0.88 26 0.293 500 

4 0.84 0.92 0.88 9 0.501 500 

5 0.89 0.55 0.64 19 1.496 500 
6 0.94 0.94 0.92 18 1.400 500 

7 0.86 0.53 0.63 4 2.230 500 

8 0.90 0.84 0.86 16 2.071 500 
9 0.92 0.93 0.92 18 1.140 500 

10 0.92 0.92 0.90 16 1.779 500 

11 0.88 0.91 0.89 7 2.134 500 
12 0.91 0.92 0.89 8 2.320 500 

13 0.87 0.87 0.87 13 2.006 500 
14 0.92 0.92 0.90 8 1.970 500 

 

Table 3 shows first layer with 14-neurons and others neurons varying from 1 to 17. Extra neurons cater for extra 

processing for optimal. Hidden layers of 9 and 11 neurons yielded f-score of 93% and training loss of 0.39. The second 

hidden layer is favored as it yields greater f-score.  

Table 3. Second hidden layer configuration analysis 

Layer Precision Recall F1 Iteration Train-Loss Epoch 

9, 1 0.84 0.92 0.88 25 0.293 500 

9, 2 0.84 0.92 0.88 29 0.292 500 

9, 3 0.91 0.92 0.91 15 0.583 500 
9, 4 0.87 0.87 0.87 5 1.058 500 

9, 5 0.92 0.92 0.90 13 1.628 500 

9, 6 0.91 0.92 0.89 10 1.996 500 
9, 7 0.84 0.92 0.88 24 0.281 500 

9, 8 0.93 0.93 0.92 11 1.884 500 

9, 9 0.92 0.92 0.89 12 1.590 500 
9, 10 0.90 0.92 0.90 12 1.731 500 

9, 11 0.95 0.94 0.93 14 0.390 500 

9, 12 0.93 0.93 0.91 12 1.130 500 
9, 13 0.91 0.92 0.91 20 1.929 500 

9, 14 0.92 0.93 0.90 13 2.237 500 

9, 15 0.94 0.94 0.92 7 1.765 500 
9, 16 0.85 0.52 0.62 7 2.010 500 

9, 17 0.94 0.94 0.94 6 1.620 500 
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Table 4 shows third configuration with first and second layer having 9 and 11 nodes and varying third hidden layer. 

Best configuration is 9-11-14 neurons, yielding f-score of 92% with a training loss at 0.560. 

Table 4. Third hidden layer configuration analysis 

Layer Precision Recall F1 Iteration Train-Loss Epoch 

9, 11,1 0.83 0.91 0.87 32 0.287 500 

9, 11,2 0.91 0.92 0.89 6 1.592 500 
9, 11, 3 0.83 0.91 0.87 29 0.280 500 

9, 11, 4 0.90 0.91 0.90 16 1.564 500 

9, 11, 5 0.92 0.92 0.90 18 0.741 500 
9, 11, 6 0.93 0.92 0.89 21 0.282 500 

9, 11, 7 0.92 0.93 0.90 6 1.322 500 

9, 11, 8 0.90 0.86 0.88 6 1.239 500 
9, 11, 9 0.90 0.91 0.90 7 1.886 500 

9, 11, 10 0.88 0.91 0.89 8 0.623 500 

9, 11, 11 0.92 0.93 0.91 5 2.000 500 
9, 11, 12 0.86 0.83 0.85 11 2.370 500 

9, 11, 13 0.86 0.83 0.84 8 2.350 500 

9, 11, 14 0.93 0.92 0.92 15 0.560 500 
9, 11, 15 0.93 0.93 0.91 8 1.204 500 

9, 11, 16 0.94 0.94 0.92 8 1.730 500 

9, 11, 17 0.87 0.54 0.63 12 1.730 500 
9, 11, 18 0.93 0.94 0.93 6 1.850 500 

9, 11, 19 0.93 0.93 0.90 9 0.660 500 

9, 11, 20 0.92 0.92 0.90 28 1.180 500 

C. Model Performance Evaluation 

From our confusion matrix, (a) sensitivity measures how likely a model will predict the presence of all classes of 

diabetes symptoms when it is present, (b) specificity measures how likely model will detect the absence of diabetes 

symptoms when it is not present, and (c) accuracy measures the proportion of the true results seen as the degree of truth of 

a prediction. Thus, we compute the sensitivity, error rate and accuracy to evaluate model performance as in Eq. 6 to Eq. 8 

– given that the values TP = 53, TN = 7, FP = 1 and lastly, FN = 1. Thus, we have: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                        (6) 

=
53

53 + 1
∗ 100 = 98.1%   

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+ 𝐹𝑃
                                                                                     (7) 

=  
7

7 + 1
∗ 100 = 87.5%    

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                (8) 

=  
53 + 7

53 + 7 + 1 + 1
=  95% 

 

The model is found to have a sensitivity of 98%, specificity value of 87.5% and prediction accuracy of 95% (0.95) 

for data inclusion that were not originally used to train the mode. This is in agreement with [26-27, 30-31]. 

4. Summary and Conclusion 

After testing the model, the results were also compared to other benchmark model as thus: (a) GA took 43seconds to 

find the solution after 98-iterations (at best). Recall that for deep learning, we observed earlier that our best forecast and 

optimal values were reached at 100, 300 and 500 epochs. CGA was run 25 times (to eradicate non-biasness), and it found 

optima each time – though, convergence time varied between 0.89econds and 56seconds. We later observed that the 

model convergence time depended on how close the initial population is to the solution as well as on the mutation applied 

to the individuals in the pool. The use of the rule-based solution was adopted using fuzzy variable dataset (as 

preprocessor). Our MNN architecture is a larger network, comprising of smaller network. Its modularization allows for 

easy learning and understandability of the underlying feats of interest, grants model greater flexibility via parallel task 

execution and compartmentalization, greater adaptability and eases code reuse. MNN passes input via task decomposition 

and training modules via a multi-objective, multi-agent and multi-region support module that aids effective classification. 
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