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Abstract—Objective: Bearing defects are the most 

frequently occurring fault in any electrical machine. In 

this perspective, this manuscript proposed a novel 

statistical time-domain approach utilizing the vibration 

signal to detect incipient faults of rolling-element bearing 

used in three-phase induction motor.  

Methodology: To detect bearing defects, six time-

domain features (TDFs) namely Mean Value (µ), Peak, 

Root Mean Square (RMS), Crest Factor (CRF), 

Skewness (SKW) and Kurtosis (K) were extracted from 

the standard database of the vibration signal. The 

standard databases of vibration signals were taken from 

the publicly available datacenter website of Case Western 

Reserve University (CWRU) relating to healthy, inner 

raceway and ball defects of bearing. Initially, the mean 

and standard deviation analysis of each considered TDFs 

of vibration signals were performed to discriminate the 

health conditions of bearing. Then, the box or whisker 

plot method was applied to visualize the variation in each 

TDF in terms of median and interquartile range (IQR) 

value for better analysis of bearing defects. Finally, a 

new index parameter termed as bearing fault index (BFIT) 

was also computed and this parameter predicts the 

bearing defects based on the mean of all considered 

TDFs.  

Results: The results of the “mean±σ” analysis have 

depicted that all considered TDFs except µ feature are 

almost independent to operating loads, and have 

discerning potential to diagnose bearing defects. The 

computations of these TDFs are mathematically very 

simple. The box plot representation of TDFs of vibration 

databases have shown that peak, RMS, and skewness 

features outperforms to demarcate bearing health 

conditions in terms of median and IQR value. The results 

of quantitative analysis of BFIT parameter have shown 

that if the magnitude of this parameter is higher than 1.8 

then bearing is supposed to be faulty at all operating 

loads of machine. Thus, the BFIT analysis of TDFs is 

more simple and reliable to discriminate the health 

conditions of bearing. As most of the available 

techniques rely on the multi-processing of vibration data 

that requires large processing time and complicated 

mathematical model, so the proposed method prove to be 

simple and reliable in identifying the incipient bearing 

defects.  

 

Index Terms—Bearing fault index based on time domain 

features (BFIT), Box/whisker plot, Inner raceway and 

ball defects, Interquartile range, Time domain features 

 

I. INTRODUCTION 

Induction motor is an electromechanical device that 

converts alternating electrical energy into mechanical 

energy with the help of stator windings, rotor bars, and 

bearings. The mechanical power generated over rotor 

bars, transfers to external load with the help of rotor shaft 

and bearings. For the smooth movement of the prime 

mover, the bearing used in it should be healthy. From the 

survey reports of various agencies on percentage failure 

components of induction motor, it has been estimated 

that approximate 30-40% failures are related to stator 

windings, 40-50% failures are associated to bearings, 5-

10% failures are associated with rotor bars, and 10-12% 

failures are related with other components of induction 

motor [1, 2]. Thus, bearing faults are the most frequent 

occurring defect in an induction motor. 

Bearing defects may broadly be classified as 

distributed and single point defects [3]. A distributed 

defect incorporates surface roughness, waviness, 

misaligned races, and off-size rolling elements, while 

localized defect includes pits, cracks, and spalls on races 

or rolling surfaces of bearing. The major cause of rolling 

element bearing failure is the spalling on the rolling 

elements or races [4]. If these faults are not detected and 

diagnosed in an early stage then these may cause 

complete failure of machine that may result into huge 

economical loss, complete shutdown of the plant, and 

personal casualties.  

Bearing defects may be detected using acoustic 

analysis, temperature monitoring, oil analysis, stator 

current and vibration analysis [5, 6, 7, 8, 9]. B. V. Hecke 

et al., [7] proposed a method using acoustic emission 
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analysis to identify bearing deficiency of motor running 

at very low speed. Acoustic and noise analysis is an 

effective method to identify mechanical defects of IM, 

however the accuracy of fault prediction depends on the 

sound stress and its concentration. The temperature 

monitoring can be performed by using resistance 

temperature detector (RTD), thermocouples, infrared 

temperature detector, embedded temperature sensors in 

IM housing and thermographic cameras [8]. However, 

this method is not able to identify the localized defect in 

its very early stage, and require costly instruments to 

process the temperature variation to identify the IM faults. 

In wear debris analysis method, the debris particles 

generated in machine are assessed in terms of type, size, 

composition, mass and morphology [9]. The variations in 

any one of these factors are used as index parameter to 

determine the mechanical faults. However, it is generally 

offline process, sensors used are costly and chemical 

analysis of oil is time consuming [10]. Stator current and 

vibration signals are the most significant parameters to 

detect bearing defects [11]. The stator current based 

bearing fault monitoring will be effective only for the 

faults having low characteristic frequencies [12]. In 

contrast, vibration signal is widely applicable and robust 

parameter to detect bearing defects at any operating 

conditions [13]. The localized defect produces a 

progression of effect vibrations each time, running roller 

passes over the surface of deformities. Hence, through 

the utilization of some matured analysis techniques of the 

vibration signal, vital and rich fault diagnostic 

information about bearing can be obtained. 

Time-domain, frequency-domain, and time-frequency 

domain based feature analysis of vibration signals are 

some common techniques to analyze bearing defects. 

