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Abstract: Fine-grained visual classification (FGVC) is challenging task duo to the subtle discriminative features. 

Recently, RA-CNN selects a single feature region of the image, and recursively learns the discriminative 

features. However, RA-CNN abandons most of feature regions, which is not only the inefficient but aslo ineffective. To 

address above issues, we design a noval fine-grained visual recognition model MRA-CNN, which associates multi-

feature regions. To improve the feature representation, attention blocks are integrated into the backbone to reinforce 

significant features; To improve the classification accuracy, we design the feature scale dependent(FSD) algorithm  to 

select the optimal outputs as the classifier inputs; To avoid missing features, we adopt the k-means algorithm  to select 

multiple feature regions. We demonstrate the value of MRA-CNN by expensive experiments on three popular fine-

grained benchmarks: CUB-200-2011, Cars196 and Aircrafts100 where we achieve state-of-the-art performance. Our 

codes can be found at https://github.com/dlearing/MRA-CNN.git. 

 

Index Terms: MRA-CNN, reinforce significant features, feature scale dependent, multi-feature regions. 

 

 

1. Introduction 

With the process of the computer version technology, the accurate objects classification is the center of 

attention[1,4]. Fine-grained visual categorization (FGVC) distinguishes objects in the same category(e.g.,black footed 

albatross, laysan albatross, etc).Currently, FGVC has important value in species identification[13] , the category of foliar 

diseases[12] and so on. 

FGVC methods consists of 1) supervised learning methods with lots of part annotations,2) Weakly Supervised 

Learning with  only image-level labels. 

Early works in FGVC rely on the manually annotated bounding  box/ part annotations. A typical method  is region 

proposal networks(RPN) to propose discriminative regions.Wei et al. [9] proposed Mask-CNN,which is first to apply 

CNN to FGVC. Zhang et al.[10] adopted PBR-CNN for FGVC, which learns object detection and part localizations.Duo 

to part annotations, this method achieves better classification results.Branson et al.[11] propose pose normalized CNN, 

which utilizes pose alignment over part-level image patches, then locates the discriminative parts. Human-annotated 

methods demand huge cost ,which limit the availability in practical use. 

To overcom labor intensive part annotation issues, another method is weakly supervised regions proposals.These 

methods usually  select discriminative parts and obtain heigh-level feature representations. Zhang et al. [5] adopted the 

method of target block detection and classification. In this method, the target detection is composed of foreground and 

background, then foreground and key regions are used for classification learning. Lin et al. [6] used bilinear CNN to 

achieve fine-grained classification by associating mutiple feature channels. Fu et al. [7] proposed ra-cnn model, which 

adopts iteratively cropping and zooming the unique feature region. Zheng et al. [8] proposed ma-cnn model, which 

utilizes multiple feature regions and achieves better results in image fine-grained classification. Woo et al.[22]proposed 

convolutional block attention module(CBAM) block with spatial attention and channel attention to reinforce features 
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representations. Although ra-cnn and ma-cnn have been applied in ships detection and medical image classification, their 

performance needs to be improved. 

To address above problems, we propose a noval FGVC model MRA-CNN. Frist, we integrate CBAM into backbone 

to reinforce high-level feature representations. Second, we design a novel algorithm FSD, which select the best 

classification features. Finally, we utilize k-means to select multiply feature regions for enhancing global feature attention. 

In this paper, the main contents are as follows: 

 

(1). To obtain better feature representation, our model utilizes the attention mechanism. 

(2). To select optimal outputs as inputs of the classification network, we design the feature scale dependent(FSD) 

algorithm. 

(3). To utilize mutiple feature region, we use k-means to select key regions. 

2. Method 

2.1. RA-CNN  

RA-CNN consists of three scale sub-networks, and each sub-network is composed of VGG19 and attention proposal 

sub-network(APN).The framework of RA-CNN consists of 1)VGG19 extract feature,2)APN obtains the feature region, 3) 

located image  region needs to be corp and zoom in,and 4) associating three sub-networks classification results for object 

recognition. The framework of RA-CNN is shown in Fig. 1. 

