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Abstract: Medical imaging has become a vital part of the early detection, diagnosis, and treatment of many diseases. 

That’s why image denoising is considered as a crucial pre-processing step in medical imaging to restore the original 

image from its noisy circumstance without losing image features, such as edges, corners, and other sharp structures. 

Ultrasound (US), Computed Tomography (CT), and Magnetic Resonance (MR) are the most widely used medical 

imaging techniques that are often corrupted by hazardous noises, namely, speckle, salt and pepper, Poisson, and 

Gaussian. To remove noises from medical images, researchers have proposed several denoising methods. Each method 

has its assumptions, merits, and demerits. In this paper, a detailed comparative analysis of different denoising filtering 

techniques, for example, median, Wiener, mean, hybrid median, Gaussian, bilateral, non-local means, and anisotropic 

diffusion are performed based on four widely-used image quality assessment (IQA) metrics, such as Root Mean 

Squared Error (RMSE), Peak Signal to Noise Ratio (PSNR), Mean Absolute Error (MAE), and Structural Similarity 

Index (SSIM). The results obtained in this present work reveal that Gaussian, median, anisotropic diffusion, and non-

local means filtering methods perform extraordinarily to denoise speckle, salt and pepper, Poisson, and Gaussian noises, 

respectively, from all US, CT, and MR images.  

 

Index Terms: Medical imaging, Image denoising techniques, US, CT, MR, Speckle, Salt and Pepper, Poisson, 

Gaussian, IQA metrics. 

 

 

1.  Introduction 

Image denoising, one of the toughest challenges in image processing, refers to the recovery and quality 

enhancement of a digital image that has been tainted by noise during its acquisition, recording, or transmission [1]. It is 

an unavoidable function to eliminate or at least reduce the noise level from images. Even a small amount of noise is 

harmful when high accuracy is mandatory, like in the case of medical sector.  

Medical images passed from Ultrasound (US) imaging, Computed Tomography (CT) imaging, and Magnetic 

Resonance Imaging (MRI) is the most widely used tools for diagnosis due to their non-invasive, harmless, and accurate 

nature [2]. Nevertheless, the imaging acquisition and systems may bring in unwanted noises, most commonly, speckle 

noise, salt and pepper noise, Poisson noise, and Gaussian noise [3-5]. In consequence, these deteriorate the visual 

evaluations, i.e., image resolutions and contrasts very severely that make it difficult to distinguish normal and 

pathological tissues in diagnostic examinations [6]. Thus, to achieve the best diagnosis, it is the mandatory pre-

processing step to denoise medical images without altering edges, losing essential features of the images, and 

destroying anatomical details [7, 8]. 

US utilizes the echoes transmitted back to the transducer from any body tissue when sending an ultrasonic wave to 

it. Using each echo’s return time and speed of sound, the ultrasonic scanner calculates the distance between the body 

tissue and the transducer probe and finally transformed it into a digital image [9]. Grievously, ultrasound images 

experience different noises due to the loss of proper contact or air gap between the transducer probe and body [3, 10]. 

CT is a technique utilizing tomography to produce a three-dimensional (3D) image of the internals of humans or 

any objects from an extensive series of 2D X-ray images taken around a single axis of rotation. In X-ray technology, 

radiation is exposed to the object, and reflection is made to be produced on 2D projection radiographs [4]. The number 
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of X-ray photons coming at the detector specifies the noise in the CT image. The reconstruction kernel and electronic 

noise of the detector system provide noisier images [11]. 

Unlike X-ray radiography, MRI produces detailed anatomical images without the damaging radiation. Here, the 

object experiences a strong magnetic field that aligns the protons in the body according to that field. The electronic 

interferences in the receiver circuits, radiofrequency emissions due to thermal motion of the ions in patient body, and 

the measurement chain of MRI scanners mainly result in noises in MRI images [4, 5]. 

Spatial filtering and multiscale methods are the two conventional approaches for eliminating or reducing noises 

from different medical images. The spatial filtering is used immediately after the data is stored while at the data 

acquisition stage, the multiscale method is applied. To fulfill the requirements, i.e., conserving radiometric data, edge 

information, and spatial resolution, any of those methods can be applied [12]. Frost filtering [13], Lee filtering [14], 

Kuan filtering [15], mean filtering [16], Wiener filtering [17], and median filtering [18] are the techniques under spatial 

filtering domain. To reduce medical noises, local statistical properties are used in this particular filtering domain. The 

special Frost, Lee, and Kuan filtering methods were primarily investigated by the synthetic aperture radar (SAR) 

research community. Though later they become useful to denoise the medical images, they face some complications.  

These filtering methods are only feasible in a bounded field, and they are potentially used to remove only speckle noise 

[13-15]. On the contrary, multiscale filtering covers several methods that use the wavelet transform to hold the image 

signal irrespective of its frequency content [19, 20]. Another image denoising tool is the total variation (TV) model 

proposed by Rubin et al. [21] and the anisotropic diffusion model proposed by Perona and Malik [22]. Other widely 

used speckle noise reduction techniques are non-local means method [23], bilateral filtering method [24], and Gaussian 

filtering method [25]. Along with these, there are many other techniques and algorithms for removing noises from 

medical images [26, 27].  