Fast Fourier transform (FFT) is the basic frequency 

analysis technique to extract fault frequencies present in 

vibration signal [14]. Due to the non-stationary nature of 

vibration signal, time-frequency based methods like 

short-time-Fourier transform (STFT), wavelet transform 

(WT), and adaptive time-frequency based methods may 

play a significant role in extracting the bearing fault 

information [15, 16, 17, 18]. However, these techniques 

require complex mathematical model and large 

processing time to analyze the signals [18]. Therefore, 

authors of this manuscript proposed a simple 

computation approach utilizing time-domain features of 

vibration signal to analyze bearing defects. 

Few authors have also extracted time-domain features 

of vibration signal like Peak value, mean value, RMS 

value, zero crossings, crest factor, standard deviation, 

skewness, and kurtosis, etc. to identify bearing defects 

[19, 20, 21, 22]. However, only comparing magnitudes of 

these time-domain features are not always effective to 

identify bearing defects [23]. In recent decade, artificial 

intelligence (AI) techniques are widely being used to 

diagnose bearing defects due to its robustness toward 

noise and automatic decision capabilities [23, 24, 25]. J. 

B. Ali et al., [26] have incorporated statistical features of 

vibration signal and ANN technique to identify bearing 

defects. In this method, empirical mode decomposition 

(EMD) energy entropy based statistical features were 

extracted from vibration signal.  B. Nayana et al., [27] 

have utilized time-domain features like Mean, Absolute 

Value (MAV), Simple sign Integral (SSI), Willison 

Amplitude (WAMP), Zero Crossing (ZC) and Slope Sign 

Change (SSC) of vibration signal along with feature 

reduction methods and support vector machine (SVM) to 

identify bearing defects. Few researchers have also 

focused on incorporating hybrid intelligent techniques 

like Adaptive Neuro-Fuzzy Inference System (ANFIS) 

[28], Adaptive Fuzzy-C Mean clustering [29] etc. with 

statistical features of vibration signal to identify bearing 

defects. However, the accuracy of fault prediction 

algorithm is generally depending upon the number and 

discriminating potential of the features extracted from 

characteristic signals [30, 31].  

In this perspective, this manuscript proposed a novel 

statistical time-domain approach utilizing vibration signal 

to diagnose rolling element bearing defects. For this, six-

time domain features (TDFs) namely Mean Value (µ), 

Peak value, Root Mean Square (RMS), Crest Factor 

(CRF), Skewness (SKW) and Kurtosis (K) were 

extracted from standard vibration database due to their 

abilities to reflect the variations in time series signal. The 

vibration databases were taken from the Case Western 

Reserve University (CWRU) website as healthy, inner 

raceway (IR) and ball (BB) defects of bearing at fault 

levels 7 mils, 14 mils, 21 mils, and 28mils and at 

mechanical loads 0HP, 1HP, 2HP, and 3HP. For better 

analysis, extracted TDFs were processed using three 

statistical methods to validate the effectiveness of these 

TDFs in identifying bearing defects. In the first approach, 

the mean and standard deviation (σ) of each considered 

TDF was computed and analyzed to study the bearing 

defects. This study provides an easy way to analyze the 

variations in TDFs corresponding to different health 

conditions of bearing. In the second scheme, the box or 

whisker plot method was applied to visualize the 

variation of each TDF in terms of median and Inter 

Quartile Range (IQR) value. This scheme provides a 

more analytical approach to diagnose bearing defects. In 

the third scheme, a new index parameter named as 

Bearing Fault Index based on Time Domain Features 

(BFIT) was measured and compared to investigate 

bearing defects. This parameter predicts the bearing 

defects based on the mean of all considered TDF. The 

results of the proposed scheme have shown that analysis 

of TDFs of vibration signal is simple and reliable to 

diagnose bearing defects.  

The rest of this manuscript is organized as follows. 

The description of the test rig and vibration database has 

been reported in section II. Section III illustrates the 

interpretation of considered time-domain features (TDF) 

like mean value, peak, RMS, crest factor, kurtosis, and 

skewness, used to process vibration signal. It also 

includes the comparative analysis in variation of 

considered TDF to identify bearing defects. Section IV 

consists of results and discussion of statistical analysis of 

considered TDF in terms of mean and standard deviation 

analysis, box plot analysis, and BFIT analysis to identify 
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bearing defects. The conclusion of the work is presented 

in section V. 

 

II. PROPOSED METHOD 

As mentioned in the previous section, the purpose of 

this work is to identify bearing defects using time-

domain features of the vibration signal. Fig. 1 presents a 

block diagram of the proposed fault detection process. To 

validate the proposed method thirty-six standard 

databases of vibration signals were collected from 

publicly available datacenter website of Case Western 

Reserve University [32, 33]. The proposed method 

includes the computation of six time-domain features 

namely Mean Value (µ), Peak value, Root Mean Square 

(RMS), Crest Factor (CRF), Skewness (SKW) and 

Kurtosis (K) of segmented vibration datasets and process 

them using statistical methods as “mean±σ” analysis, and 

box plot analysis to analyze bearing defects. For a better 

analysis of bearing defects, a new index parameter 

termed as bearing fault index (BFIT) was also introduced 

that was computed by the mean of all considered TDFs. 

