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Abstract: The presence of illegal activities such as illegitimate mining and sand theft in river dredging areas leads to 
economic losses. However, manual monitoring is expensive and time-consuming. Therefore, automated surveillance 
systems are preferred to mitigate such activities, as they are accurate and available at all times. In order to monitor river 
dredging areas, two essential steps for surveillance are vehicle detection and license plate recognition. Most current 
frameworks for vehicle detection employ plain feed-forward Convolutional Neural Networks (CNNs) as backbone 
architectures. However, these are scale-sensitive and cannot handle variations in vehicles' scales in consecutive video 
frames. To address these issues, Scale Invariant Hybrid Convolutional Neural Network (SIH-CNN) architecture is 
proposed for real-time vehicle detection in this study. The publicly available benchmark UA-DETRAC is used to 
validate the performance of the proposed architecture. Results show that the proposed SIH-CNN model achieved a 
mean average precision (mAP) of 77.76% on the UA-DETRAC benchmark, which is 3.94% higher than the baseline 
detector with real-time performance of 48.4 frames per seconds. 
 
Index Terms: River dredging, Automated surveillance, Vehicle detection, CNN, Scale invariant 
 
 

1.  Introduction 

Vehicle detection mechanism playing a pivotal role in vision-based surveillance systems, such as vehicle theft 
detection[1] , speed enforcement [2], automatic non-stop tolling [3], intelligent traffic observation [4], and illegal 
activity recognition [5], among others. In the realm of water conservation projects, river dredging assumes a significant 
role. It plays a crucial part in maintaining water resources, preventing floods, and enhancing water flow [6].  River 
dredging is a major part of water conservation projects [7]. The extraction and sale of gravel and sand during river 
dredging contribute to considerable economic [8]. However, this essential process is not without its challenges, as 
illegal mining and sand theft [9] pose serious security threats to the hydraulic engineering department. Consequently, 
continuous surveillance of dredging areas has become a critical responsibility for relevant government agencies. 

Every day, at river dredging construction sites where hundreds of vehicles enter and hundreds of vehicles traverse 
these dredging sites, manual inspection by patrol officers or security guards are time-consuming, costly, and laborious 
for humans. The introduction of an automated vision-based monitoring system enables the accurate detection and 
recognition of vehicles. This innovation significantly reduces the risk of compromised inspections resulting from bribes 
or threats posed by unauthorized entities. Furthermore, the autonomous system not only heightens the security and 
safety of the construction area but also optimizes the inspection process, thereby avoiding potential disruptions to the 
construction timeline [5]. Consequently, the real-time vehicle detection provides a robust foundation for improved 
management at control checkpoints and ensures more efficient surveillance. According to literature analysis, vehicle 
detection is grouped into two categories: (1) traditional Machine Learning (ML)-based and (2) deep learning-based [10]. 
In ML-based models, initially a feature extraction mechanism is applied to extract features, and then a classifier is 
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utilized to categorize these extracted features [11,12]. In the case of DL, especially in Convolutional Neural Network 
(CNN)-based model, there is no need to extract hand-crafted features [13,14].  

The CNN-based model automatically extracts low-level features and trains the model using the most optimal 
features [11,15]. CNN-based architectures have played a vital role in vision-based object recognition [16-21]. However, 
there are some issues with the identification of vehicles. Firstly, vehicles are challenging to detect because of their 
diversified shapes, hues, and sizes. Secondly, the geometry of vehicles in successive video frames changes based on 
their position and orientation. Thirdly, environmental variables may have an impact on the outcomes of vehicle 
detection. Lastly, vehicle recognition applications demand real-time performance and real-time detection system is 
essential for vehicle recognition applications. 

Many vision-based detection techniques have already been proposed and discussed in the literature. The object 
detectors described in  [16-21] are used in many vehicle surveillance models. But these detectors are designed for object 
detection from a single image. In River Dredging Areas (RDA), surveillance cameras capture vehicle at different scales. 
If we directly apply these detectors to RDA applications, they neglect multiscale features that are valuable to detect 
small sized vehicles.  