To appraise the functioning of each of the filtering methods, it is essential to have some metrics for image quality 

assessment (IQA). These metrics are grouped into two categories: full reference (FR) approach that uses a reference 

image and no-reference (NR) approach, which has no reference image to compare with the test image [28]. The root 

mean squared error (RMSE), peak signal to noise ratio (PSNR), mean absolute error (MAE) are the most widely used 

and also the most straightforward FR metrics [29]. But they are not always very perfect for discerning visual quality and 

also are not normalized in representation. That’s why one of the normalized FR methods, namely, structural similarity 

index (SSIM), has become popular as IQA metrics, consequently [30]. 

All the image denoising filtering methods mentioned earlier have their particular merits and demerits [13-27]. 

Since noise-free medical imaging is a vital element of the healthcare world and an essential tool for physicians to assist 

with diagnostics, treatment, and prevention, it is essential to identify the best filtering methods for particular noise types. 

To best of our knowledge, nobody has reported the finest filtering methods yet for all possible hazardous noises 

experienced in different types of medical images in a single study. In the present study, we have introduced a 

comparative analysis of eight conventional filtering techniques (median, Wiener, mean, hybrid median, Gaussian, 

bilateral, non-local means, anisotropic diffusion) based on four primary IQA metrics (RMSE, PSNR, MAE, SSIM) 

against four ordinary noise types (speckle, salt and pepper, Poisson, Gaussian) in three different medical images (US, 

CT, MRI). The remainder of this paper is organized as follows. The materials and methods are illustrated in section II. 

Section III presents the results analysis and discussion. Ultimately, section IV concludes the entire work. 

2.  Materials and Methods 

A. Noise Models 

1) Speckle Noise Model 

In medical imaging, speckle, one kind of granular interference is most likely deliberated as the source of noise. It 

masks small differences in the gray level that makes it an undesirable property of the images [7]. Speckle is mainly a 

form of multiplicative noise that is image dependent, complex to model, and hence difficult to reduce. Although speckle 

noise is defined as multiplicative noise, it can be converted into additive noise through log operation. The generalized 

model of the speckle noise can be represented as [31] 

 

( , ) ( , )* ( , ) ( , )N x y O x y m x y a x y                                                                  (1) 

 

Here, N(x,y) represents the observed noisy image, O(x,y) is the original image, m(x,y) is denoted as multiplicative 

noise component, and a(x,y) is the additive component of the speckle noise. Here, x and y specify the pixel positions, 

i.e., axial and lateral indices of the image, respectively. 

For medical imaging, only the multiplicative component is considered for calculation. Hence, the additive 

component of (1) can be neglected and can further be represented as  

 

( , ) ( , )* ( , )N x y O x y m x y                                                                      (2)
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After applying the logarithmic operation, (2) becomes 

 

log ( , ) log ( , ) log ( , )e e eN x y O x y m x y                                                           (3) 

 

Here (3) is the final model representation of speckle noise in terms of additive formation. 

2) Salt and Pepper Noise Model 

Salt and pepper noise is a non-continuous series of irregular spikes of short duration, which mainly generates due 

to the quick transition of imperfect switching. It may also be caused due to dead pixel, error in analog to digital 

conversion, or bit transmission error. Salt and pepper noise is also termed as impulse noise. 

 

 

Fig. 1. The probability density function for salt and pepper noise. 

This noise is generally produced due to the error in transmission of bit. That’s why it can have only two possible 

values, i.e., m and n.  Usually, each of them has a probability of less than 0.1. The minimum or the maximum value of 

the corrupted pixels is set possibly, and salt and pepper image become appeared [32]. Fig. 1 illustrates the function of 

the probability density for salt and pepper noise. 

Salt and pepper noise can be individualized by using the following equation 

 

;

( ) ;
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m

n
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                                                                                (4) 

 

When m>n, then level of m and n become appeared as light dot and dark dot respectively and vice-versa. 

3) Poisson Noise Model 

When energy-carrying particles such as photons in an optical device or electrons in an electronic circuit are 

insufficient in amount to rise detectable statistical fluctuations in measurement, Poisson noise arises. It is an electronic 

noise whose magnitude depends on signal type and comprises the dominant source. The Poisson process is widely used 

to model statistically different engineering and science-based severe problems. The medical images corrupted by noises 

obey a Poisson law and are highly dependent on the underlying light intensity pattern being imaged. In the case of 

Poisson noise, the noise variance is proportional to the image pixels [33]. 
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                                                        (5) 

 

Here, zj is the observed pixel values obtained through an image acquisition device, which is also considered as 

independent random Poisson variable. yj is the estimated underlying intensity value and considered as mean of zj.  

4) Gaussian Noise Model 

Due to thermal atomic vibration and discrete radiation of objects, Gaussian noise is caused. It generally arises in 

detectors or amplifiers; that’s why it is also an electronic noise. Since Gaussian noise badly affects the gray values in a 

digital image, its model is usually designed and characterized by a probability distribution function or normalized 

histogram with respect to gray values [34]. Fig. 2 shows the probability distribution function of Gaussian noise.  
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Here, z represents gray value,  denotes standard deviation,  specifies mean value, and 2 indicates variance. 

Generally mathematical model of Gaussian noise represents the correct approximation of real-world scenarios. In this 

noise model, mean value and variance are 0 and 0.1, respectively, and 256 gray levels exist in terms of its probability 

distribution function. 

 

 

Fig. 2. The probability distribution function of Gaussian noise. 

