
I.J. Information Engineering and Electronic Business, 2016, 2, 66-75
Published Online March 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2016.02.08

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

A Parallel-SQLIA Detector for Web Security

Pankaj Kumar
Jawaharlal Nehru University/School of Computer & Systems Sciences, New Delhi, 110067, India

E-mail: pankajkumar.scss.jnu@gmail.com

C.P. Katti
Jawaharlal Nehru University/School of Computer & Systems Sciences, New Delhi, 110067, India

E-mail: cpkatti@yahoo.com

Abstract—An SQL injection attack compromises the

interactive web based applications, running database in

the backend. The applications provide a form to accept

user input and convert it into the SQL statement and fire

the same to the database. The attackers change the

structure of SQL statement by manipulating user inputs.

The existing static and dynamic SQLIA detectors are

being used for accurate detection of SQL injection, but it

ignores the efficiency of the system. These detectors

repeatedly verify the same queries inside the system,

which causes unnecessary wastages of system resources.

This paper contains the design approach of a parallel

algorithm for the detection of SQL injection. The

Algorithm uses the concept of Hot Query Bank (HQB) to

cooperate with the existing SQLIA detectors (e.g.

AMNESIA, SQLGuard, etc) and enhances the system

performance. It simply keeps the information of

previously verified queries in order to skip the

verification process on the next appearance. The system

performance has been observed by conducting a series of

experiments on multi core processors. The experimental

results have shown that parallel-SQLIA detector is 65%

more efficient in term of time complexity. Further this

design can be implemented in real web application

environment; and the design interface can be standardized

to cooperate with web application and the SQLIA

detectors.

Index Terms—SQL Injection Attack, Hot Query Bank,

Web Application, AMNESIA, SQLGuard, Parallel-

SQLIA Detectors.

I. INTRODUCTION

Web applications are widely used in client/server

communication model. It provides a platform for

attackers to heck into the database; therefore, their

security becomes a major issue. SQL Injection attacks are

top ten threats in web application. Every three year, Open

Web Application Security Project (OWASP) releases top

ten lists of most dangerous security flaws in web

applications. Fig.1. shows the ranking of SQL injection.

In 2010 onward SQL Injections have become number one

attacks in web application [1].

 Rank 6 2 1

 2007 2010

Year 2004

Fig.1. OWASP SQL Injection Ranking

In SQL injection attacks, the attackers inject an input

in the SQL query to alter its structure and hence, make

access the data in the underlying database. Fig.2. shows a

login form with user input.

Fig.2. Login form with benign User Input

The above valid input is dynamically generated as an

SQL query:

―SELECT * FROM users WHERE username =

‗Pk_jnu‘ AND password = ‗jnu5419‘;‖

An attacker might enter malicious input as: Pk_jnu OR

‗1‘= ‗1‘ - - in the Username field as shown in Fig.3.

Fig.3. Login form with Malicious User Input

The above malicious query is dynamically generated as:

―SELECT * FROM users WHERE username = ‗Pk_jnu‘

OR ‗1‘= ‗1‘- - ‘AND password = ‗whatever‘;‖

Username

Password

Pk_jnu OR 1=1

Whatever

Login

Username

Password

Pk_jnu

Jnu54043

Login

 A Parallel-SQLIA Detector for Web Security 67

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

The above example only shows a simple SQL Injection

scenario. In a real world environment, there are various

sophisticated SQL Injections available for web

applications.

There are many SQLIA detectors have proposed to

prevent the occurrence of SQL Injection attacks. These

detectors are either used to detect the vulnerable sources

of SQL Injections, or blocks the malicious user inputs.

The effectiveness of SQL detectors are measured by the

probability of correct judgment. Basically there are two

types of error may be possible: false positive, a detector

may wrongly identify a legitimate SQL query as an

SQLIA; and false negative, a detector may treat a SQLIA

query as a legitimate query.

The most of the application having a certain pattern of

query, which follows zipf‘s low. Generally users are

more interested for a certain types of data items and

query them in frequent manner. As a certain query is

more frequently appears and its appearance frequency

increase by a given threshold values, these query is

treated as a hot query. It would be wastage of time that

detectors verify such a hot query.

On the basis of above observation, we have design a

parallel-SQLIA detector, which uses the mechanism of

Hot Query Bank (HQB) to accelerate the detection

process on multi-core processors. HQB is a white listing

mechanism, which stored the verified hot queries and

intercepts the entire incoming query by inquiring into the

verified list of hot query. The query which is not found in

the list will be send to the SQLIA detector for verification.

The searching speed in HQB is extremely faster than the

detection speed of any SQLIA detector. HQB

implementation uses efficient hashing techniques. We

have measured the performance of system by simulating

in various scenarios and it is observe that the system

performance can be accelerated up to 65%.

The remainder of this paper is organized as follows.

Section II briefly describes the related work about SQLIA

detectors. Section III presents Hot Query Bank approach.

Section IV illustrates about parallel-SQLIA detector.