The next section will describe the vibration databases 

used for bearing faults diagnosis.  

 

 
Fig.1. Methodology to detect bearing defects using time domain features of vibration signal 

A. Vibration Database  

In this manuscript, vibration signal is used as 

characteristic parameter due to its direct relationship with 

the bearing defects. For this, the standard vibration 

databases were taken from the publicly available 

datacenter website of Case Western Reserve University 

(CWRU) [32, 33]. The SKF-6205 ball bearing assembled 

at drive end side of 2HP reliance made induction motor 

was seeded faults using electro-discharge machining 

(EDM) technology with depth of 7 mils (0.01778mm), 14 

mils (0.03556mm), 21 mils (0.05334mm), and 28mils 

( 0.07112mm) at the inner raceway, and rolling ball. Each 

of the vibration databases were acquired at a 12 kHz 

sampling rate using a 16 channel DATA recorder for 10 

seconds duration i.e. 120000 samples in each dataset. The 

vibration datasets are derived for bearing conditions 

namely no fault (NF), inner raceway defects (IR) and ball 

defects (BB) at different fault depths for motor loads 0HP, 

1HP, 2HP, and 3HP. Thus, total thirty-six vibration 

databases have been recorded that are reported in Table 1. 

Dataset NF has four databases namely NF_0, NF_1, 

NF_2, and NF_3 that are derived at motor loads 0HP, 

1HP, 2HP and 3HP respectively. Datasets of inner 

raceway defects like IR_a, IR_b, IR_c, and IR_d, and 

ball defects like BB_a, BB_b, BB_c, and BB_d are 

acquired at fault depths of 7 mils, 14 mils, 21 mils, and 

28 mils respectively. Each of these datasets was also 

recorded at motor loads 0HP, 1HP, 2HP and 3HP. The 

vibration datasets were symbolized as NF_load, IR_fault-

diameter_load, BB_fault-diameter_load. The time-

domain waveform of vibration datasets NF_0, IR_a_0, 

and BB_a_0 are shown in Fig.2 for duration of 1second. 

To analyze even small variations in the vibration signal, 

the samples of each database were segmented into 100 

segments of 1,200 samples each. 

Table 1. Considered vibration datasets to study bearing health 
conditions 

Bearing Health 

Status 
Datas

et 

0

HP 

1

HP 

2

HP 

3

HP 
 

Fault 

Diamet

er 

Health

y 
NA NF NF_0 NF_1 NF_2 NF_3 

Inner 
Racew

ay 

Defects 

7 mils IR_a 
IR_a_

0 

IR_a 

_1 

IR_a 

_2 
IR_a 3 

14 mils IR_b 
IR_b_

0 

IR_b 

_1 

IR_b 

_2 

IR_b 

_3 

21 mils IR_c 
IR_c_

0 

IR_c 

_1 

IR_c 

_2 

IR_c 

_3 

28 mils IR_d 
IR_d 
_0 

IR_d 
_1 

IR_d_
2 

IR_d_
3 

Ball 

Defects 

7 mils BB_a 
BB_a_

0 
BB_a_

1 
BB_a_

2 
BB_a_

3 

14 mils BB_b 
BB_b

_0 

BB_b

_1 

BB_b

_2 

BB_b

_3 

21 mils BB_c 
BB_c_

0 
BB_c_

1 
BB_c_

2 
BB_c_

3 

28 mils BB_d 
BB_d

_0 

BB_d

_1 

BB_d

_2 

BB_d

_3 
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Fig. 2. Time waveform of the segmented raw data of vibration 

dataset (a) NF_0 (b) IR_a_0 (c) BB_a_0 

B. Feature Extraction  

As we know that the amplitude of the vibration signal 

extracted from bearings of induction motor is the 

function of time, so time-domain analysis of vibration 

signal can provide significant information about bearing 

health conditions. In this work, six time-domain features 

(TDFs) namely mean value (μ), peak value (peak), root 

mean square (RMS), crest factor (CRF), kurtosis (K), and 

skewness (SKW) were computed to analyze bearing 

defects.  

Assume that 𝑥𝑗 is the segmented database of vibration 

signal, where 𝑗 =  1, 2, 3 … … . 𝑛 , and 𝑛  represents the 

length of the dataset, and then the TDFs of segmented 

vibration database are computed using equation (1) to 

equation (6). 

Mean Value (μ): It represents the average value of the 

sampled dataset. It is used to determine the distribution 

symmetry of data over reference value. The mean value 

of a dataset can be calculated using equation (1). 

 

1
j

n

j

x

n






                                 (1) 

 

Peak Value (Peak): It denotes the maximum value of 

the amplitude of dataset. Mathematically, it is 

represented by equation (2).  

 

 max
j

peak x                              (2) 

 

Root Mean Square (RMS): It articulates the energy 

content of the sampled data signal. RMS value is directly 

related to the energy of the signal so it may have useful 

information about the destruction of the signal. It is 

expressed by equation (3). 