B. Filtering Techniques 

1) Median Filter 

In digital image processing, the median filter is a nonlinear filtering technique, which is also known as an order-

statistic filter. This filtering technique is prevalent for the reduction of impulse noise from an image or signal. It 

operates pixel by pixel and replaces the value of each cell with the neighboring by a median of the intensity levels with 

its mathematical accuracy. The median filter is applied over windows of size 5 x 5. Three different windows are used to 

calculate the output median by the median filter, namely, normal window, x-shape window, and cross shape window. 

For improving the optical perception, median filters are easily suited. But repeated uses may damage the picture 

boundaries. The further restriction includes computational cost with complexity [18]. 

2) Wiener Filter 

Wiener filter uses a linear time-invariant (LTI) filtering technique that can recover information from badly 

degraded or blurred images. The reduction of noise from the images is performed by considering a noiseless image as a 

reference. Wiener filter is based on the computation of local image variance, and the value of variance has a significant 

impact on the performance of this filter. With a small value of local variance, Wiener filter executes more smoothing. 

On the contrary, comparatively lesser smoothing is performed while local variance has a larger value [35]. Wiener filter 

is given by 

 

*

2
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                                                          (7) 

 

Where, H(m,n) represents the degradation function, and its complex conjugate is denoted by H(m,n)
*
. G(m,n) 

denotes the degraded image, and Sf(m,n) and Si(m,n) indicate the power spectra of the original image and the noisy 

image, respectively.  

3) Mean Filter 

It is a basic filtering technique used to smoothen the image by adjusting the neighboring pixels. Convolution and 

kernels are the principal basis of this filtering method. Often a 3 x 3 square kernel is used, although larger kernels (e.g., 

5 x 5 square) can be used for more smoothing. It destroys the pixel value if it does not match with the surrounding 

pixels [36].   



 Medical Image Denoising Techniques against Hazardous Noises: An IQA Metrics   

Based Comparative Analysis 

Volume 13 (2021), Issue 2                                                                                                                                                                       29 

 

Fig. 3. A 3 x 3 square kernel used for mean filtering. 

4) Hybrid Median Filter 

In modern days hybrid median filter plays a vital role in vision and image processing. It is a windowed filter of 

nonlinear class that can quickly dispel impulse noise while preserving the edges. If side by side comparison is made, 

hybrid filters show much better corner preserving characteristics than ordinary median filters. This filter is defined as 

[37] 
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                                                              (8) 

5) Gaussian Filter 

Gaussian filter is a linear filter that is very effective for removing speckle noise in medical images. The 

characteristics of this filter are similar to that of the median filter, but the difference is that it uses different kernels with 

the bell-shaped distribution. The advantage of the Gaussian filter over the median filter is that it exhibits faster 

operation. Mathematically, the input signal is modified by convolution with a Gaussian function, which results in 

smoothing of the image. The 2D Gaussian distribution with standard deviation  for a pixel ( , )i j  is given by [25] 

 
2 2

2 2

1
( ) exp( )

2 2

i j
G x

 


                                                                       (9) 

 

As a matter of performance, the value of standard deviation controls the amount of blurring. If the value of the 

standard deviation is large, it makes a wide peak, which ultimately influences more significant blurring. Besides, the 

degree of blurring is also controlled by the size of the kernel. Usually, an odd number of pixels like 3 x 3 pixel, 5 x 5 

pixel is used to square the kernel size. This is done to make the pixel being acted upon in the middle. With the 

increasing value of standard deviation, kernel size must increase to maintain the Gaussian nature of the filter. 

6) Bilateral Filter 

Bilateral filtering is a nonlinear filtering technique where smoothing an image with preserving edges is the main 

function, just like anisotropic diffusion. But the critical difference is that bilateral filtering is not iterative, and it consists 

of both range and domain filtering [24]. The bilateral filter is defined as 

 

1( ) ( ) ( ) ( , ) ( ( ), ( ))BF x k x f c x s f f x d   
 



 

                                                   (10) 

 

The normalization term ( )k x  can be expressed as 

 

( ) ( , ) ( ( ), ( ))k x c x s f f x d  
 

 

                                                              (11) 

 

Here, ( )f x  represents the input image, ( , )c x is the geometric closeness between the pixel and a near point  , 

and ( ( ), ( ))s f f x denotes the photometric similarity between the pixels x  and . 
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7) Non-Local Means (NLM) Filter 

Non-local means is an algorithm in image processing that is used for noise reduction. The Non-Local Means 

(NLM) filter was introduced by Buades et al. [23] where a mean of all pixels in the image are taken and weighted by 

how similar these pixels are to the target pixel. The expression for restored intensity of a pixel xi can be expressed as 

 

dim

( )( ) ( , ) ( )

j

i i j j

x

NL v x w x x v x


                                                                  (12) 

 

Here, w(xi,xj) represents the weight given to v(xj) to reinstate the pixel xj and calculated as 
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                                                            (13) 

 

Where Ii and Ij are the intensities of local neighborhood centers on pixels xi and xj, Zi indicates normalization 

constant, and h is the degree of filtering, which controls the decay of the exponential function.  