 

VGG19

APN

VGG19

APN

VGG19

+Crop
Zoom in 

Scale 2

Scale 3

Scale 1

+
Crop
Zoom in 

 
Fig.1. The framework of recurrent attention convolutional neural network (RA-CNN) 

From Fig.1,it can be observed that vgg19 neglects the feature fusion; The input of each scale classification network 

comes from a fixed convolution layer; APN network only cuts and zooms in the image of a single located image region, 

which makes it impossible to utilize the global information of the image. 

2.2. MRA-CNN  

We utilize ra-cnn as the basic framework to design the MRA-CNN model. The workflow of the model consists of 

data preprocessing, backbone network (MRA-CNN) and classification network. The workflow of mra-cnn is shown in 

Fig 2. 
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Fig.2. The workflow of our model  

MRA-CNN also has three scale layers. We adjuste the backbone from vgg19 to vgg19 ,CBAM and FSD. The APN 

network of first scale adopts k-apn network. The framework of MRA-CNN is shown in Fig. 3. 

 

 

Fig.3. The framework of MRA-CNN. 
( )i

tp represents prediction probability.
( )sY represents prediction category.

innerL represents classification 

loss.
scaleL represents inter-scale classification loss. 

The workflow of MRA-CNN is as follows: 

 

Step1: The image is input to scale1, then the features are extracted via 1V . 

Step2: The output 5P of the 5th pool layer in 1V  is input k-apn to obtain the average size N of the k feature regions. 

Step3: FSD algorithm associates 1V outputs according to the size of N.Then the output feature is input to the 

classification network (FCN + softmax) to obtain the prediction label 
(1)Y of scale1. 

Step4: The k-means algorithm is used to cluster multiple input features in K-APN(
1M ) to generate k feature regions. 

Step5:  According to the k feature regions of 
1M , k image patches are cropped and zoomed in as the inputs of the 

scale2. 

Step6: After that, the k images patches are input to 
2V .We also utilize FSD to obtain feature representation , and 

associate three classification results to achieve the prediction lable (2)Y  of sacle2. 

Step7: Detailed k images patches are input to scale3, which repeats the processes of step6.This step outputs 

prediction label (3)Y . 

Step8: Finally, this model associates  (1) (2) (3), ,Y Y Y  to achieve classification. 

2.3. Pre-Processing 

As popular fine-grained benchmark datasets have different image sizes, we first adjust image size to 224 *224 pixels, 

then the pixel range is normalized from [0,255] to [-1,1]. The pre-processed data can accelerate the model convergence 

and improve the robustness of the network. The normalization formula is: 
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* 2 ( min) 2
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                                                                  (1) 

 

where min=0, max=255, X represents the original pixel, 
*X  is the normalized pixel. 

2.4. Backbone Network 

VGG19 realizes the integration of network depth and performance, so it is used as the backbone network in ra-

cnn.However,VGG19 lacks the attention mechanisms. Inspired by bilinear CNN[6] and CBAM[22],we can reinforce 

feature representation via attention.Furthermore,if the size of feature map obtained by APN is small,fewer discriminative 

features availability  for the classification network.To improve the classification ability of the network, the FSD 

algorithm is designed in the backbone to integrate the outputs of the convolution layer as the input of the classification 

network.The backbone is shown in Fig 4. 
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Fig. 4. The backbone of MRA-CNN.I represents the input image; P3, P4 and P5 represent max- pooling; F(I) represents the FSD function.C1, C2 and 
C3 represent three CBAM blocks. 

VGG19 extract the image features.P5 is the input of K-APN,which utilize k-means algorithm  to extract k groups of 

feature regions,then selects the highest score in each group as the part region. Next, we calculate the average size N of k 

part regions via FSD algorithm(i.e.,f(I)). The f (I) integrates the features (i.e.,C1, C2, C3) to achieve the best 

classification.The formula of F (I) is as follows: 

 

1 2 3

2 3

3

    0<N 64

( )            64<N 128

                   128<N

C C C

f I C C

C

  


  



                                                                (2) 

 

When f (I) associates CBAM modules (i.e.,C1, C2, C3), the interpolation algorithm is used to implement feature up-

sampling to achieve the consistency of feature size. Meanwhile, classification network adopts fully convolutional 

network(FCN),and the formula is as follows: 

 

Y=h(g(f(I)))                                                                                 (3) 

 

where (*)g represents FCN convolution network and (*)h represents softmax function. 

