
I.J. Information Engineering and Electronic Business, 2012, 5, 1-8
Published Online October 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2012.05.01

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 5, 1-8

Test Cases Reduction and Selection Optimization

in Testing Web Services

Izzat Alsmadi

Computer Information Systems Department, Yarmouk University, Irbid, Jordan

ialsmadi@yu.edu.jo

Sascha Alda

Department of computer science, Bonn-Rhein-Sieg University, Sankt Augustine, Germany

Sascha.alda@h-brs.de

Abstract — Software testing in web services

environment faces different challenges in comparison

with testing in traditional software environments.

Regression testing activities are triggered based on

software changes or evolutions. In web services,

evolution is not a choice for service clients. They have

always to use the current updated version of the

software. In addition test execution or invocation is

expensive in web services and hence providing

algorithms to optimize test case generation and

execution is vital. In this environment, we proposed

several approach for test cases’ selection in web

services’ regression testing. Testing in this new

environment should evolve to be included part of the

service contract. Service providers should provide data

or usage sessions that can help service clients reduce

testing expenses through optimizing the selected and
executed test cases.

Index Terms — SOA, web services, regression testing,

test case reduction, software testing, Automation

I. INTRODUCTION

Many software providers consider providing their

software as a web service. There are many factors that

promote going into this direction. For service providers,

cracking and software piracy is minimal in comparison
with traditional software acquisition methods. The

availability of the Internet and the fast speed and large

bandwidth also helped in the feasibility of such option.

For customers, they can get continuous support and

evolution. This is since customers always access and

use the current version of the provided software. Using

rather than owning, is what distinguish web services

from traditional software applications.

Software testing is a major software development

stage aims at making sure that developed software

products have the expected features by their users and

with minimal number of errors. Testing a software

product includes several activities that may occur in

several stages in the software development process. In

fact, every deliverable in every stage should be tested.

For example, before proceeding from the requirement

to the design stage, requirements analysis, gathering

and specification should be tested and reviewed with

customers to make sure that no misunderstandings or

misinterpretations occurred in the collection and

analysis process. Testing in this stage should verify that

the will be developed software is feasible and

achievable given the company existed resources, etc.

Regression is one of the testing activities that usually

occur late in the software development. Test cases are

created to set software aspects and components

whether black box to test high level functionalities, or

white box to test low level code. Those test cases form

a test set or test database. This database is continuously

evolving and should be updated when new code or

features are added to the software product. This testing

database, also called test oracle, form a baseline that

goes in parallel with the code to make sure that any
new changes or additions to the software product may

not break earlier or existed components. In this scope,

regression testing is running the testing database or

oracle frequently or when changes or updates occur in

the software product.

In testing web services, regression testing has some

new aspects. This is since evolution in web services

can be continuous and dynamic. Users or customers

don’t get officially frequent releases. Updates on the

web service occur on the server side and users will see

them in the next time usage or request of this service.

Perhaps, there are some constraints and regulations on

such continuous evolution and release form especially

if such change will change the Web Service

Description Language (WSDL) or one of its

components. WSDL XML file is the main mediator or

facilitator between service provider and consumers.
The file or document contains all public web methods

in the subject web service. For each one of those public

methods, the WSDL also includes information related

to the inputs or parameters for those methods and their

expected output. New versions of WSDL such as

WSDL Semantic (WSDL-S) try also to add more

semantic information such as the pre- and

post-conditions for each one of the available methods.

2 Test Cases Reduction and Selection Optimization in Testing Web Services

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 5, 1-8

The WSDL then represents the web service interface

that others can see and call the service through.

In the scope of web services also, regression can be

divided physically into two parts: one that should be

conducted on the server side and another or others that

should be conducted on the client side or sides. This is

since one standard service can have different ways of

usage from the client side and hence different client

can have different regression databases.

Evolution in services is eminent. They are developed

to be continuously adaptable and used by a large

spectrum of users. Testing in web services should also

evolve from the concepts of complete comprehensive
testing to continuous, incremental and proactive

testing.

