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Abstract: The increasing ubiquity of Social Internet of Things (SIoT) devices necessitates innovative data aggregation 

techniques to distill meaningful insights from diverse sources. This study introduces a Dynamic Data Aggregation Model 

for SIoT devices. The model aims to amalgamate static and mobile device data, employing Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) for spatial clustering and Recurrent Neural Networks (RNN) for 

predicting mobile device movement patterns. The purpose is to offer a holistic approach to predictive analytics in the SIoT 

domain by seamlessly integrating these methodologies. The model begins with data preprocessing, ensuring data quality. 

It then applies DBSCAN for spatial clustering, enabling a comprehensive understanding of spatial relationships between 

devices. Simultaneously, RNNs are used for predictive modeling, specifically in forecasting mobile device movement 

patterns. The integration of DBSCAN clustering and RNNs forms the model’s innovative core, providing a unified 

solution for dynamic data aggregation. Comprehensive testing demonstrates the model’s notable accuracy in predicting 

mobile device movement patterns. By combining the spatial clustering capabilities of DBSCAN with the predictive 

power of RNNs, the model effectively unifies static and mobile data, advancing predictive analytics in the SIoT context. 

The proposed model yielded average values of 0.14604 (Mean Squared Error), 2.678385 (Mean Absolute Error), 

0.307154 (Root Mean Squared Error), and 1.342317 (Mean Absolute Percentage Error), respectively. The Dynamic Data 

Aggregation Model proves its efficacy in addressing SIoT challenges. The integration of DBSCAN clustering and 

RNNs offers a versatile framework for dynamic data analysis, contributing significantly to predictive analytics in SIoT 

contexts. 

 

Index Terms: DBSCAN, RNN, Data Aggregation, Social Internet of Things 

 

 

 

 

 

mailto:meghanajgowda1984@gmail.com
mailto:meghanajgowda1984@gmail.com
mailto:j@yahoo.com
mailto:shivasp@jssstuniv.in
mailto:kirill@krinkin.com


Dynamic Data Aggregation Model for Social Internet of Things Devices: Exploring the Static and Mobile Nature 

96                                                                                                                                                                       Volume 16 (2024), Issue 5 

1. Introduction 

The Social Internet of Things (SIoT) presents a landscape where interconnected devices engage in seamless 

communication and collaboration, aiming to enhance various aspects of daily life. In this dynamic network, effective data 

aggregation stands as a crucial factor in unlocking the full potential of the interconnected devices. SIoT environments 

are marked by a diverse array of devices continuously generating dynamic data streams. 

The primary challenge within SIoT lies in aggregating, processing, and extracting meaningful insights from this 

heterogeneous data. This data encompasses not only traditional Internet of Things (IoT) metrics but also socially driven 

interactions. Social interactions within SIoT ecosystems introduce an additional layer of complexity to the data analysis 

process. Conventional models face difficulties in contextualizing and interpreting the subtleties inherent in human-

device and device-device social relationships. This limitation hampers the development of intelligent systems capable of 

adapting to social contexts. Within the SIoT landscape, various relationship types contribute to the complexity of 

interactions such as Parent-Object Relationships, Social-Object Relationships, Co-work Object Relationships, Co-

location Object Relationships, Strange-Object Relationships, and more. Each relationship type signifies a different aspect 

of interaction, adding richness to the social dynamics within the net- work. As SIoT networks grow in scale, the need for 

scalable solutions that can handle the increasing volume of data while maintaining real-time responsiveness becomes 

paramount. Existing frameworks face challenges in efficiently scaling with the expanding network and ensuring timely 

data processing. Currently, there is a gap in the availability of comprehensive dynamic data aggregation models 

specifically tailored for SIoT environments. Existing solutions may lack the versatility required to capture the full 

spectrum of social interactions and diverse IoT data sources. This paper introduces a novel Dynamic Data Aggregation 

Model tailored specifically for SIoT environments, addressing the intricacies associated with the fusion of social 

interactions and the Internet of Things. In the realm of SIoT, devices are not mere inanimate objects; they are active 

participants in social ecosystems, contributing to and deriving insights from the collective intelligence of the network. 

As such, the conventional models for static and mobile devices may fall short in capturing the nuances of social 

dynamics intertwined with IoT functionalities. Our proposed model integrates sophisticated algorithms, drawing 

inspiration from social network analysis and IoT data processing, to provide a holistic solution for dynamic data 

aggregation in this unique context. The amalgamation of interconnected devices and social interactions presents a 

unique set of challenges regarding data aggregation and analysis. Traditional data processing models often fall short of 

capturing the intricacies of dynamic social relationships within the IoT framework. 