 

2

1
j

n

j

x

RM S
n





                            (3) 

 

Crest Factor (CRF): It is the ratio of peak value to the 

RMS value of the signal. It represents how extreme the 

peaks are in datasets. The CRF near to 1 represents a 

lower spiky signal. The CRF is computed using equation 

(4). 
 

peak
C RF

RM S
                                (4) 

 

Kurtosis (K): It indicates whether the signal 

distribution is flat or peaked. Low kurtosis value 

represents that the signal is flat whether high kurtosis 

value represents that the signal is peaky. Equation (5) 

shows the mathematical expression of kurtosis. 
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Where 2

1

1
( )

j

n

j

x
n

 


  represents standard 

deviation value 

Skewness (SKW): It indicates asymmetric probability 

distribution of sampled data about its mean value. 

Negative valued skewness indicates that data is skewed 

toward left whether positive value skewness represents 

that the data is skewed towards the right. The skewness 

factor of signal is computed by using equation (6). 
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C. Feature Analysis 

The TDFs of segmented vibration databases were 

further processed using three statistical methods termed 

as mean and standard deviation (mean±σ) analysis, box 

plot analysis, and a new proposed method bearing fault 
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index (BFIT) analysis. These methods were applied to 

analyze the variations in TDFs for better demarcation of 

bearing conditions. 

i. Mean And Standard Deviation Analysis 

In this analysis, the mean and standard deviation of 

each TDF were computed from segmented database of 

vibration signal. The computed values of mean±σ of each 

database were compared and analyzed to study the 

variation in its magnitude to demarcate the different 

health conditions of bearing. 

ii. Box Plot Analysis 

In descriptive statistics, a box or whisker plot is a 

pictorial representation of the distribution of numerical 

data through quartiles, maximum and minimum. 

Quartiles are used to split an ordered dataset into four 

parts. These quartiles are termed as lower quartile (Q1), 

middle quartile or median (Q2) and upper quartile (Q3). 

The difference of upper quartile to lower quartile is 

known as Inter Quartile Range (IQR). The highest value 

of dataset that is inside 1.5 times of the IQR above upper 

quartile is termed as the maximum value and minimum 

value that lies within the range of 1.5 times the IQR to 

below lower quartile is known as minimum value. The 

width of the box represents the sample size of the data. 

Any value of data that is higher than maximum value and 

lower than minimum value is known as outliers that are 

represented by a cross with a red color. The difference 

between maximum to the minimum value of data is 

characterized as DM. the whiskers are represented by 

green lines. A sample box plot having all related terms is 

shown in Fig.3.   

 

 

Fig. 3. Graphical representation of box or whisker plot and their parameters indicated by blue and red line 

Let Q1-lower quartile, Q2-median, Q3-upper quartile, 

then 

The interquartile range,  
3 1

IQR Q Q   

Lowest value: The minimum value of dataset that 

1
1.5Q IQR    

Highest value: The maximum value of dataset that is  

3
1.5Q IQR    

iii. Bearing Fault Index 

There is need to determine a unique and robust fault 

index parameter that can predict the bearing health 

conditions with more reliable results. For this, a new 

index parameter was measured that is termed as Bearing 

Fault Index (BFIT). This parameter predicts the bearing 

defects based on the mean of all considered TDF at all 

machine loads. This parameter will be very much helpful 

in predicting the health conditions of bearing as it 

considered all operating conditions of machine. 

Mathematically it is represented as equation (7). 

 

, , , , ,BFIT m ean peak RM S C RF K SK W      (7) 

 

 
 

III. RESULTS AND DISCUSSION 

This section of the manuscript presents the brief 

discussion about the results of proposed statistical 

analysis of TDFs of vibration dataset to identifying inner 

raceway and ball defects of rolling element bearing. In 

this manuscript, two most versatile statistical approach as 

mean±σ analysis, and box plot analysis along with a 

novel proposed statistical parameter as BFIT were 

investigated for better diagnostic results. The results of 

each statistical analysis were presented separately. 

A. Time Domain Feature Extraction 

In this analysis, each vibration dataset is processed 

using MATLAB 2017a software to compute the 

considered TDFs. Fig.4 represents the variation of 

considered TDF of vibration datasets related to bearing 

health conditions as healthy, inner raceway and ball 

bearing defects at motor loads 0HP, 1HP, 2HP, and 3HP. 

The x-axis of figures represents the number of segments 

of vibration datasets at different health conditions of 

bearing. The segments 1 to 100 indicate variation of NF,  
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101 to 200 variation of IR_a, 201 to 300 variation of 

IR_b, 301 to 400 variation of IR_c, 401 to 500 variation 

of IR_d, 501 to 600 variation of BB_a, 601 to 700 

variation of BB_b, 701 to 800 variation of BB_c and 801 

to 900 represents variation of BB_d bearing health 

condition.  

Fig.4 (a) represents the variation of the values of the 

mean feature of segmented vibration datasets. The results 

of the figure reflect that the value of feature decreases 

with an increase in inner raceway fault severities of 

bearing on all considered load except 0HP. This figure 

also reflects that the value of healthy bearing is higher 

than bearing having ball defects except at 3HP load. The 

value of the vibration signal related to ball-bearing 

defects suddenly increases at 3HP load. These values 

allude that the value of NF bearing is higher than the 

faulty bearing.  