In real business scenarios, service composition is

used to combine several possible services to

accomplish a particular business task. This forms

another evolution dimension where changes may not

occur to a service or services, but the composition

structure is changed, one or more services entered or

left the composition. This may encourage the need to

run regression database all over again.

In software products, errors can occur for different

purposes. They may indicate software internal

problems. They may also indicate misunderstanding of

the software or the service especially when users enter

incorrect or invalid inputs. Errors in particular or

quality problems in general can be also do to network

problems or traffic congestions, especially in web

services and distributed systems. In web services,
Service Level Agreement (SLA) is a contract with

quality related specifications that identify to service

users what to expect on their side when using or

invoking a service.

In testing web services environment, when a user

wants to test a web service, he/she needs to invoke the

service part of testing activities. In most cases, users

are charged for services per invocation, this can be

problematic to testing and may risk lowering the

number of test cases at the cost of quality.

Test case reduction and selection techniques may

then be more urgent in web services’ testing

environment in comparison to traditional testing

environments. It is important then for the client to be

able to test the service with the least and best number

of selected test cases that can increase coverage and

find possible weaknesses or errors in the web service.
Coverage or adequacy is a term used in testing to

define the percentage that is covered by a testing suite.

This percentage is applied to the software product or

one of its components: code, requirements, user

interface, etc. To compare a good test cases’ selection

from another, coverage is an important factor where if

the number of test cases in two test sets is the same, the

one that has a better coverage is selected.

There are many coverage aspects in software

products. A test set may focus on covering code

statements, branches, paths. It may also try to cover all

possible inputs from the user interface. For web

services, the Web Service Description Language

(WSDL) file that is published about the service can be

the first coverage focus from the client side. Testing

from the client side can either start from their client

user interface or application, or it can start from testing

the web service through its WSDL.

WSDL contains all public methods in the web

service. For each publish method, WSDL contains

further the method input parameters and expected or

possible output. Some WSDL extensions such as:

WSDL-semantic may contain semantic information

related to the usage or calling of those methods such as:

pre- and post-conditions. Changes that service provider
may apply to the software can be only seen by service

consumers if WSDL is changed. If changes cause no

change for any part of the interface, such evolution is

considered internal and may not need testing database

update. However, regression testing should be

periodically executed to make sure such changes did

not cause any problem.

As coverage starting point for testing based on

WSDL, ever input for every method should have at

least one test case. For example, if a web service S,

have several methods (m1, m2, … mn), and each

method m, has several input parameters (i1, i2, … ik),

then, the minimum number of test cases (TC) required

for coverage can be calculated through the equation:

TC = ∑ ∑(input parameters)

K

i=1

m

n=1

We did not mention method outputs because they

will be included in the number of inputs. Reduction can

also occur since inputs parameters occur in

combination and hence minimum coverage can go

down to the number of methods only.

Of course such minimum may not guarantee

exclusion from all possible errors. Some traditional

methods for input parameters divide input parameters

into valid and invalid domains and require creating test

cases for both. This will double the number of

minimum test cases for coverage in the previous

equation.

In some cases, a particular user may not be

interested on all service methods. Their focus is on one

method to test it extensively before using it and make

sure it is reliable to use.
Test Driven Development (TDD) is a recent concept

or approach that appears especially in agile software

development models. Opposite to the norm where the

testing stage comes after the coding or development

stage, in TDD, test cases are written first and then code

is developed to fulfill those test cases (no more, no

less). In web services, this concept can be used in a

different scope. Since service consumers are distant

from service providers and since services are

developed to be generic and not based on a specific

client scope, test cases can be created and provided

 Test Cases Reduction and Selection Optimization in Testing Web Services 3

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 5, 1-8

from the service provider as part of the service contract.

Those test cases can be the baseline for the contract

where service providers showed their constraints and

guidelines, through those test cases, for using their

service.

Coverage assessment can be accomplished

statistically or dynamically. In statistical approaches for

coverage assessment, a software product aspect or

component is selected and test set coverage is then

calculated based on that aspect. For example, for path

coverage, all software possible paths are calculated.