1.1  Key contributions of the study: 

• The study introduces an innovative Dynamic Data Aggregation Model tailored for SIoT devices, seamlessly 

integrating static and mobile data. 

• The model’s unique combination of Density-Based Spatial Clustering (DBSCAN) and Recurrent Neural 

Networks (RNNs) enhances predictive analytics in SIoT by offering a cohesive framework for dynamic data 

aggregation. 

• Provided a versatile tool for accurate prediction of mobile device movements and fostering a clearer 

understanding of spatial relationships between devices. 

 

The rest of the paper is structured as follows: Section 2 reviews related works conducted by different authors. 

Section 3 defines the problem statement, while Section 4 introduces the proposed method, including the system model, 

methodology design, and algorithm. The findings are elaborated in Section 5, and the paper concludes with Section 6, 

which includes the conclusion and outlines future work. 

2. Related Works 

The ensuing review offers an outline of pertinent studies within the realm of dynamic data aggregation, predictive 

analytics, and the amalgamation of spatial clustering and machine learning within the framework of the SIoT. Quentin 

Bramas and colleagues [1] focused on addressing the complexity of aggregating both static and dynamic data, aiming to 

minimize the data aggregation time. Al-kahtani et al. [2] successfully introduced a multilayer technique for aggregating 

data in big data frameworks, particularly those involving sensor-based devices. This technique not only reduces overall 

energy consumption in the network but also minimizes latency in data transmission. In their work, J. W. Raymond et 

al. [3] explored Cooperative Communication in Machine-to-Machine (M2M) communication, dependent on protocols 

such as clustering and communication. The challenges discussed include the complexity of design configuration, in- 

creased message overheads, network expansion (inter and intra), and issues related to delay and data repetitiveness based 

on communication and clustering protocols. They also proposed enhancements like full-duplex communication, non- 

regenerative hand-off methods, cross-layer improvements, and a clustering scheme. Tabinda Salman et al. [4] provided 

detailed insights into upcoming trends in designing cellular networks for IoT devices, introducing the concept of Machine 

Type Communications (MTC). Their analysis considered the application’s goals and challenges, proposing solutions for 
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efficient data access and various data aggregation methods. Chang-Sik Choi et al. [5] proposed a system to understand 

the architecture of wireless devices, specifically those collecting data from vehicles. Their examination focused on the 

development of the coverage area over time, evaluating minimal delay and time required for identifying devices on the 

roadside. Ogud et al. [6] explored the global concept of IoT communication in machine-type, conducting experiments 

on mobile devices’ performance within cellular networks. The results provided insights into managing traffic flow in the 

network. 

Juan Manuel Rodriguez et al. [7] aimed to identify a cell phone’s battery charge status based on its connection to 

AC, WIFI, and screen usage. They utilized Recurrent Neural Network algorithms for predicting the phone’s upcoming 

state, considering the past states. Tae Won Ban et al. [8] addressed challenges in Device-to-Device (D2D) networks, 

proposing a novel transmission algorithm based on Deep Learning techniques with Convolutional Neural Networks 

(CNN). Their experiments demonstrated the algorithm’s effectiveness in managing radio resources. Tianfu Wang et al. 

[9] introduced the Network Space DBSCAN (NS-DBSCAN) algorithm, providing a new method for clustering based 

on density and specifying cluster structures. Evaluation results indicated superior performance compared to other 

clustering algorithms. Yuelei Xiao et al. [10] proposed a vehicle location prediction algorithm, combining Long Short-

Term Memory (LSTM) and spatiotemporal feature transformation. The algorithm successfully reduced data loss and 

improved location identification accuracy compared to previous models. Nama et al. [11] presented a three-way solution 

for traffic congestion reduction, involving data gathering techniques, accuracy in obtained data through machine 

learning algorithms, and information on different traffic scheduling strategies. Kim T et al. [12] focused on predicting 

human motion signals obtained from attached sensors for medical service purposes. Their proposed method, combining 

plot techniques and neural networks, outperformed conventional methods in identifying accidents faster. Choi et al. [13] 

proposed the Multidimensional Spatiotemporal data – Density-Based Spatial Clustering Applications with Noise 

(MDST-DBSCAN) method for efficient clustering of large, multidimensional data. The model demonstrated accurate 

cluster identification within the given time. Mazin Hameed et al. [14] introduced the Distributed Density-Based Spatial 

Clustering of Applications with Noise (DDSCAN) protocol for energy-saving in IoT sensor devices. Their systematic 

strategy identified cluster heads based on energy, nearby residents, and interval information, proving more efficient than 

previous methodologies. Yasser Nabil et al. [15] developed a mathematical model to analyze the interaction between data 

granularity, transmission delay, and reliability. The model aimed to optimize packet size, power supply, antenna 

directivity, and transmission rate, enhancing overall device performance. 