Section V presents the performance evaluation proposed

parallel-SQLIA detector. The final Section concludes the

research paper and discuss about future direction.

II. RELETED WORK

Researchers have suggested many approaches for the

protection of web application from SQL injections attacks.

Some of these approaches are development based and

some are fully automated. This section reviews the

proposed defense mechanism and their limitations.

Halfond et al. [2] has classified the SQL injection

detection techniques in three categories on the basis of

their detection stages: static, dynamic and hybrid.

A. Static

In Static approach, SQL injection attacks are detected

at the time of compilation. This approach scans the whole

application and then performs heuristics information flow

analysis to find bugs in the programs, so that the source

code can make bug free or patches for the application can

be made. However, it is a time consuming process to

deploy the patches for the system. Apart from that, static

approach often fails to detect all type of attacks. Most of

the time static approaches are unable to capture the actual

structure of the query, because the full structure is only

available during runtime. In order to sort out the

problems associated with static approach many

researchers move towards to dynamic approach to

analyze the users‘ inputs and block the malicious content

at runtime.

B. Dynamic

Under the dynamic approach the injection attacks are

detected at run time. SQLrand[6] approach is a dynamic

approach, proposed by Boyd and Keromytis. This

approach places a proxy server in between web server

and SQL server to de-randomize the SQL query received

from the clients and send the request to the server and

block the vulnerable query during run time. De-

randomized query has basically two advantages:

Portability and security. It has better performance and

imposes maximum of 6.5 millisecond latency overhead. It

is considered to be an efficient defense mechanism

against injected queries. However, it is a proof of

concepts method, so it requires further testing and support

by the programmers. SQLCheck: Su and Wasserman [7]

implement their algorithm with SQLChecker in a real

time environment. This scheme determines the similarity

between inputted query and one defined by developer.

SQLChecker does not show any false positive or false

negative and the computation overhead is also very low.

This scheme can be implemented for different

applications using different languages. It is an efficient

approach, however in one case if an attacker discovers

the key then this approach will be compromised. It

further requires testing in real web applications.

SQLGuard[4]: This is run time technique to eliminate

SQL injections. Web based application can easily

implements SQLGuard approach against SQL injection.

It is a parse tree based approach. The hard-coded portion

of the parse tree is supplied by the developer, and the user

supplied portion is represented as empty leaf nodes in the

parse tree. Users are intended to specify the value of these

leaf nodes. A leaf node can simply represent a node in the

resulting query that must be the value of a literal.

It has been noted that all kinds of SQL injection alter

the construction of SQL query statements intended by the

software developer. The structure of an intended query is

provided at runtime. After insertion of user supplied input

to the input field, the parse tree of this query is compared

with the parsed tree of already built intended query and

then finds the similarity. The parse tree of injected query

and the original query can never be equal and prevent

them to execute into the database.

C. Hybrid

It is a combination of static analysis during

development and dynamic monitoring at runtime. Hybrid

68 A Parallel-SQLIA Detector for Web Security

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

approach is considered to be a most efficient approach

that the query statically analyzes to build a query model.

During runtime, it checks all the incoming queries with

the built query model and then sends it to the database for

execution. AMNESIA [5] is a tool to detect and prevent

SQL injection attacks. It is a hybrid model based

approach and it is basically designed to target SQL

injection attacks. To analyze the code in web-application,

AMNESIA uses static analysis techniques and then

automatically builds a model of the query that can be

accepted during runtime. It monitors the dynamically

generated queries during runtime and checks them for

conformity with the statically generated model. When it

finds a query that violates the model, it identifies the

query as an attack, and prevents it from accessing the

database. WebSSARI[8] (Web application Security by

Static Analysis and runtime inspection) is a hybrid and

taint based approach, that detects error related to input

validation by using information flow analysis. This

approach can only be able to list out the input query

either as a black or white, but it fails to remove the SQL

injection vulnerabilities. The static analysis of this

approach is used to contain taint flows against the

preconditions. The preconditions that have not been met

could suggest filters and sanitization functions that can be

automatically added to the application to meet the

conditions. Sanitized input in WebSSARI system has

gone through a predefined set of filters. This approach

assumes adequate preconditions for sensitive functions.

Which can be accurately expressed using their typing

system and the input must pass through certain type of

filters. This assumption leads extra burden for many types

of subroutines and applications.

III. HOT QUERY BANK (HQB) APPROACH

A certain kind of data items in the database are

frequently accessed by the users, Hence a particular kind

of query constantly appears more frequently and it‘s

frequency increased from a given fixed value, then such

query is called as a hot query. This design adds HQB to

SQLIA detector to speed up the SQLIA detection process.

White listing mechanism is employed to record the

verified hot queries. All the incoming queries are

intercepted by the HQB by inquiring the recorded query

lists during the run time. The query which does not

appear in the lists will be considered as a SQL injection

and send the same to the detector for verification .The

query which is verified as a hot query (i.e. queries found

in the list) directly requires database for execution and

does not require detector for further verification.