8) Anisotropic Diffusion Filter 

Anisotropic diffusion, which is also known as Perona-Malik diffusion, is a technique that targets of reducing image 

noise without removing significant details that are essential for the interpretation of the image. This method was 

proposed by Perona and Malik, where reduction of image blurring, resolving of localization problem, enhancement of 

contrast, retaining of image edges as well as ultimate improvement of image quality are ensured by a partial differential 

equation (PDE) based nonlinear and space-variant filtering method [23]. This filtering method can be directly applied to 

the images to dispel noise. The diffusion process of the image can be expressed as [22] 

 

0

( , , )
[ (| ( , , ) |), ( , , )]

( , , 0) ( , )

i x y t
div c i x y t i x y t

t

i x y t i x y
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                                                   (14) 

 

Where,  and div are the gradient and divergence operator respectively, 
0 ( , )i x y is the initial image and 

(| ( , , ) |)c i x y t  denotes the diffusion coefficient that can be represented by 

 
2

|| ( , , ) ||
(| ( , , ) |) exp

i x y t
c i x y t

k

  
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                                                      (15) 

 

Here, k is an edge magnitude parameter. Though narrated anisotropic diffusion filter exhibits better performance 

for additive noise, in case of multiplicative noise like speckle noise, its accomplishment is not up to the mark. 

Considering this problem, Yu and Acton have proposed an anisotropic diffusion filter, particularly for speckle 

retrenchment [38]. Here the same (14) is used where c(… …) is a function of the instantaneous coefficient of variation 

q(x,y,t) and is given by the ratio of standard deviation to mean as 

 

( ( , , ))
( , , )

( , , )

std i x y t
q x y t

i x y t
                                                                     (16) 

 

The diffusion function c(… …) is given by 

 
2

0

0 2 2

0

( , , ) ( )
( ( , , ), ( )) 1

( , , )(1 ( ))

q x y t q t
c q x y t q t

q x y t q t


 


                                                     (17) 

 

Here,  
0 ( )q t implies the speckle scale function. 
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C. Image Quality Assessment (IQA) Metrics 

1) Root Mean Squared Error (RMSE) 

RMSE is a frequently used error measuring method that measures the difference between the actual value and any 

predicted value. The final value of RMSE is always non-negative and indicates an error magnitude. It is nothing but the 

square root of MSE. The lower value of RMSE exhibits better performance [30].  

1 1

1
[ ( , ) ( , )]

U V

p q

RMSE B p q A p q
UV  

                                                         (18) 

 

2) Peak Signal to Noise Ratio (PSNR) 

PSNR can be defined as the ratio between the maximum possible signal power and distorted noise signal power. It 

is usually calculated in the decibel (dB) scale. PSNR is the most widely used quality assessment parameter to measure 

the quality of noisy reconstructed images. The signal is considered as the original data, and the noise is the error yielded 

by the compression or distortion. PSNR is expressed as [30] 

 

2

10 2

1 1

*
10log

[ ( , ) ( , )]
U V

p q

peak UV
PSNR

B p q A p q
 

 
 
 
  

                                                 (19) 

 

Here, peak denotes the maximum image data value that is 255 for an 8-bit unsigned data type. A higher value of 

PSNR indicates better performance of the filter. 

 

3) Mean Absolute Error (MAE) 

The average of absolute error between the original image, as reference, and the reconstructed image, as output is 

known as MAE. The lower value of MAE is considered better for any image analysis filter [29, 30]. The mean absolute 

error is given by  

1 1

1
| ( , ) ( , ) |

U V

p q

MAE B p q A p q
UV  

                                                           (20) 

4) Structural Similarity Index (SSIM) 

For measuring the similarity between original and reconstructed images, SSIM is often considered as a promising 

metric. It exhibits much better consistency with the qualitative appearance of the images. SSIM has a value between 0 

and 1. When SSIM equals to 1, this indicates that images are structurally equal. SSIM is expressed by [29] 

 

1 2

2 2 2 2

1 2
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( )( )

p q pq

p q p q
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C C

  

   

 

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                                                       (21) 

Where C1 and C2 are two constants. 

D. Proposed Methodology 

Fig. 4 shows the flowchart of the proposed methodology for this research work.  

 

 

Fig. 4. Flowchart of the proposed methodology. 

 Firstly, each of the medical images (US, CT, MRI) are intentionally made corrupted by speckle noise, salt and 

pepper noise, Poisson noise, and Gaussian noise.  
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 Secondly, noisy medical images are denoised by all the eight filtering methods, namely, median, Weiner, mean, 

hybrid median (H-Median), Gaussian, bilateral, non-local means (NLM), and anisotropic diffusion (A-Diffusion), 

respectively.  

 Finally, the performance of all the filtering techniques is compared based on RMSE, PSNR, MAE, and SSIM 

image quality assessment metrics. 

3.  Results Analysis and Discussion 

In this section, the implementation of different denoising filtering techniques is carried out upon several real-time 

medical images. To make this research work more justifiable, here three different types of original gray (256 x 256) 

medical images, such as US image, CT image, and MRI image are taken into consideration, as shown in Fig. 5. Then 

the procedures of the proposed methodology are followed.  

 

   
(a) (b) (c) 

Fig. 5. Real-time 256 x 256 original medical images (a) US image, (b) CT image, and (c) MRI image. 

 

(a)    (b)   
Speckle image Median Wiener  Salt & pepper image Median Wiener 

   

 

   
 

Mean Hybrid Median Gaussian  Mean Hybrid Median Gaussian 

   

 

   
 

Bilateral NLM Anisotropic Diff.  Bilateral NLM Anisotropic Diff. 