Kang Tan et al. [16] successfully controlled a vehicular network, addressing handover management, resource 

efficiency, and decision-making related to network formation/deformation. They also discussed the application of 

machine learning in vehicular networks. Lucy Dash et al. [17] proposed the spatial and Temporal Correlation-based 

Data Redun dancy Reduction (STCDRR) protocol, demonstrating a 7.2 times improvement in data redundancy removal 

compared to other algorithms. The protocol achieved higher data compression rates and reduced false data. Khattak et al. 

[18] developed an IoT-enabled optimal data aggregation method for urban surveillance, converting raw information into 

refined data with minimal information loss. The proposed approach outperformed previous methods in terms of 

refinement pro- portion, information loss, energy efficiency, and lifespan. Seo Jin Chang et al. [19] introduced the Delay-

Based Dynamic Clustering (DBDC) method, relying on DBSCAN to reduce communication delay in large control 

clusters. Evaluation results showed the method’s success in planning clusters for optimal control execution. Sakorn 

Mekruksavanich et al. [20] combined a model for human activity recognition with real-time dataset testing, showcasing 

improved identification of various human activities using gyroscopes and accelerometers in a digital watch. Dae Young 

Kim et al. [21] proposed an aggregation data model for identifying the proper node of aggregation and describing data 

transmission methods. Their evaluation demonstrated the model’s superior performance in simulated data scenarios. 

Erskine SK et al. [22] presented the Secure Data Aggregation Authentication (SDAA) protocol, minimizing delay and 

increasing energy efficiency in underwater vehicular wireless sensor networks. The method proved effective in 

improving energy efficiency and reducing network delays compared to previous approaches. Xiaoya An et al. [23] 

introduced the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Spatial-Temporal Random 

Partitioning (STRP-DBSCAN) algorithms for clustering spatial-temporal data. The STRP-DBSCAN algorithm 

significantly reduced clustering time compared to DBSCAN, and an additional Prioritizes Experience Replay-Soft 

Actor-Critic (PER-SAC) algorithm further improved clustering accuracy and stability. 

The current literature addresses a broad spectrum of subjects encompassing data aggregation, communication 

proto- cols, machine learning applications, and clustering algorithms, demonstrating notable advancements and 

inventive solutions across diverse IoT-related domains. However, it is noteworthy that a gap exists in the exploration of 

data aggregation for Static and IoT (SIoT) devices, taking into account both their static and mobile nature and 

establishing inter-device relationships. 

3. Problem Statement 

In the realm of SIoT, conventional data processing falls short of capturing the dynamic and socially driven nature of 

device interactions.   The challenge lies in aggregating heterogeneous data streams, understanding nuanced social 

dynamics, and ensuring scalability concerns. Existing models lack the specificity required for SIoT. This prompts the 

need for an innovative dynamic data aggregation approach tailored to the intricacies of SIoT, ensuring efficient 
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processing, contextual understanding of social interactions, and scalability in a landscape where interconnected devices 

and social elements converge. 

4. Proposed method 

4.1 System Model 

Consider a system with a set of static devices, denoted as D = {D1, D2, . . . , DN }, and mobile devices 

represented as M  = {M1, M2, . . . , MM }.  Let Xt be the dynamic dataset generated by all devices at time t, where 
( )i

tX  is the data generated by device Di and    j

tX  is the data generated by mobile device Mj. The spatial locations 

of devices are defined as Ci = (xi, yi) for static devices and Cj = (xj, yj) for mobile devices. Let R be the set of social 

relationships rij | di, dj ∈ D. 

4.1.1  Objective Function 

The objective is to minimize the data aggregation cost while considering spatial clustering and predictive 

analytics. 

The cost function is defined as follows: 
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Where wij is a weight factor representing the influence between the static device, Di and mobile device Mj and 

d(Ci, Cj) Is the distance function between the spatial coordinates of devices, Di, Mj, Xt
(i)

 and X t
(j)  
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generated byDevices Di and Mj at time t. 