Earlier the test design of HQB was completed and

theoretically analyzed its efficiency with existing SQLIA

detector in a system. The previous experiments have

shown that the SQLIA detectors performance is improved

by 45% by the utilization of HQB approach. Because of

such enhancement and robustness, HQB has promised to

provide an additional feature for certain SQLIA detectors

for protecting web applications more efficiently. Fig.4.

shows a brief flow chart [14] of HQB‘s functions to

counter SQL injection attacks. HQB checks incoming

query whether it is an acceptable hot query or not. If it is,

then it will be directly send to the database for execution

otherwise SQLIA detector will perform further

verification. If it examines to be illegitimate then the

detector will throw an exception.

The SQL injection detector needs to satisfy the

following criteria.

 Eliminate the possibility of attack;

 Minimize the effort required by the programmer;

 Minimize the run-time overhead; and

 Minimize the memory requirement.

Time overhead and memory requirement are the major

factor for the performance of SQL Injection attack

detection and prevention techniques. Every time a query

needs to be verified by the SQL Injection detection

technique. It takes a lot of time in verification and

memory to store them. Therefore, it requires to finding

out some mechanism that can improve the performance

of the detection techniques.

Fig.4. Flow Chart of HQB

IV. PARALLEL-SQLIA DETECTOR

The design of parallel-SQLIA detector parallelized the

HQB approach on multi core processor for further

improve the efficiency of the system. It uses Bloom filter

[15] as a data structure. Bloom filter (BF) is an efficient

data structure, designed to support the membership test

for the set of query (i.e. q ϵ S?). Hashing techniques are

used for the function of bloom filter. It is an excellent

space utilization data structure. BF is an array of size m

which stores a m bits string. Initially, each of the array

elements is set to be zero. Let A be the bit string of a BF,

and A[i](where 1≤ i ≤ m) represents as the i-th bit of the

BF. The BF uses k independent hash functions say h1, h2,

h3…hk; that map the SQL query in the range of{1, 2,

3 ...m}. When a query qi arrives, then A[hj (qi)] is set to 1

for 1≤ j ≤k. In order to find membership of any query qi it

Unidentified

Query

Yes

No

Execute query

Is a

legitimate

query

Throw an exception

 A Parallel-SQLIA Detector for Web Security 69

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

checks whether all the bits of A[hj (qi)] for 1≤ j ≤k are set

to 1 or not. If the value of each of the bits is equals to 1,

then it is consider a member of the set S. Otherwise, not a

member. A BF may generate a BF error [14], due to the

hash collision. Bloom filter may suggest that a query qi is

a member of the set, while it is not. Assume that each

array position is equally likely to select by a hash

function. If array contains m bits and k is the number of

hash functions, then the probability that a certain bit is

not set to 1 by a certain hash function will be

(1 1/)m

The probability that it is not set to 1 by any one of the

hash function is:

(1 1/)km

If n elements are inserted then the probability of a

certain bit is still 0 is:

(1 1/)knm

Thus, the probability of certain bit 1 is:

[1 (1 1/)]knm 

Hash function compute each of the k array positions is

1 with a probability [1-(1-1/m)
kn

]. Then the probability

that all of them being 1 is given as:

/[1 (1 1/)] [1]kn k kn m kf m e    

 (1)

For a given value of m and n the value of k is:

K=m/nln2

/2 0.6185k m n  (2)

A. Sliding Window

Let S be a query stream and W be the sliding window

size. Each query q in the query stream is designated with

a timestamp q.t to indicate its arrival time. A query q is a

valid query only if (,)now nowq t t W t   .where tnow is

the current time.

Let the occurrence frequency of a query q in the sliding

window is f(q) and N denote the sum of all frequencies in

the sliding window, that is:

(,) ()
now nowq t t W tN f q   

 (3)

Let s be the support parameter, and the value of sϵ(0,1).

If f(q)≥sN, then q is a hot query. For example, suppose

there are four different queries q1, q2, q3 and q4 with

each arrival time shown in the Fig.5. Where nowt =10 and

W=6. Note that query 4 (,)now nowq t t W t   = (4, 10).

Let the occurrence frequency of query q1, q2 and q3 are 3,

1 and 1 respectively in the sliding window. Thus

N=f(q1)+f(q2)+f(q3)=3+1+1=5. Assume support

parameter s=0.3. Therefore, only query q1 is qualified as

a hot query in this example. Because

1()f q =3≥sN=0.3×5=1.5. And the remaining queries are

treated as a cold query and require further verification in

their next appearances.

nowt W

 W=6

q4 q3 q1 q2 q1 q1 nowt

1 2 3 4 5 6 7 8 9 10

Fig.5. An Example of Sliding Window

B. The Parameters

The Parallel-SQLIA detector has multiple bloom filters

[14] (e.g. HQB.size is number of BFs). The BFs are

arranged according to increasing order of last access time

(LAT). BF[i]is i-th BF of SQLIA detector, BF[i].n is the

number of queries, stored in BF[i], and BF[i].LAT is the

last access time of i-th bloom filter, BF[i].th be the

threshold of each BF‘s size. The new BF will be

appended to SQLIA detector if BF[i].n≥th.