Path coverage for a particular test set is then the

result of dividing the number of paths visited in the test
set to the total number of paths in the software product.

Dynamic coverage assessment requires first

executing test cases and then calculates coverage based

on execution results and faults detection. While

dynamic coverage is more realistic in representing the

actual software quality state, it is also considered

harder and more expensive to accomplish.

The rest of the paper is organized as the following:

In section 2, several samples of related work to the

paper subject are presented, section three described

methodology, experiments conducted along with their

analysis. The paper is concluded with a conclusion and

possible future work.

II. RELATED WORK

While testing in web services is relatively a new

research subject, several research papers discussed

different aspects in this area. In this section, we will
focus on those papers discussed test cases reduction and

regression testing in web services in particular.

While most research papers in this area tried to utilize

regression testing and test case selection algorithms in

traditional methods, however, there are many factors

that make those activities in web services’ testing

different. First, users have no access to source code and

source code is physically distant from users. Second,

dynamic users’ interactions in real time web services’

usage may arise some problems or issues that cannot be

tested statically from one client. Further, service

composition issues are unique and error localization can

be problematic in such cases.

(Tarhini et al 2006, 2008 [1, 2]) papers discussed a

theoretical approach for selection of test cases for web

services and applications regression testing. The

system is modeled as a timed label transition system or
state machine and tried to select unique test cases that

can best represent the regression database. Authors

discussed different possible modifications that may

occur to a web service, a composition of web services,

or a web application: adding new components,

modifying an existing component, or changing the

specification for the web service component.

In Penta et al 2007 [3] book chapter, and Bruno et al

2005 [6] paper, authors discussed issues and challenges

related to regression testing in web services. They also

proposed a test regression strategy for testing evolved

web services based on Quality of Service (Qos) or

Service Level Agreement (SLA) constraints. As service

users has no direct access to the service and have

limited options for test executions, authors suggested

that service providers should publish in addition to the

service and interface, samples of valid test cases as well

as usage sessions or logs. Test cases as a contract, a

concept that was discussed in many research papers that

discuss testing in web services environment specially to

deal with the problem that test execution can be very

expensive.

Optimization research, integer and linear

programming were used in some papers for optimizing

the selection of test cases in web services (Hou et al.
2008 [4]). In web services, users are charged per usage

and they are usually given a usage quota per month or

unit of time. Authors formulated a cost-constraint

problem with usage quota as a goal for such

optimization problem. Matrix attributes include: test

suite, service composition group, testing requirements

or constraints, request quotas, test requirement coverage

and web service invocation matrices. In reality,

formulating and finding all those values for a particular

case is a challenging and complex task. Even the time

slot calculation is also not simple especially as such

time is usually for usage and only portion of it can be

dedicated to testing.

Ruth et al 2006 [5] paper proposed a white box

approach for safe regression test cases’ selection

applied on Java web services. A control flow graph is

developed from Java source code. Traceability analysis

is conducted between current and earlier versions of
the service to see the areas of the code that we affected

by the evolution. Such scenarios can be tested on

experimental web services. In reality, clients have only

black box testing options when it comes to web

services as they can have no access to the code.

Blanco et al 2010 [7] discussed an approach (scatter

search technique) for the automatic test case generation

from web services’ business processes. The approach

depends on search for unique transitions in the business

processes to optimize test cases’ selection. A state graph

is modeled for the business process and coverage is

then extracted based on visiting all transitions in the

state graph. While WSDL XML files represents the

service side, business processes (BPEL) represents the

client side. To deal with special state cases, such as

loops and exceptions, authors proposed a

transformation model to represent those special cases.
Athira and Samuel paper 2010 [9] discussed a model

based test case prioritization in testing web services.

This traceability method is based on studying portions

of the service that were affected by evolutionary

changes. Testers need to archive testing logs for earlier

versions to be able to trace execution logs and see what

is the different between current and previous execution

logs. The approach is discussed theoretically based on

tracing events in an activity diagram.