   

 

   
       

(c)    (d)   

Poisson image Median Wiener  Gaussian image Median Wiener 

   

 

   
 

Mean Hybrid Median Gaussian  Mean Hybrid Median Gaussian 
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Bilateral NLM Anisotropic Diff.  Bilateral NLM Anisotropic Diff. 

   

 

   

Fig. 6. Comparative visual quality analysis of US images, denoised by different filtering techniques: Median, Wiener, Mean, Hybrid Median, 
Gaussian, Bilateral, Non-Local Means, and Anisotropic Diffusion. Here, (a) different filtered images corrupted by speckle noise (variance = 0.1); (b) 

different filtered images corrupted by salt & pepper noise (variance = 0.1); (c) different filtered images corrupted by Poisson noise (variance = 0.1); 

and (e) different filtered images corrupted by Gaussian noise (variance = 0.1). 

Table 1. Quantitative data values of RMSE, PSNR, MAE, and SSIM image quality assessment metrics of different filtering techniques corresponding 
to speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise with variance = 0.1 respectively for 2D gray 256 x 256 US image. 

Noise Types Speckle (var. = 0.1) Salt and Pepper (var.= 0.1) Poisson (var. = 0.1) Gaussian (var. = 0.1) 

Metrics 
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Median 18.8 22.6 4.92 0.64 6.27 32.1 1.29 0.91 6.58 31.7 1.88 0.87 27.5 19.3 24.7 0.45 

Wiener 19.3 22.3 4.56 0.66 24.5 20.3 8.37 0.42 6.47 31.9 2.02 0.84 26.6 19.6 24.7 0.53 

Mean 14.4 24.9 3.85 0.67 19.6 22.2 6.98 0.47 7.33 30.8 1.93 0.86 27.2 19.4 24.9 0.49 

H-Median 17.3 23.3 4.01 0.65 8.13 29.9 1.35 0.88 8.07 29.9 1.89 0.85 27.5 19.3 24.9 0.46 

Gaussian 13.1 25.7 2.73 0.77 16.8 23.5 8.19 0.52 8.77 29.2 2.38 0.86 27.0 19.4 24.9 0.55 

Bilateral 21.5 21.4 5.11 0.59 41.5 15.7 9.78 0.21 13.7 25.3 4.08 0.76 29.1 18.8 25.5 0.48 

NLM 26.1 19.7 5.79 0.63 23.5 20.6 5.95 0.42 7.15 31.0 2.09 0.87 26.3 19.7 24.6 0.55 

A-Diffusion 31.1 18.2 8.32 0.58 49.7 14.1 9.85 0.16 5.92 32.6 1.80 0.88 30.3 18.4 25.5 0.36 

 

Fig. 6 shows a comparative visual analysis of clinical US image which is corrupted by speckle, salt and pepper, 

Poisson, and Gaussian noises, respectively, and denoised by several filtering algorithms, namely, median, Wiener, mean, 

hybrid median, Gaussian, bilateral, non-local means, and anisotropic diffusion, respectively. To find out the best 

filtering techniques for any particular noise through visual observation, some fundamental image quality indicators are 

considered, such as good image quality feature, edge preservation performance, less blurring, and overall clear visuality. 

Based on these particular indicators from Fig. 6(a-d), it can be observed that Gaussian filter, median filter, anisotropic 

diffusion filter, and non-local means filter give the enhanced performance for denoising speckle noise, salt and pepper 

noise, Poisson noise, and Gaussian noise from US image, respectively. 

The quantitative data values of corresponding filtered images, as shown in Fig. 6, are enlisted in Table 1. The 

tabular data demonstrate the image quality assessment parameter values of eight different filtering techniques, which 

are applied to denoise US image against speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise, 

respectively. In the case of speckle noise, among eight different filtering techniques, Gaussian filter gives the lowest 

RMSE value of 13.1 that indicates better fit, the highest PSNR value of 25.7 dB that specifies more amount of signal 

portion than noise, the lowest value of MAE of 2.73 that reveals the low amount of error, and the highest value of SSIM 

of 0.77 that specifies more similarity phenomenon between original US image and despeckled US image. But when the 

US image is corrupted by salt and pepper noise, the median filter gives the best results. For salt and pepper noise, the 

values of RMSE, PSNR, MAE, and SSIM are 6.27, 32.1, 1.29, and 0.91, respectively. In the case of Poisson noise, it is 

observed that the anisotropic diffusion filtering technique is better than others to denoise US image. 5.92, 32.6, 1.80, 

and 0.88 are the numerical values of RMSE, PSNR, MAE, and SSIM, respectively. Like the other three types of noises, 

Gaussian noise is also very severe in the case of US image. To remove Gaussian noise from US image, non-local means 

filtering technique provides the best results according to Table 1 data. The values of RMSE, PSNR, MAE, and SSIM 

are 26.3, 19.7, 24.6, and 0.55, respectively. 
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Fig. 7. RMSE values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in US image. 

 

Fig. 8. PSNR values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in US image. 

Here, Fig. 7 shows a bar chart that provides a comparative analysis of RMSE values of different filtering 

techniques for US image. In the case of speckle noise, the Gaussian filter provides the minimum RMES value, and the 

next lowest value is offered by mean filter. But for salt and pepper noise, the median filter and hybrid median filter 

show a comparatively lower value of RMSE. In the case of Poisson and Gaussian noises, the values of RMSE for most 

of the filtering techniques are very close to each other. Lowest RMSE values are provided by anisotropic diffusion, and 

non-local means filtering techniques for Poisson noise and Gaussian noise, respectively.  