The relationship among the bloom filter error

probability f, bloom filter size m, number of hash function

k and threshold value th is as follows:

2logk f    (4)

 / (ln 2)th m k (5)

Let fb be their error probability with which two BF

collaborates to acquire a global BF error probability f.

f =1-[(There is no BF error in BF [1]) ∩ (There is no BF

error in BF [2])].

f= 1-(1-fb) (1-fb) =1-(1-fb) 2

1 1bf f  
 (6)

Where kb denotes the number of hash function and thb

represents the number of queries that a BF can store.

2 2log log (1 1)b bk f f           (7)

70 A Parallel-SQLIA Detector for Web Security

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

/ (ln 2)b bth m k
 (8)

In general, if the detector has υ bloom filters then

2log log(1 1)v
b bk f f           (9)

Table 1. The Relationship Among υ, fb, thb, Kb and N

 fb thb kb N

1 0.05 1732 4 1732

2 0.025320566 1386 5 2772

3 0.016953428 1386 5 4158

4 0.012741455 1155 6 4620

5 0.010206218 1155 6 5775

6 0.008512445 1155 6 6930

7 0.007300832 990 7 6930

8 0.006391151 990 7 7920

9 0.005683045 990 7 8910

10 0.005116197 990 7 9900

C. Design and Implementation

In this technique HQB coordinated with SQLGuard[4]

and AMNESIA[5] detector. Moreover the algorithm is a

parallel algorithm to run on multi-core processors for

further enhances the performance of the detector.

Therefore the performance of SQLGuard and AMNESIA

has been improved. This section presents system

architecture; flow chart, data structure and parallel

algorithm design. All the algorithms are implemented on

open MP or P-Thread Library machine. It requires gcc

compiler for the execution. The experiments have been

performed on Ubuntu machine with Intel Dual Core CPU

(2.0 GHz) and 2 GB RAM.

a. System Architecture

HQB [14] acts as a bridge between web application

and database as shown in Fig.6. It intercepts and analyzes

queries from web application to a database. When a query

is suspected as an SQL injection then it will through an

exception note over the web application; else it is

considered to be legal and will be transmitted to the

database for execution.

b. Data Structure

Hot Query Bank provides a method which is similar to

hCount [14] to get hot queries. It provides three

additional capabilities (i) it proposed a mechanism which

prevents bloom filter errors, as it might mistreat a certain

cold queries as a hot one and vice versa and thus threaten

the system security. (ii) the dynamic data set can be

handled by HQB and (iii) Query repository is used to

store recent hot queries.

Parallel-SQLIA detector contains a set of bloom filters.

At the beginning, detector will contain only one bloom

filter and the additional bloom filter will be added as per

requirements. The incoming queries are kept into the

Bloom filter until it frequency reaches to a fixed

threshold values. The algorithm keeps the track of the last

access time (LAT) of each bloom filter. LAT denote the

last update time of a bloom filter. LAT can be used to find

whether a BF expires or not. Moreover, a BF will expire

if LAT of the BF is smaller than tnow -W. The expired BFs

have been dropped from HQB for efficient utilization of

memory. Moreover the detector maintains a data structure

called Query Repository (QR) [14] to store the contents

of hot query as shown in Fig.7.

Legitimate

 Query

Query

Result

Result

Unidentified

 Queries

Unidentified

 Queries
Query

Result

Web application

HQB SQLIA

Detector

Database

Fig.6. Architecture of SQLIA Detector

Fig.7. The Data Structure

c. Flow Chart and Algorithms

The Algorithm1 verifies a query q whether it is

legitimate or not. It performs the three major

tasks(i)updates the frequency of a query q (ii)check

whether query q is hot or not and (iii) verify whether q is

a legitimate query or not. The flow chart is shown in

Fig.8. At first the algorithm checks whether ‗q’ exists in

Query Repository (QR) [14] or not. If it does, ‗q’ must be

a hot and legal query, then its time of occurrence will be

updated, and a true value will be returned.

If it does not exist in QR then ‗q’ may not be become

hot, but it might be a legal query, or it may be a SQL

injection. In both cases, the algorithm will send q to the

 A Parallel-SQLIA Detector for Web Security 71

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

SQLIA detector for verification. If q is legal, then the

variable query_legitimate (query legitimate is a Boolean

variable) will be set true. According to the status of the

variable query_legitimate, there can be two possible cases:

 Query_Legitimate is false: ‘q‘ is a SQL injecion,

and detector will come out with an exception.

 Query_Legitimate is true: ‘q’ is not hot but legal

one.

Algorithm 2 and 3 are act as SQL injection detectors.