4.1.2  Proposed Solution 

The proposed solution involves employing Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) for spatial clustering and Recurrent Neural Networks (RNN) for predicting mobile device movement 

patterns. The clusters are formed by identifying the devices having the same relationship that are obtained through 

certain constraints like device protocols, device ID, device models etc. 

Social Relationship Constraints 
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DBSCAN for Spatial Clustering: DBSCAN is utilized to cluster devices based on their spatial proximity. 

Let C1, C2, . . . , CNc represent the clusters formed by DBSCAN. The inclusion of DBSCAN is beneficial for 

identifying groups of devices that are spatially close, providing context for potential social interactions. 

Mathematically, DBSCAN assigns each device di to a cluster Cj based on spatial coordinates (xi, yi). This can be 

expressed as: 

 

,{ | (( ) ( )) }, ,i j i i j jC d distance x y x y                                            (4) 

 

Where, ϵ is the radius within which devices are considered neighbors. 

RNN for Movement Prediction: RNNs are employed to predict device movements over time intervals. The RNN 

model is trained on historical data, considering parameters such as start timestamp, stop timestamp, user ID, and spatial 

coordinates. Mathematically, the RNN model can be represented as a set of equations capturing the temporal 

dependencies in device movements: 

 

     
1( ),t t th RNN h input                                                                     (5) 

 

Where, ht is the hidden state at time t, and inputt is the input vector containing information about the device, 

timestamp, and spatial coordinates at time t. The predicted movement’s x̂
t
, ŷ

t
 can be obtained from the output of the RNN. 

Utility Function Incorporating Clustering and Prediction: The utility function f (di, dj, tk, pl, rij) is enhanced to 

consider both clustering information from DBSCAN and move- ment predictions from RNN.  

Let Uijk,l denote the enhanced utility: 
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, (,  ,  ),  ,  ,  ,  ,( )  ) (ijk l i j k l ij i j i k lU f d d t p r DBSCAN Similarity d d RNN Prediction Accuracy d t p           (6) 

 

Where, α, β, γ are weights determining the importance of each component. Let Sij be a binary decision variable 

representing whether data from static device Di is aggregated with data from mobile device Mj. The mathematical model 

for the proposed solution is formulated as an optimization problem: 
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Equation (2) ensures that each static device’s data is aggregated with exactly one mobile device, and Equation (3) 

ensures that each mobile device receives data from at most one static device. The decision variables Sij are binary, 

indicating whether the corresponding data aggregation is scheduled. 

4.2 Methodology 

The purpose of the Dynamic Data Aggregation Model is to provide a comprehensive solution for predictive 

analytics in the realm of the SIoT. Figure 1 shows the methodology proposed to aggregate the data generated by the 

SIoT devices. The data sources include static devices denoted as Device A, Device B, and Device C, alongside mobile 

counterparts identified as Device X, Device Y, and Device Z. The Data Aggregation Engine operates on two pivotal 

methodologies: Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for robust spatial clustering, 

and Recurrent Neural Networks (RNNs) tasked with predicting mobile device movement patterns through a specific 

architecture and training configuration. The Communication Module integrates diverse protocols such as Bluetooth, Zig 

bee, Wi-Fi, and GSM, fostering effective data exchange and relationship establishment between devices. For storage, a 

dedicated repository is employed to store aggregated data in a structured manner for future analysis. Specific relationship 

types, including Parent-Object, Social-Object, Co-work Object, Co-location Object, and Strange-Object, are defined to 

characterize associations between devices within the SIoT ecosystem. In essence, this model offers a holistic solution that 

integrates spatial clustering, neural network predictions, and relationship characterization for a robust SIoT data 

aggregation system. 

The model amalgamates data from both static and mobile devices, fostering a holistic approach to understanding 

device dynamics in diverse scenarios. The model employs two key methodologies: 

4.2.1 Density-Based Spatial Clustering of Applications with Noise (DBSCAN):  

This method is utilized for robust spatial clustering of device data. The parameters include epsilon (ε) set to 10 and 

a minimum number of samples required for a cluster (min samples) set to 3. The result is a meaningful clustering of 

devices based on their spatial proximity. 

4.2.2 Recurrent Neural Networks (RNNs):  

RNNs are employed to predict mobile device movement patterns. The model’s architecture includes a SimpleRNN 

layer with 10 units and a dense output layer with 1 unit. The relu activation function is used. The model is trained for 

100 epochs with the Adam optimizer and mean squared error (MSE) as the loss function. 