 

 

Fig. 9. MAE values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in US image.
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Fig. 10. SSIM values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in US image. 

In Fig. 8, the PSNR values are shown graphically in dB form. Higher PSNR value is generally considered for any 

filtering techniques. From Fig. 8, it is clear to note that four different types of filtering techniques provide maximum 

PSNR values for four different noise types. In case of speckle noise, that filter is Gaussian, for salt and pepper noise that 

filter is median, for Poisson noise that filter is anisotropic diffusion, and in case of Gaussian noise that filter is non-local 

means. But for Gaussian noise, the PSNR values of other filtering methods are in close proximity to each other.  

In the case of MAE, a low value indicates better performance. According to Fig. 9, Gaussian filter provides the 

lowest value of MAE in case of speckle noise. For salt and pepper noise, median, and hybrid median, both filters deliver 

low values of MAE. But in the case of Poisson and Gaussian filters, it is so close to separate the filtering techniques for 

providing low values of MAE.  

From Fig. 10, the performance of different filtering techniques in terms of SSIM can be observed. The value of 

SSIM close to 1 is preferable. In the case of speckle noise, the value of SSIM is much higher for Gaussian filter than 

other types of filtering techniques. But in the case of salt and pepper noise, the median filter shows the highest value of 

SSIM. Like other IQA metrics, in the case of SSIM, anisotropic diffusion and non-local means filtering techniques 

provide better performance for Poisson and Gaussian noise, respectively. 

Fig. 11 represents the CT image but in different conditions. The same CT image is corrupted by speckle noise, salt 

and pepper noise, Poisson noise, and Gaussian noise with intensity 10%, respectively. After adding noises, several 

filtering methods, such as median, Wiener, mean, hybrid media, Gaussian, bilateral, non-local means, and anisotropic 

diffusion are applied to denoise the corrupted CT images. Fig. 11(a) expresses the despeckled CT images corresponding 

to different filtering methods. Similarly, Fig. 11(b-d) represent the denoised CT images, which are corrupted by salt and 

pepper noise, Poisson noise, and Gaussian noise, respectively. The careful observation indicates that the Gaussian 

filtered image, median filtered image, anisotropic diffusion filtered image, and non-local means filtered image are 

clearer and preserved about all the features of the original image in case of speckle noise, salt and pepper noise, Poisson 

noise, and Gaussian noise respectively. 

Besides visual analysis to make a quantitative analysis based on IQA metrics, different tabular data, and graphical 

presentations are developed. Here, Table 2 shows the RMSE values of different filtering methods based on speckle 

noise, salt and pepper noise, Poisson noise, and Gaussian noise, respectively. In the case of speckle noise, the Gaussian 

filter provides a low RMSE value of 19.536, among other filtering techniques. But for salt and pepper noise, it is the 

median filter that gives a low RMSE value of 11.877. For rest of the two noises, i.e., Poisson and Gaussian noises, 

anisotropic diffusion and non-local means filtering methods deliver the lowest RMSE values of 7.094 and 26.440 

respectively. The same scenarios are graphically presented in Fig. 12. 

Based on PSNR, one of the most used IQA metrics, a similar type of results can be obtained from Table 3 and Fig. 

13. Since the higher value of PSNR is desired, here, Gaussian filter, median filter, anisotropic diffusion filter, and non-

local means filter provide higher PSNR values of 22.314, 26.637, 31.113, and 19.686 compared with others in case of 

speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise respectively. Here, it is noted that in the case of 

Gaussian noise, the PSNR values of different filters are very close to each other. 

The numerical values of MAE of different filtering techniques in the case of CT image are presented in Table 4, 

and its graphical illustration is shown in Fig. 14. MAE value of any filtered image indicates the amount of error that 

occurred during denoising the image, i.e., a low value of MAE is desired. Here, from Table 4 and Fig. 14 it can be 

observed that Gaussian filter, median filter, anisotropic diffusion filter, and non-local means filter ensure the lowest 

MAE values of 3.767, 1.800, 2.098, and 24.048 for speckle noise, salt and pepper noise, Poisson noise, and Gaussian 

noise respectively. 

Unlike other IQA metrics, in case of SSIM, Gaussian filter, median filter, anisotropic diffusion filter, and non-local 

means filter provide the best results for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise, 

respectively. The highest values of SSIM of these particular filtering techniques corresponding to particular noise types 

are represented in Table 5 and Fig. 15. 
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(a)    (b)   
Speckle image Median Wiener  Salt & pepper image Median Wiener 

   

 

   
 

Mean Hybrid Median Gaussian  Mean Hybrid Median Gaussian 

   

 

   
 

Bilateral NLM Anisotropic Diff.  Bilateral NLM Anisotropic Diff. 

   

 

   
(c)    (d)   

Poisson image Median Wiener  Gaussian image Median Wiener 

   

 

   
 

Mean Hybrid Median Gaussian  Mean Hybrid Median Gaussian 

   

 

   
 

Bilateral NLM Anisotropic Diff.  Bilateral NLM Anisotropic Diff. 