Finally, we integrate  the three scale prediction values to achieve object classification. 

2.5. K-APN  

RA-CNN gets a single feature area via APN network. Then, APN crops and zooms in the corresponding image area 

as the input of the next scale. In this way, it is easy to miss the  subtle regions of the image. Inspired by MA-CNN, we 

utilize multiple feature regions for target location to reinforce the robustness of target recognition, so we propose K-APN 

network. 

Due to the advantages of multi feature regions in image classification, this paper uses k-means algorithm to generate 

multi feature regions. As shown in Fig 5. 
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Fig. 5. The process framework of K-APN 

We use k-means to obtain k feature regions,which are input into APN network to generate k parameter 

vectors( , , [0 ]xj yj ljt t t j K  ).After corpping and zooming in, corresponding image patches are input into the next 

scale. 

K-Means adopts euclidean distance.AS the clustering regions are mostly irregular shapes, there are some 

overlapping regions in the image. To address this problem, it is necessary to optimize the coordinates of the K feature 

regions to avoid overlappin. As shown in Fig. 6. 

 

 

Fig 6. K-APN feature map optimization process. The center coordinate of the square is ( , )x yt t , 
lt  is half the length of the edge. 

Supposing that the square parameter of the n-th feature region is 
( ) ( ) ( ) ( ){( , ), ( , ), }n ul n ul n br n br n

x y x y lt t t t t , where ( )ul is 

the upper left corner, ( )br is the lower right corner, 
n

lt  is the radius. The overlapping area of the feature area i and j is: 

 
( ) ( )| |i br j ul

x xW t t                                                                            (4) 

 
( ) ( )| |j br i ul

y yH t t                                                                            (5) 

 

S W H                                                                                  (6) 

 
where W and H represent the width and height of overlapping feature areas.  

The steps of the feature region optimal algorithm are as follows: 

 

Step 1:we calculate the overlapping region S of between feature region R and other regions by formula (6). If S > 

0, R has overlapping regions. 

Step 2: We identify the region with the largest overlapping area as P.According to the formulas (4) and (5), if 

W>=H, the width of R and P will be reduced by W/2, otherwise the height will be reduced by H/2, 

respectively.Concurrently, there is no overlapping area between R and P. 

Step 3:After that, we check if the revised R has overlapping areas. if there are  overlapping areas, Repeating step 2. 

Step 4: Selecting next feature region and repeating steps 1 to 3.
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If K-APN network is used for each scale of MRA-CNN network, the feature regions of each scale will increase 

exponentially and increase the amount of calculation. Thus, K-APN is only used in the first scale. 

2.6. Loss function 

If MRA-CNN adopts intra-loss function and inter-loss function, it can not verify the advantages of K-APN. Thus, 

the loss function of MRA-CNN is: 

 
3 2

( ) ( ) ( 1)

1 1

( , ) ( , )s s s

inner true scale t t channel

i i

Loss L Y Y L P P L

 

                                          (7) 
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where 
innerL is the intra-loss function of APN. 

scaleL  is the inter-loss function of APN. 
channelL  is the clustering loss 

function of K-APN where N represents the number of elements, X represents elements, and 
jC  represents the center of 

class J. 

As scale2 have K features, 
(2)Y

 
is the mean value of the prediction probability of K features. For example, the 

probability 
2

ip  of class i in 
(2)Y  is calculated as: 
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j

P P
K 

                                                                            (9) 

 

Scale3 is the same as scale2. 

As 
channelL  is added to the loss function, the rate of convergence can be accelerated.By using multiply feature 

regions, the accuracy of image recognition is finally improved. 

3. Experiments 

We conducted experiments on three widely used fine-grained datasets (i.e., cub-200-2011[2], Stanford car[3], fgvc 

aircraft[4]).The fgvc-aircraft dataset has 10,0200 samples and is divided into 102 categories. Each model of aircraft 

contains different subclasses, such as Airbus A300-200 has A300-200T, A300-200F and other models, as shown in Fig. 7. 

 

 
Fig.7. A300-200 aircraft photos 

The ratio of training data, test data and validation data is 6:2:2. The hardware and software configurations used in 

the experiment are listed in Table 1. 