Algorithm2 illustrates the functionality of SQLGuard

detector and Algorithm 3 of AMNESIA. If the detectors

verify the inputted query ‗q‘ as a legitimate, then the

frequency of legitimate query ‗q‘ will be recorded and

finally the task will be completed by calling an insertion

function, implemented in Algorithm 5. Subsequently,

parallel-SQLIA detector calls Hot- Query function (i.e.,

in Algorithm4) to verify whether q is a hot query or not.

If it is so then q may have just become a hot query from a

cold one after its continuous occurrence. Therefore, the

SQLIA detector will store q in QR and return true.

d. The Time Complexity of Algorithm1

The time complexity of Algorithm1 mainly falls on

four parts: (i)the cost for searching a query in Query

repository(ii) Cost of SQLIA detector for verifying a

query(iii) Parallel_insert function to insert a query into

bloom filter and (iv)the Parallel_isHotQuery() function to

check the hotness of a query. The cost for searching a

query in QR is O(1) because QR is implemented using a

Hash table. Let R be the probability that a query ‗q’ is not

legitimate, then the time complexity for sending query to

SQLIA detector will be O(R×Tdetector), where Tdetector is

time taken by SQLIA detector to verify a query. Since we

are assuming that there are p number of processor and all

are working simultaneously, so the time complexity of

Parallel_insert () function and Parallel_isHotQuery()

function is O(1) and O(1) respectively. Therefore the time

complexity of Algorithm1 becomes O(R×Tdetector) (i.e.

only detector time).

e. Determination of recently hot query

The frequency of a query ‗q’ is estimated by

Algorithm4 and it also decides if ‗q’ is a recent hot query

or not. How many time that ‗q’ has appeared in the

sliding window are recorded by a variable total_freq (i.e.,

at Line 4 of Algorithm4), and N denotes the sum of all

queries‘ frequency inside the sliding window. The

minimum value of associated counter is used to estimate

q’s frequency, and then accumulate the estimated

frequency to total_freq. Check q’s frequency with

estimated frequency, and returns the result either true or

false to Algorithm1. Workload of Algorithm4 mainly falls

between Line 2 and 4, where HQB needs to go through

all BF. Here we have been considering a multiprocessor

system having p number of processor, and each BF needs

to do the hashing up to k times. Therefore, its time

complexity is O(k) and the number of processor required

is p=O(HQB.size).

f. Legitimate Query insertion

Algorithm5 illustrates the detail process of Query

insertion. At first HQB checks whether the size of the last

Fig.8. Flow Chart

BF exceeds the threshold value (th) or not. If it exceeds

from th, then a new BF will be appended to the HQB.

HQB then inserts ‗q’ into the last BF and increases n of

the last BF by one. HQB also fixes the current time (i.e.,

Start

Query q0

Return true

Thrown an

exception

Get q’s

Frequency

Return false

Insert q into QR

Stop

No

Ye

s
Insert into

HQB

Is

Legitimate

Query?

Yes

No

Return true

Is a Hot

query?

Yes

No

SQLIA Detector

Is Appeared

in QR?

72 A Parallel-SQLIA Detector for Web Security

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

tnow) to BF.LAT. The insertion of a query ‗q’ into a bloom

filter requires computation of k hash function which is

done by p number of processor simultaneously, so the

time complexity of Algorithm5 is O (1).

Algorithm 4

Parallel_isHotQuery(q)

{

1. #pragma omp parallel

i. Total_freq←0

ii. N←0

iii. Min_freq← 

2.  pi where BF[i]  HQB do

i. If(BF[i].LAT˂ tnow)then Continue

ii. N←N+BF.n

3.  pi where i←1 to k do

i. If(BF.A[i][hi(q)]=0)then

a. Min_frq←0

b. Break

ii. If(BF.A[i][hi(q)]≤Min_freq)then

a. Min_freq←BF.A[i][hi(q)]

4. Total_freq← Total_freq+Min_freq

5. Return(Total_freq≥sN)

}

Algorithm 5

Parallel_Insert(q)

{

1. If(BF[HQB.Size]≥th)then

i. Add a new BF to HQB

ii. HQB.Size=HQB.Size+1

2. BFcurrent←BF[HQB.Size]

3.  Pi where i←1 to k do

i. BFcurrent.A[i][hi(q)]←BFcurrent.A[i][hi(q)]+1

ii. End for

4. BFcurrent .n←BFcurrent .n+1

5. BFcurrent .LAT←tnow

}

Algorithm1

MIMD_SM: Multiple instruction multiple data shared memory

Architecture machine
P: No. of processor

Parallel_SQLIA_Detector(MIMD_SM)

{

1. Global_query_appeared←false

2.  Pi Where 0≤i≤p-1do

i. Local_query_appread←QR[hi(q)]

ii. Lock(global_query_appread)

iii. Global_query_appread←Global_query_appread+

local_query_appread

iv. End for

3. if(Global_query_appread=true)then

i. q.t←tnow

ii. return true

4. else

i. query_legitimate←send query ―q‖ to SQLIA Detector

for verification(e.g. AMNESIA, SQLGuard)

ii. if(query_legitimate=true)then

a. q.t=tnow

b. Parallel_insert(q)

c. query_hot←Parallel_isHotQuery(q)

d. if(query_hot=true)then

Insert ‗q‘ to QR[hk(q)]by processor pk and
return true

iii. else

Thrown exception and return true

5. Exit

}

Algorithm2

SQLGuard_Detector(q):Verify whether a Query ‗q‘ is
legitimate or not.