The variation of peak value at different bearing 

conditions is shown in Fig.4 (b). This figure depicts that 

peak value for NF bearing is less than 0.3 while bearing 

having IR fault is higher than 1 and ball defect is higher 

than 0.3. This value increases with an increase in IR fault 

severities, while it is almost unaffected with an increase 

in ball fault severities. From the obtained figure, it has 

also observed that the peak value of vibrations suddenly 

increases in induction motor having ball bearing defects 

and operated at 3HP load. Thus from peak value, it is 

concluded that the induction motor generates more 

peaked vibration having a defective bearing.  

The RMS value of the segmented vibration dataset is 

depicted in Fig.4 (c). The result of this figure 

demonstrates that RMS value for NF bearing is around 

0.1, for IR_a is near to 0.3, IR_b is around 0.2, IR_c is 

near to 0.5, IR_d is near to 0.14 and for all BB defects are 

near to 0.14. The figure indicates that the RMS value of 

vibration datasets for induction motor having healthy 

bearing is near to 0.1 and defective bearing with IR fault 

and BB fault is higher than 0.1. The figure also depicts 

that induction motor having BB defects and operating at 

3HP load shows a very high value of RMS. Thus from 

graphical representation, it is concluded that the RMS 

value of defective bearing is higher than 0.1 while for 

healthy bearing it is less than 0.1. 

The variation of the CRF feature is shown in Fig.4 (d). 

It depicts that this value for NF bearing is around 3.12 

and increases with IR fault severities. Its value for IR_a 

has fluctuated near 4.8; IR_b is varying around 8.15, for 

IR_c varies near to 5.66 and for IR_d decreases near to 

4.3 at 0HP load. The variation in CRF value of vibration 

data segments for ball defects BB_a at 0HP load is near 

to 3.39 and it is almost constant with an increase in ball 

defect severities. The figure also depicts that CRF value 

increases with an increase in motor load.  

Fig.4 (e) reflects the variation of kurtosis (K) of 

bearing vibration data segments. The results of the figure 

show that its value is near to 2.75 for NF bearing and 

around 5.38 for IR_a, near 21.65 for IR_b and around 

7.29 for IR_c and 5.26 for IR_d bearing defects. The 

results of this figure reveal that the value of K increases 

with an increase in bearing fault then decreases. The 

figure also illustrates that the values of K for ball 

defective bearings are almost constant and varied near to 

2.9. However, from the figure, it is concluded that the 

value of K for defective bearings is always higher than 

the healthy bearing.  

 

 

Fig.4. Representation of (a) mean (µ) (b) Peak (c) RMS (d) Crest Factor (CRF) (e) Skewness (SKW) (f) Kurtosis (K) time-domain features on 
different loads as 0HP, 1HP, 2HP and 3HP 
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Fig.4 (f) shows the variation of skewness (SKW) and 

this value increases with a rise in IR fault levels. 

However, this value decreases above 21mils of IR fault. 

It eludes that at a severe stage of IR fault, the SKW 

feature creates a problem in predicting the faults. The 

figure also shows that the SKW feature for bearing 

having ball fault is higher than the healthy bearing. Thus 

from the time-domain representation of TDF, it is 

concluded that TDF is effective at initial stage faults 

while it became ineffective at an extreme level of defects. 

These values have been verified with the results of 

research work published by Fu et al., [29]. For more 

effective analysis of bearing faults using considered TDF 

of the vibration signal, mean and standard deviation of 

each TDF was determined and analyzed. 

B. Mean And Standard Deviation Analysis Of Features 

In this study, mean and standard deviation (Mean ± σ) 

of all six considered TDF of segmented datasets were 

computed and results are shown in Table 2. The results 

of Table 2 allude that the μ value of NF bearing is 

approximately the same as the μ value of IR_a, IR_b, 

IR_c and BB_a faults at 0HP load. 

Table 2. Mean ±σ of TDF of vibration datasets corresponding to different bearing conditions 

 
Load 0HP 1HP 2HP 3HP 

Features Bearing Conditions Mean ± σ Mean ± σ Mean ± σ Mean ± σ 

µ 

NF 0.013 0.001 0.013 0.002 0.012 0.002 0.012 0.002 

IR_a 0.013 0.001 0.006 0.001 0.005 0 0.005 0.001 

IR_b 0.012 0.009 0.004 0 0.004 0.001 0.003 0 

IR_c 0.014 0.003 0.003 0.001 0.003 0.001 0.003 0.001 

IR_d 0.005 0.001 0.003 0 0.003 0.001 0.013 0.002 

BB_a 0.013 0.002 0.005 0 0.021 0.01 0.005 0.025 

BB_b 0.004  0 0.005 0 0.004 0 0.009 0.038 

BB_c 0.005  0 0.005 0.001 0.005 0 0 0.027 

BB_d 0.004  0 0.005 0 0.004 0 0.019 0.027 

 

 

Peak 

NF 0.233 0.019 0.22 0.019 0.216 0.022 0.228 0.02 

IR_a 1.427 0.128 1.393 0.106 1.377 0.104 1.335 0.098 

IR_b 1.576 0.165 1.334 0.225 1.33 0.209 1.404 0.249 

IR_c 2.945  0.4 2.436 0.314 2.647 0.304 2.59 0.314 

IR_d 1.335 0.098 1.404 0.249 2.59 0.314 0.456 0.05 

BB_a 0.456  0.05 0.775 0.481 0.539 0.243 7.934 1.215 

BB_b 0.453 0.047 0.708  0.24 0.504 0.273 7.629 1.301 

BB_c 0.466 0.046 0.737 0.332 0.38 0.051 7.799 1.188 

BB_d 0.495 0.053 0.719 0.386 0.401 0.041 7.925 1.377 

RMS 

 