   

 

   

Fig. 11. Comparative visual quality analysis of CT images, denoised by different filtering techniques: Median, Wiener, Mean, Hybrid Median, 
Gaussian, Bilateral, Non-Local Means, and Anisotropic Diffusion. Here, (a) different filtered images corrupted by speckle noise (variance = 0.1); (b) 

different filtered images corrupted by salt & pepper noise (variance = 0.1); (c) different filtered images corrupted by Poisson noise (variance = 0.1); 

and (e) different filtered images corrupted by Gaussian noise (variance = 0.1). 
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Table 2. Quantitative RMSE values of different filtering techniques corresponding to speckle, salt and pepper, Poisson, and Gaussian noises with 
variance = 0.1 in 2D 256 x 256 CT image. 

Metrics RMSE 
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Median 23.526 11.877 11.062 28.760 

Wiener 21.156 25.358 9.016 26.960 

Mean 19.778 22.840 13.486 28.647 

H-Median 22.566 12.632 11.847 28.900 

Gaussian 19.536 21.340 15.273 29.326 

Bilateral 27.598 41.461 14.115 29.204 

NLM 24.144 23.036 7.122 26.440 

A-Diffusion 33.641 49.943 7.094 29.738 

 

 

Fig. 12. RMSE values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in CT image. 

Table 3. Quantitative PSNR values of different filtering techniques corresponding to speckle, salt and pepper, Poisson, and Gaussian noises with 

variance = 0.1 in 2D 256 x 256 CT image. 

Metrics PSNR 
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Median 20.700 26.637 27.254 18.955 

Wiener 21.622 20.049 29.031 19.516 

Mean 22.207 20.957 25.533 18.989 

H-Median 21.062 26.101 26.659 18.913 

Gaussian 22.314 21.547 24.452 18.786 

Bilateral 19.313 15.778 25.137 18.822 

NLM 20.475 20.883 31.079 19.686 

A-Diffusion 17.593 14.161 31.113 18.664 

 

 

Fig. 13. PSNR values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in CT image. 
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Table 4. Quantitative MAE values of different filtering techniques corresponding to speckle, salt and pepper, Poisson, and Gaussian noises with 
variance = 0.1 in 2D 256 x 256 CT image. 

Metrics MAE 
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Median 6.162 1.800 2.678 24.846 

Wiener 4.378 8.366 2.809 24.239 

Mean 4.113 6.964 3.123 24.226 

H-Median 4.897 2.148 2.364 25.358 

Gaussian 3.767 8.804 4.040 25.044 

Bilateral 5.707 9.175 4.325 24.717 

NLM 4.616 5.697 2.242 24.048 

A-Diffusion 7.869 9.545 2.098 24.877 

 

 

Fig. 14. MAE values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in CT image. 

Table 5. Quantitative SSIM values of different filtering techniques corresponding to speckle, salt and pepper, Poisson, and Gaussian noises with 

variance = 0.1 in 2D 256 x 256 CT image. 

Metrics SSIM 
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Types S
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Median 0.568 0.844 0.803 0.465 

Wiener 0.624 0.420 0.804 0.536 

Mean 0.643 0.459 0.753 0.496 

H-Median 0.583 0.836 0.802 0.482 

Gaussian 0.680 0.476 0.775 0.513 

Bilateral 0.529 0.254 0.718 0.497 

NLM 0.614 0.446 0.873 0.564 

A-Diffusion 0.596 0.233 0.879 0.433 

 

 

Fig. 15. SSIM values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in CT image. 
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Poisson image Median Wiener  Gaussian image Median Wiener 

   

 

   
 

Mean Hybrid Median Gaussian  Mean Hybrid Median Gaussian 

   

 

   
 

Bilateral NLM Anisotropic Diff.  Bilateral NLM Anisotropic Diff. 

   

 

   

Fig. 16.  Comparative visual quality analysis of MRI images, denoised by different filtering techniques: Median, Wiener, Mean, Hybrid Median, 
Gaussian, Bilateral, Non-Local Means, and Anisotropic Diffusion. Here, (a) different filtered images corrupted by speckle noise (variance = 0.1); (b) 

different filtered images corrupted by salt & pepper noise (variance = 0.1); (c) different filtered images corrupted by Poisson noise (variance = 0.1); 
and (e) different filtered images corrupted by Gaussian noise (variance = 0.1). 

The same experiment is performed with MRI medical image, as shown in Fig. 16. From here, a relative ocular 

observation can be carried out on different filtered MRI images, which are corrupted by speckle noise, salt and pepper 

noise, Poisson noise, and Gaussian noise, respectively. Close observation in Fig. 16(a) reveals that among all images, 

Gaussian filtered image, mean filtered image, and bilateral filtered images are visually clearer. But the bilateral filtered 

image is more blurred than others. Again in terms of edge preservation performance and image quality, Gaussian 

filtered image is the best for speckle noise. Again in Fig. 16(b) the median and hybrid median filters almost remove 

entire salt and pepper noise from the MRI image. Among these two filters, the median filter performs better based on 

edge preservation quality. Similarly, Fig. 16(c) shows all the Poisson denoised MRI images, but in this case, visually, it 

is challenging to identify the best quality denoised image. Contrary, in the case of Gaussian noise, among all the filtered 

images, it is obvious to notice that non-local means filtered image has a good quality feature, edge preservation 

performance, less blurring, and overall precise visuality, as shown in Fig. 16(d). 
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Med. 11.847 6.493 6.300 27.932 

Wei. 12.466 25.534 5.713 28.108 

Mea. 11.033 21.025 7.318 28.334 

H-M. 14.423 10.267 9.856 28.082 

Gau. 9.983 18.333 9.793 28.793 

Bil. 19.483 45.192 18.057 30.841 

NLM 16.670 25.246 5.681 26.683 

A-D. 15.623 50.888 5.343 31.429 

Fig. 17. RMSE values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in MRI image. 