In the context of river dredging area vehicle detection, vehicles constantly change in scale as they move through 
the surveillance area. This variability in vehicle size becomes particularly evident in successive video frames captured 
by road supervision cameras. When vehicles are farther from the camera, they appear smaller in the image, and as they 
get closer, they occupy a larger area as shown in Fig.1. Consequently, even if the vehicle type remains same, its scale 
may differ significantly in consecutive frames. This variability complicates the accurate and reliable detection of 
vehicles. Detectors proposed in [19,21] utilized grid cells for detection, the grid size played a vital role in vehicle 
detection accuracy and time complexity. These schemes divides the image into (7×7) grid cells, these larger grid size 
are computationally efficient but fail at small scale vehicle detection [22]. 

 

 
Fig. 1. Scale change in consective video frames 

For vehicle detection in RDA, due to the large sized grid cells, detectors [19,21]  will failed to detect when 
vehicles far away from cameras and appear smaller. Moreover, the detector presented in [21] employed DarkNet-19 as 
architecture. In the quest for cutting-edge vehicle detection, DarkNet-19, with its simple feed-forward CNN architecture, 
falls short of the mark. The absence of multiscale and multilevel descriptors proves detrimental, causing gradient 
vanishing/exploding and undermining the network's ability to handle class variation effectively [23]. With the 
automotive landscape constantly evolving, relying on DarkNet-19 alone would be akin to navigating a winding road 
blindfolded [22]. To overcome these challenges and pave the way for more accurate and reliable vehicle detection, our 
research advocates for the integration of a more sophisticated neural network one that harnesses the power of multi-
level features, ensuring smooth and seamless identification of vehicles, regardless of their shape, size.  

In this study, a vehicle detection system is designed for surveillance applications in river dredging areas while 
taking into account the constraints of existing frameworks. The proposed system, as shown in Fig. 2, takes video frames 
of vehicles at the entrance point. After pre-processing, the proposed vehicle detector is applied to detect vehicles for 
vehicle recognition mechanisms that facilitate the government’s agencies in identifying illegal activities. 

The contributions of this research paper summarized as follows: 
 

• In order to address the challenge of scale variation in moving vehicles, we have proposed a Scale Invariant 
Hybrid Convolutional Neural Network (SIH-CNN) architecture. This approach allows for improved detection 
accuracy by effectively handling the varying sizes of vehicles in consecutive frames. The SIH-CNN 
architecture is designed to be scale-invariant, enabling it to adapt to the changing scales of vehicles, resulting 
in more reliable and accurate vehicle detection. 

• To mitigate the issue of gradient vanishing and enhance the model's ability to handle class variation, we have 
introduced a multi-level feature extraction block. This component plays a crucial role in improving the overall 
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robustness of the detection system. By effectively extracting hierarchical features from the input data, the 
multi-level feature extraction block helps capture essential information at different abstraction levels, leading 
to better detection performance. 

• In order to enhance the detection of tiny vehicles, we have incorporated a multi-scale feature extraction block 
into our proposed scheme. Small-sized vehicles often pose a challenge for traditional detection methods [22]. 
By extracting features at different scales, this block allows the model to detect and recognize small vehicles 
more accurately, contributing to an overall improvement in the performance of the vehicle detection system. 

 
In conclusion, our research paper presents a comprehensive approach to address the scale change of travelling 

vehicles in consecutive video frames. By leveraging the Scale Invariant Hybrid Convolutional Neural Network (SIH-
CNN) architecture, along with the multiscale and multilevel descriptors extraction blocks, we have achieved significant 
advancements in detection accuracy, robustness, and the ability to detect small-sized vehicles. Moreover, High frame 
rates, approximately 30 FPS, are essential for accurately capturing and recognizing moving vehicles [24]. Our proposed 
SIH-CNN operates at an impressive 48.4 frames per second, thereby making it highly efficient and well-suited for real-
time surveillance applications. These contributions pave the way for more effective and reliable vehicle detection 
systems in real-world applications, such as river dredging area monitoring, where accurate vehicle detection is of 
utmost importance. 
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Fig. 2. Vehicle Detection Process 

The rest of the paper is categorized into different sections: Section 2 discusses the current state-of-the-art vehicle 
detection frameworks; Section 3 describes the proposed methodology, where we discuss the detection mechanism, 
proposed backbone architecture, and proposed loss function. Section 4 discusses the experiments, which cover the 
experimental environment, benchmarks, performance evaluation metrics, and quantitative and qualitative results to 
validate the system's performance. Finally, Section 5 described the conclusion and future work of this investigation. 