 

 

 

NF 0.074 0.002 0.066 0.001 0.064 0.001 0.066 0.001 

IR_a 0.291 0.005 0.293 0.004 0.299 0.005 0.314 0.008 

IR_b 0.197 0.013 0.165 0.015 0.163 0.011 0.18 0.012 

IR_c 0.525 0.023 0.441  0.02 0.488 0.027 0.448 0.023 

IR_d 0.314 0.008 0.18 0.012 0.448 0.023 0.139 0.007 

BB_a 0.139 0.007 0.142 0.055 0.131 0.036 2.072 0.144 

BB_b 0.139 0.005 0.137 0.032 0.123 0.038 2.022 0.175 

BB_c 0.147 0.006 0.14 0.032 0.107 0.005 2.138 0.186 

BB_d 0.153 0.007 0.129 0.036 0.118 0.004 2.131 0.25 
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NF 3.123  0.22 3.198 0.291 3.175 0.202 3.163 0.206 

CRF 

IR_a 4.9  0.435 4.762 0.352 4.61 0.328 4.306 0.249 

IR_b 8.158 0.766 8.516 1.032 8.483 1.061 8.055 1.094 

IR_c 5.6  0.63 5.517 0.642 5.44 0.544 5.782 0.656 

IR_d 4.306 0.249 8.055 1.094 5.782 0.656 3.896 0.34 

BB_a 3.496  0.34 5.302 1.451 4.087 0.586 3.84 0.565 

BB_b 3.571 0.307 5.285 0.936 4.05 0.822 3.782 0.522 

BB_c 3.542  0.3 5.358 1.369 3.664 0.34 3.668 0.503 

BB_d 3.618 0.339 5.516 1.507 3.791 0.288 3.74 0.504 

K 

NF 2.754 0.121 2.921  0.11 2.918 0.091 2.951 0.093 

IR_a 5.385 0.363 5.529 0.316 5.548 0.269 5.262 0.236 

IR_b 21.658  3.825 21.062  6.014 21.032 5.481 17.536 4.665 

IR_c 7.291 1.232 7.574 1.308 7.93 0.96 8.232 1.367 

IR_d 5.262 0.236 17.536  4.665 8.232 1.367 3.151 0.196 

BB_a 2.951 0.196 6.958 4.873 3.828 0.897 3.831 0.595 

BB_b 2.941 0.187 6.44 2.294 3.923 1.458 3.782 0.627 

BB_c 2.943 0.187 6.494 3.688 3.247 0.258 3.684 0.585 

BB_d 2.973 0.217 7.055 4.222 3.082 0.179 3.733 0.536 

SKW 

 

NF -0.035  0.057 -0.173  0.046 -0.167 0.048 -0.128 0.045 

IR_a 0.164 0.049 0.13  0.04 0.09 0.035 0.013 0.038 

IR_b 0.061 0.174 0.004 0.149 0.025 0.145 0.026 0.153 

IR_c 0.303 0.054 0.257 0.066 0.249 0.055 0.304 0.067 

IR_d 0.053 0.038 0.026 0.153 0.304 0.067 0.009 0.037 

BB_a -0.001  0.037 0.067 0.225 0.002 0.055 0.055 0.02 

BB_b 0.007 0.033 0.014 0.097 -0.001 0.069 0.047 0.018 

BB_c 0.026 0.036 0.081 0.216 0.001 0.056 0.041 0.016 

 BB_d 0.02  0.036 0.028 0.229 0.026 0.052 0.041 0.015 

 