Zhai et al 2010 [10] paper discussed regression

testing and test case selection particularly in dynamic

service composition. Service selection is included as an

4 Test Cases Reduction and Selection Optimization in Testing Web Services

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 5, 1-8

important factor in this process where executed test

cases will be reduced through binding a particular client

only to the candidate service provider. Authors also

some location based metrics to point to the areas of

possible testing focus. The testing and metrics approach

is applied on a case study of “city guide” web service

composition to provide users based on their locations

with points of interests such as hotels, restaurants, etc.

Authors further elaborated some unique aspects in

web services evolution where users have no control on

such evolution or when it can or should occur. The next

time users invoke the service, they will get the last

version. Regression testing activities in traditional
software development environments are called

whenever the software goes in a cycle of change, update,

etc. In web services, this can be set to periodic

especially from the client side, since client is not aware

of such evolution cycles.

Authors of Mei et al 2009, 2011, 2012 [11, 12, and

13] papers have also their contribution in the area of

web services regression testing. In those papers, authors

discussed issues related to when to trigger regression

testing and how to make sure that selected test cases are

up to date and are best representatives for the testing

database. In the service composition scope, one

component service may evolve while the rest of the

services may not be aware of this evolution. To avoid

possible synchronization problems, algorithms are

proposed in those papers to dynamically inform service

composition team of component service changes.

Nguyen et al 2011 [14] paper discussed using
Information Retrieval (IR) techniques for web services

test case prioritization. The paper focused on audit

testing for evolution in web services’ composition. Test

cases are prioritized based on their relevancy to the

service change behavior. Given a service change or

new features as known, a search is conducted through

the test cases to find the best test cases that can assess

the new changes. However, in reality, the success of

such approach may depend on the format that the

changes and the test cases are in, their level of

abstraction and how much relevancy can be drawn

between test cases and evolution document.

III. GOALS AND APPROACHES

The experiments in this paper tried to answer the

following questions:

I. How can we reduce the number of executed test
cases without necessary reducing the number of

generated test cases?

II. How can application data be verified, when the

application is a Web Service without a Graphical User

Interface (GUI)?

III. Is there any difference in terms of load testing

between many calls from many users and many calls

from single user? Do virtual users mean one after

another or many threads parallel?

 How can we reduce the number of executed test

cases without necessary reducing the number of

generated test cases?

3.1. Preliminary validation components
In web services environment, test execution or

invocation is expensive, as in most cases, service

revenue models are based on number of invocations. In

principle, no problem or limit to the number of test

cases that are generated.

On the other hand, most coverage calculations

depend on calculating the number of faults found by

the test cases and not the number of test cases. The

number of faults, or any related attribute are in the

numerator, while the number of test cases are in the

denominator. This means that to optimize coverage we

have to increase the number of faults or possible faults
found and/or decrease the number of generated or

executed test cases.

A possible solution to trade off between the need to

increase coverage and at the same time reduce

execution cycles is in creating a pre-execution

component on the client side to perform initial

validations on the generated test cases before possible

invocation or before validating them for execution. The

goal of this mediating component is to make sure that

allowed generated test cases to be executed are not

going to be redundant and will improve one or more

coverage aspects, specially fault detection.

Those components will have rules or constraints to

validate test data and method selection of input

parameters’ values. Figure1 depicts the high level

design of a regression testing model for testing web

services based on the pre-validation component. The

pre-validation model takes the log of previously
executed test cases as input to help in defining roles for

judging valid and invalid test cases. Figure1 shows a

possible structure showing the location and role of the

testing pre-validation component.

Figure 1. Pre-validation for test cases’ selection.

This pre-validation process can be automated. The

loop back from the test execution results to

pre-validation ensure tuning the constraints on test

cases based on results from previous test cases. In

reality, if logs are available from user sessions, those

can be also used to optimize the usage of test execution

and minimize the number of invocations. Log reports

from web service invocations include information

related to the called method, parameters, and output.

The initial set of test cases can be provided by the
service provider as part of the contract or as a user

manual for how to call and use their service.