4.3 Unique Aspects of Integrating DBSCAN and RNN within SIoT 

4.3.1 Comprehensive Data Handling: 

• DBSCAN addresses the spatial clustering of static devices, allowing the model to understand the spatial 

relationships and groupings among them. 

• RNNs complement this by capturing the temporal dynamics of mobile devices, predicting their movement 

patterns over time. 

• By integrating both methodologies, the model can effectively handle the diverse data characteristics present in 

SIoT environments, covering both static and mobile aspects. 
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4.3.2 Spatial-Temporal Fusion: 

• The integration of DBSCAN and RNN enables a fusion of spatial and temporal information. 

• DBSCAN captures spatial proximity, identifying clusters of devices based on their physical locations. 

• RNNs capture temporal patterns, predicting how mobile devices move and interact with each other over time. 

• This fusion allows for a more holistic understanding of device dynamics in SIoT scenarios, where both spatial 

and temporal aspects are crucial. 

 

 

Fig. 1. Proposed methodology design 

4.3.3 Robust Clustering and Prediction: 

• DBSCAN’s robust clustering algorithm ensures that static devices are effectively grouped based on spatial 

proximity, even in the presence of noise or outliers. 

• RNNs, with their ability to capture sequential patterns, provide accurate predictions of mobile device 

movements, considering past trajectories and behaviors. 

• This combination results in a robust model that can handle the inherent variability and unpredictability of SIoT 

data, enhancing the reliability of both clustering and prediction tasks. 

4.3.4 Adaptability to Dynamic Environments: 

• SIoT environments are dynamic, with devices constantly moving and interacting with each other. 

• The integration of DBSCAN and RNNs allows the model to adapt to these dynamic changes by continuously 

updating spatial clusters and refining movement predictions based on the latest data. 

• This adaptability ensures that the model remains effective in diverse SIoT scenarios, where device mobility 

and interactions play a crucial role. 
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Thus, the integration of DBSCAN and RNN within the SIoT context offers a unique approach that combines 

spatial clustering with temporal prediction, enabling a comprehensive understanding of device dynamics.  

This integration facilitates robust data handling, spatial-temporal fusion, and adaptability to dynamic environments, 

making it well-suited for various applications in the realm of the Social Internet of Things. 

4.4 Implications on the Broader Field of SIoT 

The integration of DBSCAN and RNN methodologies within the SIoT context presents significant implications for 

the broader field: 

 

• Enhanced Understanding of Device Dynamics: By combining spatial clustering and temporal prediction, the 

model facilitates a deeper understanding of device behaviors in SIoT environments, enabling more informed 

decision- making processes. 

• Improved Data Handling in Dynamic Environments: The adaptability of the integrated model to dynamic 

changes ensures robust data handling, which is crucial in real-world SIoT scenarios where device mobility and 

interactions constantly evolve. 

• Potential for Advanced Applications: The fusion of spatial-temporal information opens avenues for 

advanced SIoT applications such as smart city management, intelligent transportation systems, and 

environmental monitoring, where comprehensive data analysis is essential. 
 

Thus, the integration of DBSCAN and RNN within the SIoT context offers a unique approach that combines spatial 

clustering with temporal prediction, enabling a comprehensive understanding of device dynamics. This integration 

facilitates robust data handling, spatial-temporal fusion, and adaptability to dynamic environments, making it well-suited 

for various applications in the realm of the Social Internet of Things. It also promises significant advancements in 

understanding device dynamics and enabling innovative applications across various domains. 

4.5 Algorithm 

The algorithm 1 processes a set of devices denoted as C, a data matrix at time t represented by Xt, and a weight 

matrix W. It incorporates the DBSCAN clustering algorithm with user-defined parameters, ε for distance and minsamples 

for the minimum number of samples required for clustering. Additionally, an RNN (Recurrent Neural Network) is 

utilized in the algorithm. The primary objective is to dynamically aggregate data from clusters formed by DBSCAN, 

updating weights based on RNN predictions. The algorithm begins by applying DBSCAN to the set of devices C, 

resulting in clusters. Subsequently, it initializes a matrix denoted as AggregatedX with zeros. It then iterates over each 

cluster, calculating the centroid of devices within the cluster. Data matrix Xcluster and weight matrix Wcluster are extracted 

based on the devices in the cluster. The weights are then updated using RNN predictions for the corresponding data. 

Finally, the algorithm aggregates the results into AggregatedX using a specified formula. The output of the algorithm is 

the dynamically aggregated data matrix AggregatedX, which reflects the contributions of different clusters based on 

their centroids and the associated RNN-informed weight updates. 