Input: A query ‗q‘ will be passed to the SQLGuard detector
Output: Return true if Query ‗q‘ is legitimate hot otherwise

false.

1. Make the Parse tree of the inputed Query

2. Match the parse tree of inputed query and already built

parse tree of that query.

3. If both the parse tree are matched then the SQL query q is

legitimate.

And return true.

4. Otherwise not legitimate and return False.

5. Exit

Algorithm3

AMNESIA_Detector (): Verify whether a set of Query within the

application are legitimate or not.
Input: An application containinmg SQL query, will be passed to

the AMNESIA detector

Output: Return true if Query ‗q’ is legitimate hot otherwise false.

1. Scan the entire application and identify the Hot Spot (i.e.

SQL Queries) to the underlying database.

2. Identified query passed to a Non Deterministic Automata in

which transition level consists of SQL tokens, delimitors

and space for SQL String value.

3. If the Automata reaches to the final state then SQL query is

a legitimate query.And return true.

4. Otherwise return false.

5. Exit.

 A Parallel-SQLIA Detector for Web Security 73

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

g. Maintenance of HQB

The legitimate hot queries [14] are store in Query

Repository (QR). The size of QR must be equal to the

number of all hot and legitimate queries. The design of

QR should be as such, it provides the following

advantages (i) fewer numbers of hot queries requires

lesser amount of memory. (ii) fast search speed due to the

small size of QR and (iii) high occurrence frequency of

hot legitimate queries.

Notice that if Query Repository provides the above

advantages, then the verification of ‗q’ as a legal query is

possible by simply checking QR. Therefore, query ‗q‘ is

no more required to send to the SQLIA detector for

verification, and thus improve the overall performance.

V. PERFORMANCE EVALUATION

A series of simulation experiment has been performed

in order to evaluate the performance of Parallel-SQLIA

detectors under different parameter settings. The detector

is basically combination of HQB [14] and SQLGuard [4]

called HQBGuard detector and HQB and AMNESIA [5]

called HQBAMNESIA detector. SQLGuard uses a parse

tree approach and AMNESIA is a model based approach.

AMNESIA uses finite automata for the construction of

SQL model. The performance of the system has been

compared among the parallel-SQLIA (HQBGuard,

HQBAMNESIA) detectors, SQLGuard and AMNESIA

detectors. Here the ―performance‖ refers to the total

execution time.

A. Experimental setup

The parameters used in the experiment are summarized

in a Table 2. There are 10 test samples generated in order

to perform experiment. Each of them contains 10,000

legitimate queries with 0%, 0.01%, 0.1%, 1%, 5%, 10%

and 20% malicious queries taken from the literature of

SQL injection attacks. One query is to be selected from a

file containing 10,000 queries every time. The experiment

has been terminated after examined the verifications of

100,000 queries. The simulator selects the queries based

on two key factors: the skew coefficient of a Zipf

distribution (Ѳ) [14] and the ratio of malicious queries (r).

r= Number of malicious queries / Total number of

queries.

For example, let r =10% and Ntotal = 100,000 then

malicious query will be 10,000(approx). The simulator

flips a biased coin with the probability r for heads to

select a query from the total query. The simulator selects

a malicious query randomly and uniformly, if the

outcome of the coin is head. Otherwise, a legal query is

picked by the simulator based upon the Zipf distribution

(Ѳ).

Let Pr(qi) be the probability of selecting i-th query out

of 10,000 legal queries.

 

 
10000

1

1

Pr()

1
i

i

i
q

i











 (10)

Where, Ѳ is the skew coefficient and i is the Rank of

the Query based on frequency. Highest query‗s frequency

has given rank 1, second highest 2, and so on. The

frequency of hot query is directly proportional to the

skew coefficient.

()
i

f q  (11)

Therefore, if the frequency of a query increases, then

the Algorithm will take lesser time to recognize as a Hot

Query.

1()
i

f
Timeq 

(12)

Table 2. Parameter Setting

Parameter Value

Number of total queries(Ntotal) 100,000

Percentage of malicious Queries(r)
0%, 0.01%, 0.1%, 1%, 5%,

10%, 15%, 20%

The Skew coefficient of Zipf

distribution(Ѳ)

0.8, 1.0, 1.2, 1.4, 1.6, 1.8,
2.0

Support Parameter(s)

0.001, 0.005, 0.01, 0.05,

0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4

The size of the sliding window(W)
500, 1000, 1500, 2000,

2500, 3000

Bloom filter error probability(f) 0.05

The size of Bloom filter(m) 10,000

The number of hash function(kb) 6

Update time interval(Tupdate)
1000, 2000, 3000, 4000,

5000

If the number of hot queries increase then the skew

coefficient will also increase and the distribution of Pr(qi)

will become more skew. Here we have considered the

sliding window size (W) as 500, 1000, 1500, 2000, 2500

and 3000. It is assumed that a query arrives one at a time.