Test

Data

Test

cases

Invalid

Test

Cases

Valid

Test

Cases

Pre-

validation

Test

Execution

 Test Cases Reduction and Selection Optimization in Testing Web Services 5

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 5, 1-8

Figure 2. A sample of web service execution log or

reports

We developed a test automation tool to automatically

execute bulks of test cases and report the results.

Figure 1 shows an except output from a test session for

web service invocations. To clarify the results, we will

show to reports invocations, one for a successful

invocation and another for a filed invocation. Figure 2

shows the output report for a successful invocation

from invoking the service

(http://www.webservicex.net/uszip.asmx?WSDL), the

method: GetInfoByZIP. This method takes the zip code

as input parameter and retrieves the city, state

information were this zip code is in. Figures 3 and 4

show two test cases with valid and invalid inputs.

Figure 3. A test case with valid input

Figure 4. A test case with invalid input.

An automatic validation tool that parses through

execution log reports can easily distinguish between a

test case that passes and the one that fails. Based on

Figure1 then, report feedback can be used as an input

to the pre-validation component to control or decide

the test cases that should be validated to enter the

execution process.

1.2. Offline or archive testing
Testing in traditional software development

environment is an expensive stage. It consumes a

significant amount of project time and resources.

Further, in web services, testing from the client side,

means calling or invoking the web service. This is

usually a charged service where most revenue models

for web service charge per service invocations. Such

issue can be problematic for both service providers and

consumers. For service providers, those are not real

usage and required to make sure service is functioning

as expected and hence paying for testing can be

unjustifiable. Further, they may reduce testing activities

and risk quality problems. For service consumers, even

if this is charged, this may interfere with normal usage,

specially as many testing activities may require

abnormal scenarios (e.g. stress testing, fault based

testing) which may risk crashing the web service.

To solve such problem, we propose off-line testing

approaches. First for most testing activities, real data is

not a must. Historical data from web service logs can

be very useful for many activities such as test case

generation, prioritization, regressing testing, results

verification, etc. A significant portion of testing

activities can be conducted based on historical data. In

our previous regression testing model, historical data

can be used to generate test data and hence optimize
the process of test case generation.

Initial test cases and test requirements or constraints

can be provided by the service provider to their client

as part of the service contract. Their monitoring

systems or logs can have very valuable information for

testing. The only possible problem with distributing

such log is privacy especially if such data include

clients’ private information.

Further, historical data in logs can be very useful

also for regression testing. Log analysis can help in

tracing possible problems due to service evolution.

1.3. How can application data be verified, when the

application is a Web Service without a Graphical

User Interface (GUI)?
In most test automation frameworks for testing web

services, verification stage for black box testing is

accomplished manually. There are some unit assertion
tools that can automate test results verification based

on comparing expected results with actual ones that

came as outputs from execution reports.

However, in black box functional testing, automatic

verification is a challenging process. First, this is

since it is complicated in many scenarios to describe

expected results. Second, since some actions need

complex user interactions that can hardly be simulated

or automated.

There are direct and indirect goals for test cases’

verification. The final indirect goal is to make a

simple judgment whether the test case passes or fails.

The direct goal is to measure the results of a test case

execution and compare it with expected results (after

defining expected results in an earlier stage) to come

up with the Boolean judgment of whether the test case

passes or fails.
For coverage perspectives and to optimize the

process we propose a process to jump to the indirect

process and judge whether the test case passes or fails

without looking at evaluating complex results. In this

way, two complicated activities will be skipped: First

defining expected results for the test cases, and

second making the comparison through the extensive

analysis of execution reports in comparison with

initial assertions.

For testing web services, we noticed that in many

testing areas, especially in fault-based approaches,

execution reports from faulty test cases, produce

http://www.webservicex.net/uszip.asmx?WSDL

6 Test Cases Reduction and Selection Optimization in Testing Web Services

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 5, 1-8

exception output that can easily be distinguished from

successful reports by a test automation tool.