 

Algorithm 1: Dynamic Data Aggregation Model with DBSCAN and RNN 

Data: C: Set of devices, Xt: Data matrix at time t, W : Weight matrix, ε: DBSCAN parameter, min samples: 

Minimum samples for DBSCAN, RNN: Recurrent Neural Network 

Result: Aggregated X: Aggregated data matrix 

1 Apply DBSCAN to C with parameters ε and min samples, obtaining clusters; 

2  Initialize Aggregated X matrix with zeros; 

3 for each cluster Ccluster in clusters do 

4 Calculate the centroid Ccentroid of devices in Ccluster; 

5 Extract data matrix Xcluster and weight matrix Wcluster for devices in Ccluster; 

6 Update Wcluster using RNN predictions for Xcluster; 

7 Aggregate the result into Aggregated X using the formula: Aggregated X += Wcluster · X
T
 · Xt; 

8 return Aggregated X 

 

5. Result and Discussion 

5.1 Experiment 

The model’s effectiveness is evaluated through simulation using the Small World in Motion (SWIM) mobility 

model. Parameters include perceptual radius, user count, and motion values, providing realistic scenarios for static and 

mobile device interactions. The data generation process involves creating a dataset of 16 devices having 8 private 

and 8 public devices that are in both static and mobility in nature. The 2D and 5D coordinates are randomly generated.  
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The Dynamic Data Aggregation Model showcases its effectiveness in providing a nuanced understanding of device 

dynamics, seamlessly unifying static and mobile data. This research contributes to advancing predictive analytics in 

SIoT contexts, offering 
 

 

Fig. 2. DBSCAN clusters in 2D 

 

Fig. 3. DBSCAN clusters in 3D 

A versatile framework for dynamic data analysis. The model demonstrates noteworthy accuracy in predicting 

mobile device movement patterns through comprehensive testing. The fusion of DBSCAN clustering and RNNs serves 

as the cornerstone of the model’s novelty, offering a unified solution for dynamic data aggregation. The clustering 

provides insights into the relationships between devices, while RNNs accurately capture and predict the movement 

patterns of mobile devices. The spatial clustering is performed using DBSCAN to identify device clusters. The device 

data is reshaped to fit the requirements of the RNN model. In this case, the data is reshaped to have 5-time steps, each 

with 1 feature, to capture the temporal patterns of the data (device data rnn). The RNN model is defined using Tensor 

Flow’s keras API. It consists of a SimpleRNN layer with 10 units and a dense layer with 1 unit. The model is 

compiled using the mean squared error loss function and the Adam optimizer. The RNN model is wrapped using a 

custom class Keras Regressor Wrapper to make it compatible with scikit-learn. The model is then trained on the 

reshaped device data (device data rnn) to predict the movement patterns of the devices. 

5.2  Results 

The results are complemented by visualizations offering insights into clustering outcomes, a comparison between 

actual and predicted device movements, and the application of DBSCAN clustering. Figures 6 and 3 showcase the 2D 

and 3D visualizations of clusters generated using DBSCAN. These clusters emerge from the object profiling of devices, 

establishing relationships between them through the DBSCAN algorithm. 

Table 1 illustrates the aggregated sample data at both the node and cluster levels. This table displays only two 

features from four devices. Notably, at the node level, data aggregation occurs at the root before being transmitted to the 

cluster head at the cluster level. 



Dynamic Data Aggregation Model for Social Internet of Things Devices: Exploring the Static and Mobile Nature 

Volume 16 (2024), Issue 5                                                                                                                                                                     103 

Table 1. Sample aggregated data at the Node level and cluster level 

Aggregated Data at Node Level 

Index Feature A Feature B 

Root 10.0 20.00 

Device A 11.0 18.33 

Device B 13.5 21.50 

Device C 8.0 10.00 

Device D 12.0 18.00 

Aggregated Data at Cluster Level 

Index Feature A Feature B 

Cluster 1 11.25 18.25 

Cluster 2 13.35 21.65 

Cluster 3 10.15 16.35 

 

The metrics used to evaluate the model’s performance are as follows: Mean Squared Error (MSE): Measures the 

average squared difference between actual and predicted device movements. Adjusted Rand Index (ARI): Evaluates the 

consistency of clustering results between DBSCAN and the predicted movement. Cross-Validation Mean Squared Error: 

Assesses the model’s generalization performance through cross-validation. 