A query is submitted only after the completion of

previous query. Here we have consider the sliding

window can contains maximum of 3000 queries (i.e., N

=3000).

Let Bloom filter error probability (f) is 0.05, and the

Bloom filter size (m) is 10,000 (i.e.10, 000 queries can

accommodate in one Bloom filter). Let the number of

hash functions (Kb) is 6.

74 A Parallel-SQLIA Detector for Web Security

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

B. Effects of Update Time Interval (Tupdate)

The update interval ranges from 1000 to 5000 and the

execution time is measured at every interval. Fig.9. shows

the total execution time of the detector on varying Tupdate.

The most interesting thing is that the Tupdate does not have

any insignificant impact on the performance of parallel-

SQLIA detector. SQLGuard[4] needs to generate two sets

of parse tree for each input SQL statement, and then

compare with each other. Whereas the AMNESIA [5]

requires to generate a finite automata for the given SQL

statement and check whether it reaches to final state or

not, which tends to cause much computation cost.

1000 2000 3000 4000 5000 6000 7000
0

500

1000

1500

2000

2500

Update Interval(Tupdate)

Tim
e(

m
s)

HQBGuard

SQLGuard

HQBAMNESIA

AMNESIA

Fig.9. Effects of Update Time Intervals

C. Effects of the Ratio of Vulnerable Queries (r)

In this case ,there are two interesting facts can be

observed by the experimental results (i) the parallel-

SQLIA detector always performs better than those of

SQLGuard[4] and AMNESIA[5]. (ii) as the value of r

increases (i.e. if malicious query ratio is more in the

system), then the performance of Parallel-SQLIA detector

and the detector alone (i.e. SQLGuard, AMNESIA)

would accordingly decreases. When a malicious query

appears, Parallel-SQLIA detector sends it to the normal

detector for further verification. Likewise, the SQLGuard

spends more time to parse a malicious query and

AMNESIA to construct a finite automaton for malicious

query; which results in a poor performance. Fig.10.

shows the execution time of SQLGuard, AMNESIA and

Parallel-SQLIA detector under various r values.

D. Effects of Support Parameter (s)

Fig.11. shows the execution time of SQLGuard,

AMNESIA and Parallel-SQLIA detector under various

support parameter values. It illustrates the impact of

support parameter (s) over execution time. A smaller

value of support parameter(s) means that higher number

of hot query exists in the system. It is notice that parallel

detector need not necessary send hot queries to the SQLIA

detector, thus it saves the time for their verifications. This

experiment shows that Parallel-SQLIA detector performs

better with a smaller value of support parameter (s).

0 0.01 0.1 1 5 10 20
0

500

1000

1500

2000

2500

3000

3500

%age of Malicious Queries(r)

Ti
m

e(
m

s)

HQBGuard

SQLGuard

HQBAMNESIA

AMNESIA

Fig.10. Effects of the Ratio of the Vulnerable Queries

0.001 0.005 0.01 0.05 0.1 0.15 0.20 0.25 0.30 0.35
0

500

1000

1500

2000

2500

Support Parameters(s)

Ti
m

e(
m

s)

HQBGuard

SQLGuard

HQBAMNESIA

AMNESIA

Fig.11. Effects of Support Parameters

E. Effects of Size of Sliding Windows (w)

An experimental result shows that if the sliding

window (W) size increases then the execution time of

parallel-SQLIA would slightly increases. Parallel-SQLIA

detector performs better than SQLGuard[4] and

AMNESIA[5] SQLIA detector under all size of windows

(W). If the size of sliding window is large then HQB

requires more number of bloom filters for storing the

query information, which in turn requires more space and

incurs more computation cost. On the other hand the

existing SQLIA detectors does not have sliding window

concept so it does not considered the factor of sliding

window, thus the sliding window size will not affect its

performance. Fig.12. shows the graph of experimental

results on varying window size.

500 1000 1500 3000 3500 4000 4500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Size of Sliding Windows(W)

Ti
m

e(
m

s)

HQBGuard

SQLGuard

HQBAMNESIA

AMNESIA

Fig.12. Effects of Size of Sliding Window

 A Parallel-SQLIA Detector for Web Security 75

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 66-75

VI. CONCLUSION AND FUTURE WORK

The Parallel-SQLIA detector can detect and prevent all

types of SQL injection vulnerabilities as well enhances

the overall system performance. Literature review

suggested most of the existing SQLIA detectors that

repeatedly verify the same query inside the system. Such

repetitions cause unnecessary wastage of time and system

resources. Parallel-SQLIA detector simply keeps the

information of hot queries and skips the repeated

verification; therefore improve the system performance in

terms of execution time. We have performed a series of

experiments to measure the respective performance. The

experimental results have shown that parallel -SQLIA

detector is 65% more efficient in term of time complexity,

regardless of any kind of detectors is being used.