1.4. Is there any difference in terms of load testing

between many calls from many users and many

calls from single user?
Many testing tools specially for testing web

services allow users to simulate load testing in their

ability to emulate many virtual threads or users. Tools

claim that those users run in parallel. Each thread can

have a separate HTTP connection. But whether those

virtual threads run independent from each other or not

will depend on the service provider and the setup or
the platform.

In regression testing however, we need to have one

user with an ability to send many requests (parallel or

serial). A test set that has for example 100 test cases

to execute, will need to send those as service requests

one after another or all in parallel. Those two options

(i.e. one after another, or all at once) can produce

different results not only in terms of speed or

performance, but sometimes in terms of output results

especially if service provider has a mechanism to

control robotic requests, simultaneous users, etc.

Available load testing tools for web services such

as Jmeter may not provide the flexibility to send a

bulk of test cases, serial or parallel with complex

customization for each test case to reduce redundancy.

As such, we developed a tool to automatically execute

a test set that contains many test cases and record the

invocation reports.
One issue regression testing activities may face is

that some web services may disturb a tool that is

trying to send a bulk of service invocation, serial or

parallel. We noticed that some of the evaluated web

services block response on such bulk service

invocations.

Figure 5 shows invocation report generated by our

developed tool from calling a service. Those test cases

are invoked one after another. With the exception of

the first one, due to possibly communication overhead,

the total response time for all next service invocations

is somewhat similar.

Figure 5. Invocation report for testing a web service

1.5. Exception Handling and management
In software testing, we are not only concerned in

testing with valid inputs only, fault based approaches

try to invalid method input parameters and evaluate

service exception handling and management. Figure6

shows results from our tool test invocation results

using invalid input for different tested services. It is

noticed that many web services are still immature in

this area and their exception messages or feedback is

in many cases uninformative and do not reflect the

real invalid case to help service users understand what

went wrong.

Figure 6. Exception response from different services’

invocations

1.6. Service reuse or extension
Service consumers can be end users or mediators. In

some cases, composite services can be built on atomic

or component services. Extending a service is like

extending a class in traditional software programming.

There are many roles that were proposed to control

extensibility and inheritance. For example, design

patterns such as: Liskov Substitution Principle (LSP),

Design By Contract (DBC) and Open Close Principle

 Test Cases Reduction and Selection Optimization in Testing Web Services 7

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 5, 1-8

(OCP) all aim to control or put constraints on how to

extend from a parent class. In service reuse or

extension principles and focusing on pre- and

post-conditions for service public methods, the child

service should demand no more and promise no less in

reference with original services. Such roles can be

applied on input parameters or test data in test case

generation process.

II. RESULTS AND CONCLUSION

Software testing is a high level generic activity that is

required for any type of software regardless of its nature,

development methodology, target, etc. We evaluated in
this paper regression testing activities and their

challenges in testing web services. Test cases reduction

is more urgent in testing web services in comparison

with such reduction in testing traditional software

applications. Focus should be on optimizing test

executions only as all other activities can have more

flexibility in terms of resources’ availability. Two

proposals we focused on in this paper; the first one is to

develop a pre-test execution component that can

evaluate generated test cases and optimize the selection

from those generated test cases for execution. We also

proposed the utilization of historical usage sessions that

can be provided to clients by service provider. Such

usage sessions can direct and optimize the process of

test cases’ generation and execution.

ACKNOWLEDGEMENT

This paper is conducted part of postdoc scholarship
for AVEMPACE (Erasmus Mundus, Action 2 Strand 2

Lot 5 AVEMPACE) in 2012.

REFERENCES

[1] Tarhini, Abbas, Hacene Fouchal, and Nashat

Mansour, Regression Testing Web Services-based

Applications, AICCSA '06 Proceedings of the IEEE

International Conference on Computer Systems and

Applications, Pages: 163-170, 2006.

[2] Tarhini, Abbas, Zahi Ismail, and Nashat Mansour,

Regression Testing Web Applications, 2008

International Conference on Advanced Computer

Theory and Engineering, 2008.

[3] Massimiliano Di Penta, Marcello Bruno,

Gianpiero Esposito, Valentina Mazza, Gerardo Canfora:

Web Services Regression Testing. Test and Analysis of
Web Services: Pages 205-234, Springer, 2007.