Table 2 displays the evaluation outcomes for the proposed model. The model yielded average values of 0.14604, 

2.678385, 0.307154, and 1.342317 for MSE, MAE, RMSE, and MAPE, respectively. These results indicate the effective- 

ness of the proposed model, which integrates both DBSCAN and RNN models, showcasing its promising performance. 

These average values provide a summary of the model’s typical performance in minimizing squared errors, absolute 

errors, and percentage errors across various prediction sequences. A lower average value in each metric generally 

reflects a more accurate and precise prediction by the proposed model. 

Table 2. Proposed model’s performance results 

Sequence 

No. 
MSE MAE RMSE MAPE 

1 0.047904 0.187631 0.218869 0.5196254 

2 0.000762 0.025142 0.027622 0.253348 

3 0.000486 0.020466 0.022056 0.224377 

4 0.047903 0.187631 0.218869 0.5196254 

5 0.000762 0.251426 0.027622 0.253348 

6 0.346517 0.458964 0.588657 0.526256 

7 0.146499 0.291799 0.382751 0.334869 

8 0.376354 0.504573 0.613477 0.577338 

9 0.346514 0.458964 0.588865 0.526256 

10 0.146499 0.291799 0.382751 0.334869 

AVG 0.14602 2.678395 0.307154 1.342317 

 

Figure 4 visually represents the clustering of devices into two categories: Static and Mobile. The formation of these 

clusters is influenced by the consideration of protocols and device profiles. These factors establish relationships between 

devices, serving as crucial parameters in the proposed model. The resulting clusters reflect distinct groupings based on 

the characteristics and behaviors of the devices. 

Figure 5 shows the comparison between the original RNN movement and the predicted movement. The 

positions of devices in a SIoT environment are depicted both before and after applying the Recurrent Neural Network 

(RNN).  

Notably, the RNN demonstrates an ability to predict device movement by capturing relationships among the 

devices. This predictive capability aids in anticipating the subsequent movements of the devices, consequently 

influencing data aggregation at the cluster level. These aggregated data are then transmitted by the devices at the node 

level, ultimately enhancing the efficiency of data aggregation across the devices. In Figure 6, the illustration represents the 

data aggregation at the node level. The graph visualizes the aggregation of data within devices at the node level, guided 

by the dataset’s diverse metrics. Initially, the devices undergo clustering using the proposed model, forming clusters 

of devices with. 
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Fig. 4. Clustering of devices: Static and Mobile devices 

 

Fig. 5. RNN-Original vs. Predicted Movement 

Similar relationships. Figure 7 provides a sample of a single cluster, showcasing the aggregation of data at the 

cluster level, influenced by various metrics. 

Figure 8 illustrates the results of validation sequences and predictions, showcasing outcomes generated by the pro- 

posed model for a series of 10 sequences. The close alignment between predicted points and ground truth highlights the 

model’s effectiveness in capturing underlying patterns or relationships within the data. This alignment underscores the 

superior predictive performance and potential advantages provided by the proposed model when compared to alternative 

approaches. 

5.3  Clustering Methods Comparison 

DBSCAN clustering achieved a silhouette score of 0.0934, while K-Means clustering achieved a silhouette score 

of 0.4740. This indicates that DBSCAN demonstrates better performance in clustering static device data. 

Figure 9 depicts the distribution of devices pre- and post-clustering, determined by the devices’ inter-relationships. 

Figure 10 displays the comparison of clustering methods for actual and predicted values using the existing model, 

while Figure 11 shows the comparison for the proposed model. 

Table 3 summarizes the performance of various models based on two key metrics: Silhouette Score for clustering 

and Mean Squared Error for prediction. The DBSCAN + RNN model achieved a Silhouette Score of 0.474 for 

clustering. 



Dynamic Data Aggregation Model for Social Internet of Things Devices: Exploring the Static and Mobile Nature 

Volume 16 (2024), Issue 5                                                                                                                                                                     105 

 

Fig. 6. Aggregated Data at Node Level 

 

Fig. 7. Aggregated Data at Cluster Level 

And a Mean Squared Error of 0.088 for prediction. In contrast, the K-Means + RNN model exhibited a notably 

higher Silhouette Score of 0.0934 for clustering, although its Mean Squared Error for prediction is unavailable. The 

Linear Regression model, while lacking a Silhouette Score for clustering, demonstrated a Mean Squared Error of 0.083 

for prediction. Thus, these results indicate that the DBSCAN + RNN model surpassed the other models in terms of 

clustering accuracy, while the Linear Regression model exhibited the lowest prediction error. 