This research work also provides some possible future

direction. Since the parallel detector has been

demonstrated through simulation study; further it can be

tested in a real web application. The standard interface

could be designed, in which HQB can cooperate with any

other SQLIA detectors.

REFERENCES

[1] OWASP Top Ten Project. Owasp top 10 application

security risks, 2010.

[2] W.G. Halfond,J. Viegas, and A. Orso, ―A classification of

SQL-injection attacks and countermeasures,‖ In Proc.of

the IEEE Intl .Symp. on Secure Software Engineering,

Mar 2006.

[3] C. A. Mackay (Jan 2005), SQL Injection Attacks and

Some Tips on How to Prevent Them [Online]. Available:

http://www.codeproject.com/cs/database/SQlInjectionAtta

cks.asp.

[4] G. Buehrer, B. W.Weide, and P. A. G. Sivilotti, ―Using

parse tree validation to prevent SQL injection attacks,‖ In

Proc. of the 5th intl. Workshop on Software engineering

and middleware, SEM ‘05, New York, NY, USA, pp.106–

113, 2005.

[5] W. G. Halfond and A. Orso, ―AMNESIA: Analysis and

monitoring for neutralizing SQL-injection attacks,‖ In

Proc. of the IEEE and ACM Intel. Conf. on Automated

Software Engineering (ASE 2005), Long Beach, CA,

USA, Nov 2005.

[6] S.W. Boyd and A.D. Keromytis, ―SQLrand: Preventing

SQL injection attacks,‖ In Proc. of the 2nd Applied

Cryptography and Network Security (ACNS‘04)

Conference, pp. 292-302, Jun 2004.

[7] Z. Su, and G. Wassermann, ―The essence of command

injection attacks in web application,‖ In ACM

Symposium on Principles of Programming Languages

(POPL‘2006), Jan 2006.

[8] Y.W. Huang, F. Yu, C. Hang, C.H. Tsai, D.T. Lee, and

S.Y Kuo, ―Securing web application code by static

analysis and runtime protection,‖ In Proc. of the 13th Intl.

Conf. on World Wide Web, New York, pp. 40-52, 2004.

[9] M. Martin, B. Livshits and M. S. Lam, ‖Finding

application error and security flaws using PQL: A

program query language,‖ In Proc. of the 20th annual

ACM SIGPLAN conference on Object oriented

programming systems, languages and applications

(OOPSLA 2005), pp. 365-383, 2005.

[10] R.A. McClure, and I.H. Kruger, ―SQL DOM: Compile

time checking of dynamic SQL statements,‖ In Proc. of

the 27th Intl. Conf. on Software Engineering (ICSE

2005),nos. 15-21, pp. 88-96, May 2005.

[11] P. Bisht, P. Madhusudan, and V.N. Venkatakrishnan,

―CANDID: Dynamic candidate evaluations for automatic

prevention of SQL injection attacks,‖ ACM Transactions

on Information and System Security, vol. 13, no. 2, 2010.

[12] S. Ali, S.K. Shahzad, and H. Javed, ―SQLIPA: An

authentication mechanism against SQL injection,‖

European Journal of Scientific Research, vol. 38, no. 4, pp.

604-621, 2009.

[13] M. Junjin, ―An approach for SQL injection vulnerability

detection,‖ In Proc. of the 6th Intl. Conf. on Information

Technology: New Generations 2009 (ITNG‘09), nos. 27-

29, pp. 1411-1414, Apr 2009.

[14] Y.C. Chang,M.C. Wu, Y.C. Chen, W.K. Chang, ―A hot

query bank approach to improve detection performance

against SQL injection attacks,‖ Computers& Security, vol.

31, no. 2, pp. 233-248, Mar 2012.

[15] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, ―The

dynamic bloom filters, ‖IEEE Transaction on Knowledge

and Data Engineering, vol. 22, no. 1, pp.120-133, Jan

2010.

Authors’ Profiles

Pankaj Kumar is PhD scholar in School

of Computer and Systems sciences,

Jawaharlal Nehru University (JNU), New

Delhi, India. He received B.E degree in

Information Technology from Sant

Longowal Institute of Engineering and

Technology, Sangrur, Punjab, India in

2011 and degree of M.Tech in Computer

Science and Technology from JNU in 2014. His research area is

Computer Network Security and Cryptography.

C.P. Katti is Professor and Dean in

School of Computer and Systems Sciences,

Jawaharlal Nehru University (JNU), New

Delhi, India. He received degree of M.S.

in Applied Mathematics from University

of Missouri, Columbia, MO., USA in 1976

and awarded PhD in Scientific

Computation/ Numerical Analysis from

IIT Delhi in 1981. His area of research is parallel processing

and scientific computing. He published more than 30 papers in

international journals of repute.

http://www.codeproject.com/cs/database/SQlInjectionAttacks.asp
http://www.codeproject.com/cs/database/SQlInjectionAttacks.asp