While this value decreased from 0.013 to 0.012 for NF, 

0.013 to 0.005 for IR_a, 0.012 to 0.003 for IR_b, 0.014 to 

0.003 for IR_c and 0.013 to 0.005 for BB_a condition if 

load increasing from 0HP to 3HP. For other bearing 

conditions like IR_d, BB_b, BB_c, and BB_d, μ value is 

approximately the same at increasing load except for 3HP 

load. The result also indicated that 𝜎 is very low for each 

dataset except at 3HP load. It indicates that vibration 

fluctuation is higher at the 3HP load. Thus from the  𝜇 

study of the table, it is concluded that the mean vibration 

signal decreases with an increase in defect levels and 

approximates the same with the load. From the results of 

mean ± 𝝈 analysis of peak feature as shown in Table 2, 

the mean value of peak feature for NF bearing is<1 while 

for IR fault is >1 even increasing the load. The 𝜎 value of 

the peak for IR fault is also higher than NF bearing. For 

BB bearing the value of mean and σ, both are higher than 

NF bearing. Thus from the results of the peak of the table, 

it is concluded that the amplitude, as well as variation in 

peak, is very high in faulty bearing in comparison to the 

healthy bearing. The mean ± 𝜎 analysis of RMS feature 

as shown in the table reflects that the mean of RMS value 

for NF bearing is 0.074 on 0HP and 0.066 on other 

considered loads which are<0.1, while this value is >0.1 

for faulty bearing. The 𝜎  value of RMS also indicates 

that it is almost double for faulty bearing in comparison 

to NF bearing. The results of Table 2 also show that the 

mean of CRF value for NF bearing is < 3.2 while it 

is >3.5 for IR and BB bearing. The 𝜎 analysis of CRF 

also shows that it is higher at the faulty bearing. The 

value of the mean of kurtosis (K) for NF bearing varies 

from 2.754 to 2.951 while for IR_a varies from 5.385 to 

5.262, IR_b varies from 21.658 to 17.53, IR_c varies 

from 7.291 to 8.232 and for IR_d varies from 3.151 to 

17.536 on considered loads. The K values for BB_a 

varies from 2.951 to 6.958, BB_b varies from 2.941 to 

6.44, BB_c varies from 2.943 to 6.494 and BB_d varies 

from 2.973 to 7.055. These values indicate that K is 
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highest at 1HP load. Thus form the table, it is concluded 

that K value for the faulty bearing is higher than NF 

bearing. The SKW values for NF bearing are-0.035, -

0.173, -0.167 and -0.128 at 0HP, 1HP, 2HP and 3HP load 

while SKW for IR bearing varies from 0.009 to 0.304 

and for BB bearing, it varies from -0.001 to 0.081for 

loads varies from 0HP to 3HP. These values reflect that 

the skewness is almost negative for NF bearing and 

positive for faulty bearing on considered load.  

C. Box Plot Analysis Of Features 

For more accurate analysis for bearing defects, the 

box/whisker plots of considered TDF were analyzed. The 

box plot splits the sampled datasets in terms of median, 

and IQR value. The red horizontal line represents the 

median value of the sample, and difference between 3
rd

 to 

1
st
 quartile of sample represents interquartile range (IQR). 

The results of box plot of individual TDFs were 

investigated separately.  

The box plots of the mean feature of vibration signal 

for different bearing health conditions and machine 

operating loads are represented in Fig.5. The box plot of 

Fig.5 (a) demonstrates that IQR and median parameter of 

µ time-domain feature at 0HP load increases with an 

increase in inner race bearing fault up to IR_b then 

continuously decreases.  In contrast, Fig.5 (b), (c) and (d) 

show that the median and IQR of the mean feature of 

healthy bearing is higher than faulty bearing with IR 

defects. The results of the figure also show that the 

median and IQR of the mean feature of healthy bearing is 

higher than bearing having ball defects except at 3HP 

load. It indicates that ball bearing defects can easily be 

identified using a box plot analysis of mean feature under 

rated IM loads. Thus from box plot representation of a 

mean feature of the vibration signal, it can be concluded 

that the median of the mean for healthy bearing remains 

near to 0.012 while for IR bearing about 0.001 except 

0HP load and for BB defects remains below 0.006 except 

3HP load. 

 

 

Fig.5. Box/whisker plot representation of the μ feature of different vibration datasets at machine loads (a) 0HP (b) 1HP (c) 2HP (d) 3HP 

Fig.6 represents the box plot analysis of peak feature 

of vibration datasets at different bearing health conditions 

and loads. From the figure, it is noticeable that the 

median and IQR value increased with the inner raceway 

fault level up to level 21mils and then decreases. It 

indicates that the peak feature is more convenient to 

detect IR faults in its early stage. Fig.6 depicts that the 

median value of peak feature for the healthy bearing is 

less than 0.2 while for inner raceway defect higher than 

0.2 and ball bearing defect greater than 0.4.  So from box 

plot analysis of peak feature, bearing faults can easily be 

detected with higher accuracy. Thus from the box plot 

analysis of peak feature, it is concluded that this feature 

is more accurate than the mean feature in detecting 

bearing defects.  
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Fig.6. Box/whisker plot representation of the max feature of different vibration datasets at machine loads (a) 0HP (b) 1HP (c) 2HP (d) 3HP 

The box plot analysis of RMS features of vibration 

datasets is shown in Fig.7. The figure signifies that the 

median and IQR value of RMS features related to IR and 

BB defects are almost double to the healthy bearing. The 

median value for the healthy bearing is near to 0.07 while 

for inner raceway fault it is larger than 0.15 and ball 

defects higher than 0.13. The figure also demonstrates 

that the median and IQR of RMS feature fluctuates with 

IR defects while remains almost constant at BB defects. 

 

 

Fig.7. Box/whisker plot representation of the RMS feature of different vibration datasets at machine loads (a) 0HP (b) 1HP (c) 2HP (d) 3HP 

Fig.8 demonstrates the box plot analysis of the CRF 

feature. The figure demonstrates that the value of IQR 

rises with increased severity of defects. The median value 

of the CRF feature in the condition of healthy bearing 

becomes less than 3.5 while in the case of inner race 

defect of bearing it is more than 4 except at 3HP load. It 

depicts that IR faults can easily be identified using the 

CRF feature under full load conditions. While in the case 

of ball defects of bearing, a box plot of the CRF feature is 

not able to differentiate it from the healthy bearing. 