 
 

Med. 26.659 31.882 32.144 19.209 

Wei. 26.216 19.989 32.993 19.154 

Mea. 27.277 21.676 30.843 19.085 

H-M. 24.950 27.902 28.257 19.162 

Gau. 28.145 22.866 28.312 18.945 

Bil. 22.338 15.030 22.998 18.348 

NLM 23.692 20.087 33.043 19.606 

A-D. 24.256 13.999 33.576 18.184 

Fig. 18. PSNR values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in MRI image. 

Here, Fig. 17 demonstrates the quantitative analysis of different filtering techniques for MRI images in terms of 

RMSE, one of the well-known image quality assessment metrics. In the case of speckle noise, Gaussian filter gives the 

lowest RMSE value of 9.983, whether, for salt and pepper noise this value is 18.333. Here, median filter delivers the 

lowest RMSE value of 6.493 for salt and pepper noise. Contrary, in case of Poisson and Gaussian noises, anisotropic 

diffusion and non-local means filtering methods provide a low RMSE value of 5.343 and 26.683 respectively. 
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Med. 2.401 0.791 1.223 25.320 

Wei. 3.059 10.942 1.739 26.405 

Mea. 2.635 10.991 1.965 26.599 

H-M. 1.895 0.946 1.462 25.313 

Gau. 1.811 11.016 2.341 26.854 

Bil. 4.125 12.124 4.442 26.806 

NLM 3.771 7.400 1.547 25.178 

A-D. 3.715 11.610 1.183 26.997 

Fig. 19. MAE values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in MRI image. 

 
 

Med. 0.815 0.953 0.934 0.373 

Wei. 0.855 0.368 0.926 0.422 

Mea. 0.872 0.395 0.911 0.419 

H-M. 0.789 0.906 0.895 0.354 

Gau. 0.899 0.427 0.898 0.416 

Bil. 0.645 0.168 0.661 0.320 

NLM 0.795 0.375 0.926 0.434 

A-D. 0.811 0.188 0.943 0.295 

Fig. 20. SSIM values of different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in MRI image. 

For MRI image, in the case of PSNR, another renowned image quality metric, a similar type of results can be 

found from Fig. 18. Here, more the value better is the performance. Based on that, the Gaussian filter, median filter, 

anisotropic diffusion filter, and non-local means filter ensure the highest PSNR values of 28.145 dB, 31.882 dB, 33.576 

dB, and 19.606 dB for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise respectively. 

In terms of MAE, the overall performance of all the filtering techniques for MRI images in the case of speckle, salt 

and pepper, Poisson, and Gaussian noises are presented gradually in Fig. 19. Here, both the graphical chart and 

numerical data make the comparative analysis easier. From Fig. 19 it can be observed that there are random variations 

of MAE values of different filtering methods in the case of four individual noise types. For particular speckle noise, 

among eight filtering techniques, Gaussian filter provides the minimum MAE value of 1.811 and the nearest value is 

1.895 for hybrid median filter. In the case of salt and pepper noise, the best result is obtained from median filter with 

0.791. For Poisson and Gaussian noises, minimum MAE values of 1.183 and 25.178 are gained from anisotropic 

diffusion, and non-local means filtering methods respectively.  

Like RMSE, PSNR, and MAE, SSIM also provides the same type of results. Fig. 20 shows the SSIM values of 

different filtering techniques for speckle noise, salt and pepper noise, Poisson noise, and Gaussian noise in MRI image. 
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With SSIM values of 0.899, 0.953, 0.943, and 0.434 the Gaussian filter, median filter, anisotropic diffusion filter, and 

non-local means filter provide the superior performance in case of speckle noise, salt and pepper noise, Poisson noise, 

and Gaussian noise, respectively, though in case of Gaussian noise the SSIM value of non-local means filter is not up to 

the mark. 

4. Conclusion 

The existence of different types of noises in medical images is a common but undesirable phenomenon since it 

affects the quality of images very severely. So it is the crying need to get an effective filtering technique for removing a 

particular type of noise to ensure perfect diagnosis. In this paper, the performance of eight different denoising filtering 

techniques, namely, median, Wiener, mean, hybrid median, Gaussian, bilateral, non-local means, and anisotropic 

diffusion are studied based on RMSE, PSNR, MAE, and SSIM for four most hazardous noises, such as speckle, salt and 

pepper, Poisson, and Gaussian. Most importantly, all these noises and filtering methods are applied upon the three most 

widely used medical images, namely, US, CT, and MRI. Both statistical-quantitative and visual-qualitative 

performances are analyzed. The results reveal that the Gaussian filter is the best for despeckling US, CT, or MRI 

images. In the case of salt and pepper noise, the median filtering technique shows superior performance for all US, CT, 

and MRI images. Again, for removing Poisson noise from medical images (US, CT, MRI), the anisotropic diffusion 

filtering method is preferred. Finally, the non-local means appears as the finest filtering algorithm for eliminating 

Gaussian noise from US, CT, and MRI images. It should also be noted that we have performed the same analysis for 

other medical imaging techniques, for example, X-ray, OCT (Optical Coherence Tomography), and PET (Positron 

Emission Tomogra- phy). Most crucially, in every case, similar types of results are found.    
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