[4] Shan-Shan Hou, Lu Zhang1; Tao Xie, Jia-Su Sun,

Quota-Constrained Test-Case Prioritization for

Regression Testing of Service-Centric Systems, In

Proceedings of the IEEE International Conference on

Software Maintenance (ICSM 2008).

[5] Ruth, Michael, Feng Lin, and Shengru Tu,

Applying Safe Regression Test Selection Techniques

to Java Web Services, International Journal of Web

Services Practices, Vol.2, No.1-2 (2006), pp. 1-10.

[6] Marcello Bruno, Gerardo Canfora, Massimiliano

Di Penta, Regression Testing of Web Services, In

CSMR ’05: Proceedings of the Ninth European

Conference on Software Maintenance and

Reengineering, 2005.

[7] Raquel Blanco, José García-Fanjul, Javier Tuya,

Test case generation for transition-pair coverage using

Scatter Search, International Journal of Software

Engineering and Its Applications Vol. 4, No. 4,

October 2010.

[8] S. Yoo, M. Harman, Regression Testing

Minimisation, Selection and Prioritisation : A Survey,

SOFTWARE TESTING, VERIFICATION AND

RELIABILITY Softw. Test. Verif. Reliab. 2007;

00:1–7 (DOI: 10.1002/000).

[9] Athira, B, and Philip Samuel, Web Services
Regression Test Case Prioritization, 2010 International

Conference on Computer Information Systems and

Industrial Management Applications (CISIM), 8-10

Oct. 2010.

[10] Ke Zhai, Bo Jiang, W. K. Chan, T. H. Tse, Taking

Advantage of Service Selection: A Study on the

Testing of Location-Based Web Services through Test

Case Prioritization, ICWS 2010.

[11] Lijun Mei, Ke Zhai, Bo Jiang, W. K. Chan, T.H.

Tse, Preemptive Regression Test Scheduling Strategies:

A New Testing Approach to Thriving on the Volatile

Service EnvironmentS, Proceedings of the 36th Annual

International Computer Software and Applications

Conference (COMPSAC 2012), 'Trustworthy Software

Systems for the Digital Society', Izmir, Turkey, 16-20

July 2012.

[12] Lijun Mei, Zhenyu Zhang, W. K. Chan, T. H. Tse:

Test case prioritization for regression testing of
service-oriented business applications. WWW 2009:

901-910.

[13] Lijun Mei, W.K. Chan, T.H. Tse, and Robert G.

Merkel, XML-manipulating test case prioritization for

XML-manipulating services, Journal of Systems and

Software 84 (4): 603–619 (2011).

[14] Cu D. Nguyen, Alessandro Marchetto, Paolo

Tonella, Test Case Prioritization for Audit Testing of

Evolving Web Services using Information Retrieval

Techniques, ICWS 2011: 636-643.

[15] Lin Chen Ziyuan Wang Lei Xu Hongmin Lu

Baowen Xu, Test Case Prioritization for Web Service

Regression Testing, 2010 Fifth IEEE International

Symposium on Service Oriented System Engineering.

Izzat Alsmadi is an associate
professor in the department of

computer information systems at

Yarmouk University in Jordan. He

obtained his Ph.D degree in

software engineering from NDSU

(USA) and his second master in

software engineering from NDSU

(USA) and his first master in CIS from University of

Phoenix (USA). He had a B.sc degree in

telecommunication engineering from Mutah University

in Jordan. He has several published books, journals

and conference articles largely in software engineering

and information retrieval fields.

8 Test Cases Reduction and Selection Optimization in Testing Web Services

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 5, 1-8

Sascha Alda is a professor in

software architecture at the

University of Bonn-Rhein-Sieg

(Sankt Augustin). He got a Dipl.

Information degree from

University of Koblen-Landau and

Leiden University in 2000. In

software architecture, his current

research topics include: end-user customization, model

based management, and several related subjects in

SOA. Other research topics include: architectural

patterns for mobile devices, and workflow

architectures for different applications.