Normally, if its value ranges from 3 to 3.5 then a ball 

bearing defect is likely to occur. 
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Fig.8. Box/whisker plot representation of the CRF feature of different vibration datasets at machine loads (a) 0HP (b) 1HP (c) 2HP (d) 3HP  

The box plot of the kurtosis feature (𝐾) is shown in 

Fig.9. The box plot findings show that the median of the 

K function is approximately 2.5 for NF bearing, which 

ranges from 5 to 20 for inner raceway defects under full 

load circumstances. The median of K feature initially 

rises to 22 with an increase in IR fault levels (up to 

14mils) then starts a decrease. Box plot findings also 

show that the median of K features with ball defects is 

greater than that of NF bearing. Initially, the median of K 

features increases up 22 with an increase in IR fault 

levels (up to 14mils) then decreases. The results of the 

box plot also demonstrate that the median of K features 

with BB defects is higher than NF bearing. In spite of the 

above, the box plot representations of K feature of faulty 

bearing have several outliers while NF bearing has null 

outliers. The outliers represent the fluctuations of 

vibration signals in the defective bearing. 

 

 

Fig.9. Box plot representation of the kurtosis (K) feature of different vibration datasets at machine loads (a) 0HP (b) 1HP (c) 2HP (d) 3HP 
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Fig.10 (a), (b), (c) and (d) demonstrate the box plot 

analysis of skewness (SKW) feature at operating loads 

0HP, 1HP, 2HP and 3HP respectively. The results of the 

plot demonstrate that in the case of healthy bearing the 

median of SKW features is negative while in the case of 

faulty bearing it is almost positive. From Fig.10, it has 

also been observed that the median of faulty bearing is 

higher than the healthy bearing. Figure results also show 

that the median of SKW feature of BB fault is almost 

constant at different loads and higher than NF bearing. 
 

 

Fig.10. Box/whisker plot representation of the Skewness feature of different vibration datasets at machine loads (a) 0HP (b) 1HP (c) 2HP (d) 3HP 

The results of box plot analysis of TDFs are 

summarized as:  

 

 Mean feature is not much effective in 

differentiating bearing health conditions; however, 

if the median of mean feature is less than 0.012 

then there is a chance of bearing defects. 

 From box plot analysis of peak feature, it is 

observed that:   

 

If the median of peak feature<0.3 then bearing is 

healthy. 

If the median of peak feature>1 then there is chance of 

IR faults, 

If the median of peak feature varies 0.4 to 1, then it is 

expected to ball defects.  

 

 The results of box plot analysis of RMS feature 

show that if the median value of RMS feature is 

higher than 0.1 then there is high probability of 

defects in bearing.  

 The results of box plot analysis of CRF feature 

show that if the median value of this feature is 

higher than 4 then there will defects in inner 

raceway of bearing.  

 The box plot of the kurtosis feature has shown that 

if the median of K feature is higher than 5, then 

there will be IR fault in bearing. 

 The plot of skewness factor has shown that if the 

median and third quartile of feature is negative 

then bearing will be healthy otherwise it will be 

faulty.  

D. Bearing Fault Index Based Bearing Health 

Assessment  

The bearing fault index (BFIT) is determined by 

calculating the mean value of all considered TDF at all 

operating loads. The graphical representation of BFIT at 

different bearing health conditions is illustrated by the 

bar chart and shown in Fig.11. This bar chart 

demonstrates that BFIT value for the healthy bearing is 

1.1, while for faulty bearing its value is more than 1.8. 

The figure also reveals that initially the value of BFIT 

increases with an increase in inner raceway fault 

diameters up to IR_b then decreases. Still, the BFIT 

values of IR bearings are higher than NF bearing. This 

indicates that BFIT is more sensitive at the initial stage of 

inner raceway defects. The BFIT values for BB bearing 

are almost constant (approximate 1.9) at different levels 

of fault. Thus the analysis of BFIT values of TDFs makes 

it simpler and reliable to predict the bearing defects. 
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Fig.11. Representation of BFIT at various health conditions of bearing 

The mean±σ analysis and box plot analysis of TDFs of 

vibration database have revealed that peak, RMS, 

kurtosis, and skewness features have shown reliable 

results among all considered TDFs to discriminate the 

health conditions of bearing. The results of BFIT analysis 

of TDFs have also shown that it is very effective to 

identify bearing defects in its early stage.  

 

IV. CONCLUSION 

In this paper, the time-domain features of vibration 

signals have been used to diagnose bearing defects. The 

single point inner raceway and ball defect severities of 

rolling-element ball bearing have been studied under 

operating loads 0Hp, 1HP, 2HP, and 3HP. The results 

have revealed that TDFs of vibration signals are almost 

independent of operating loads. The results of the 

mean±σ analysis have depicted that peak, RMS, kurtosis, 

and skewness features are comparatively more reliable to 

identify the bearing defects. The results of the box plot 

analysis have shown that it is an effective and appropriate 

statistical approach to envisage the small variations in 

TDFs. The results of the proposed third method have 

demonstrated that BFIT values for NF bearing are less 

than 1.1, while greater than 1.8 for faulty bearing. From 

BFIT analysis, it also has been observed that initially its 

value increases with IR fault severities then decreases, 

but always greater than NF bearing. It signifies that the 

proposed method is more appropriate and efficient to 

identify incipient IR faults compared to other considered 

statistical methods. However, time-domain analysis of 

vibration signal has the shortcomings of low sensitivity 

and accuracy of fault prediction. Therefore, these features 

can be incorporated with soft computing method for 

better fault prediction accuracy. 
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