Table 1. The main configuration 

OS Win10 pro 64bit 

GPU Titan xp 

Cuda 7.0 
Tensorflow 1.13.1 

Keras 2.1 

Anaconda 4.8.3 
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3.1. Experiment 1: K value 

In this paper, accuracy is used as the evaluation index and the formula is: 

 

accuracy=(true positive +false positive )/all data                                                  (10) 

 

Using Elbow method to select the optimal k-value for K-Means clustering, as shown in Fig. 8. 

 

 

Fig.8. K-value curve 

From Fig. 8, it can be observed that the optimal k=5. In order to verify the validity of K-cluster, a comparative 

experiment is designed. 

Table 2. Comparison results of different K values 

K value 3 4 5 6 7 

accuracy 89.02% 89.16% 90.31% 89.27% 88.63% 

 

From Table 2, we know that with the increase of K value, the classification accuracy of the model increases first and 

then decreases, indicating that the model can extract more feature representations from multiple feature regions, and the 

accuracy of the model is the best at the optimal K value. 

3.2. Experiment 2: Ablations and Performance 

This experiment mainly compares the accuracy of multiple fgvc models in three datasets. The experimental results 

are shown in Table 3. 

Table 3. Comparison in terms of classification accuracy on the CUB-200-2011, Stanford-Car, and FGVC-Aircraft datasets. 

Method 
Accuracy/% 

CUB-200-2011 Stanford-Car FGVC-Aircraft 

VGG19[27] 
78.17 85.73 81.85 

RA-CNN[7] 84.41 92.5 87.2 

MA-CNN[8] 
86.5 92.8 89.9 

MRA-CNN 
(k-means) 

85.3 92.6 88.3 

MRA-CNN 

(K-means+CBAM) 

87.1 93.1 90.27 

MRA-CNN 
(K-means+CBAM+FSD) 

87.4 93.3 90.42 
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From Table 3, it can be observed that the accuracy of MRA-CNN improve by 2.99% compared with ra-cnn in cub-

200-2011. Meanwhile, the accuracy of MRA-CNN gets improvement in three datasets compared with ma-cnn model, 

which uses multi-feature regions. 

From Fig. 9, it can be observed that the amount of calculation of mra-cnn increases slightly, and it takes about 

0.238s to recognize one picture. The result verifies that our model can process the image in time. 

 

 
Fig.9. Algorithm performance analysis chart 

3.3  Experiment 3: Visualization with Attenion Map 

In the k-apn part, multiple feature regions can be generated. This experiment shows the feature region outputs of 

scale3 in different epoch. As shown in Fig 10, the region of interest of MRA-CNN is shown when the epoch is 200, 2000 

and 20000, respectively. 

 

 
Fig.10. Transformation of feature region of interest 

From Fig 10, we know that at the beginning of model training, feature regions are not obvious, which is obviously 

affected by background noise. When the model is trained to epcoch is 20000, the regions of image are non-overlapping, 

and the discriminative regions of image are located.
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4. Conclusion 

In this paper,we propose a noval fine-grained visual classification model MRA-CNN. We adopt attention 

mechanism , feature scale dependent algorithm  and k-means to select the optimal feature representation. Extensive 

experiments in three benchamark datasets demonstrate that our model is able to outperform not only ra-cnn but also ma-

cnn. In the furture, we will improve the proposed mra-cnn in the following directions:1)learning region proposing, ie., 

selecting better feature extraction network instead of VGG19,2)less computational cost ,3) applying MRA-CNN to image 

segmentation and other fields. 

With the state-of-the-art results of MRA-CNN, it can be observed that region proposal models are useful for fine-

grained tasks and the MRA-CNN is a reference for future works. 

Abbreviations 

The table below lists serveral abbreviations used in this paper. 

Table 4. Abbreviations 

Abbreviation Description 

FGVC Fine-grained visual classification 

RA-CNN Recurrent Attention Convolutional Neural Network 

MA-CNN Multi-attention Convolutional Neural Network 

APN Attention proposal sub-network 

CBAM Convolutional Block Attention Module 

FCN Fully Convolutional Networks 

MRA-CNN Our  model 

FSD feature scale dependent 
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