5.4  Implications of the Findings 

The superior performance of DBSCAN in clustering static device data suggests its effectiveness in handling spatial 

relationships among devices in Social Internet of Things (SIoT) environments. Combining DBSCAN clustering with 

RNN for predicting mobile device movements offers a comprehensive approach to understanding device dynamics in 

SIoT scenarios, enhancing predictive analytics. Linear Regression, while simpler, provides a baseline for comparison but 

lacks the sequence modeling capabilities of RNNs. 

5.5  Theorem 

Theorem 1. The Dynamic Data Aggregation Model effectively minimizes spatial and temporal data aggregation 

costs by incorporating Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Recurrent Neural 

Networks (RNN). 

Proof. Consider a dataset of N devices with spatial coordinates Ci = (xi, yi) and a distance metric d(Ci, Cj) 

representing the Euclidean distance between devices i and j. Let X
(i)

 and X
(j)

 be the data generated by devices i 

and j at time t, 
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Table 3. Results of Model Comparison 

Model Silhouette Score (Clustering) Mean Squared Error (Prediction) 

DBSCAN + RNN 0.47403350884164686 0.08798850338005376 

K-Means + RNN 0.09343606770703625 - 

Linear Regression - 0.08306529238753674 

 

 
 

Fig. 8. Validation sequences and prediction 

 

Fig. 9. Device distribution Before and After clustering 

Respectively. The data aggregation cost CostModel using DBSCAN and RNN is defined as follows: 
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                                              (11) 

 

Now, let’s consider the impact of DBSCAN on spatial clustering and RNN on temporal patterns. The cost within a 

cluster is reduced due to both spatial proximity and movement pattern prediction: 
 

1( ),t t th RNN h input                                                                          (12) 

 

The cost between clusters is also reduced as devices in separate clusters are spatially distant and have distinct 

movement patterns: 
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The overall cost reduction due to DBSCAN and RNN is then given by: 
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CostReduction = CostModel − (CostWithin Cluster + CostBetween Clusters)                             (14) 
 

 

Fig. 10. Comparison of Clustering Methods for Actual and Predicted Data Using an Existing Model 

 
Fig. 11. Comparison of Clustering Methods for Actual and Predicted Data Using a Proposed Model 

The effectiveness of DBSCAN and RNN in minimizing both spatial and temporal data aggregation cost is 

demonstrated by a positive CostReduction. This reduction signifies that clustering devices based on spatial proximity and 

predicting movement patterns optimally group data sources, reducing the overall cost of data aggregation. Therefore, 

the theo- rem is proved mathematically, demonstrating the cost reduction achieved by DBSCAN and RNN in the 

Dynamic Data Aggregation Model context. 

6. Conclusion and Future Work 

The proposed Dynamic Data Aggregation Model, amalgamating DBSCAN for spatial clustering and Recurrent 

Neural Networks for predictive analytics, establishes itself as a robust and versatile framework for gaining a 

comprehensive un- derstanding of device dynamics within the context of the Smart Internet of Things (SIoT). The model 

exhibits remarkable accuracy in predicting patterns of movement in mobile devices, highlighting the synergistic 

interplay between clustering techniques and advanced machine learning methods. The novelty of this research lies in the 

seamless integration of DB- SCAN clustering and RNNs, presenting a unified approach to dynamic data aggregation. 

The model’s performance is quantified through average values of key metrics: 0.14604 for Mean Squared Error, 

2.678385 for Mean Absolute Error, 0.307154 for Root Mean Squared Error, and 1.342317 for Mean Absolute 

Percentage Error. These metrics underscore the model’s efficacy in predictive analytics and its potential to significantly 

contribute to the evolving landscape of SIoT analytics. By eliminating the necessity for manual intervention and 

enhancing predictive capabilities, the model emerges as a valuable asset. 

Future research avenues may extend the capabilities of the Dynamic Data Aggregation Model. Exploring the 

model’s adaptability to diverse SIoT environments and datasets could enhance its generalizability. Refinement of 

clustering pa- rameters and model architecture holds promise for optimizing performance across varied scenarios. 

Integrating real-time data streams and investigating edge computing solutions could elevate the model’s applicability to 

dynamic SIoT ecosys- tems. Addressing data privacy and security concerns remains pivotal in the development of SIoT 

analytics frameworks. Exploring the model’s scalability for large-scale SIoT deployments and investigating the potential 
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integration of additional predictive models offer avenues for enhancing its predictive accuracy and versatility. 
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