2.  Literature Review 

Vehicle detection is considered as an elementary step of traffic survellince applications. And deep convolutional 
neural networks (DCNN) have achieved tremendous success in vision-based detection with the evolution of domain-
specific architectures (DSA). Most of the vehicle detection frameworks are based on these detection models [16-21,25].  

In [26], the authors proposed a vehicle detection framework based on Faster-RCNN. Their proposed framework is 
specially designed for dense background conditions. In a single framework, they used two networks (the fine-tuning 
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network and the proposal network). They utilized VGG-16 for features extraction and training.  The VGG-16 network 
ignored the multilevel descriptors that are suitable to handle vehicle class variation. 

In [27], Hu et al. proposed a vision-based vehicle detection framework. Their proposed framework utilised 
context-aware Region-of-Interest (RoI) pooling to produce accurate feature maps. They utilised a multi-branch decision 
network for vehicle classification. The VGG and PVANET CNN backbones are used to train the proposed framework. 
Their backbone architectures are simple feed-forward neural networks that ignore the vast majority of valuable semantic 
information, and suffer from detection errors or misses. 

In [28], authors proposed a fast vehicle detection framework for traffic surveillance. They introduced "connect and 
merge residual networks" to enhance classification accuracy. They also designed a multi-scale prediction network to 
precisely predict the shape of vehicles. They utilised the Darknet-19 backbone architecture that is used in YOLO V2 
[21]. The Darknet-19 ignores the multilevel descriptors, and the pooling in descending layers of the Darknet-19 that 
miss detecting small-scale vehicles [22].  

In [29] authors proposed a CNN based vehicle detection method to handle occlusion of vehicles. The proposed 
scheme used K-means to cluster the aspect ratio and vehicle scale in the dataset. Low- and high-level features are 
concatenated using feature fusion techniques, and these features are used to detect vehicles. But their proposed model 
ignored the small-scale vehicle with a height of less than twenty pixels.  

Table 1. Literature analysis 

Detection Algorithms Contribution Limitations Accuracy Sensitivity Complexity 
 
 
 
 
 
 
 
 
 
Two-
Stage 
Detectors 

 
 
R-CNN  
[16] 

Bypass the issue of selecting large 
number of regions and utilize 
Selective Search Algorithm (SSA) 
for region proposal then apply CNN 
based classifier to classify these 
regions. 

Selective Search results in 
bottleneck. 
The detection speed is slow 47 
seconds per image. Not suitable 
for real time applications. 

Low Low Medium 
 

 
Fast-
RCNN 
[17] 

Introduce the convolutional feature 
map instead of SSA (i.e., used in R-
CNN). 

Not appropriate for real time 
applications. The detection 
speed is time-consuming only 
5-frames per seconds.  

Low Low Medium 

 
 
Faster-
RCNN 
[18] 
 

Introduce Region-Proposal-Network 
(RPN) that replace SSA for region 
proposal. 

Proposed detector is position 
sensitive and translation 
invariant. And detection speed 
not good as single stage 
detectors. 

Medium Medium Medium 

 
R-FCN 
[34] 
 

Introduce the position-sensitive score 
maps to overcome the problems of 
Faster -RCNN.  

Proposed detector is not suitable 
for real time detection problem. 

High Low High 

 
 
 
 
 
 
Single-
Stage 
Detectors 

 
YOLO 
[19] 
 

YOLO is first single stage detector, 
that introduced regression-based 
detection []. Proposed detectors 
classify and localize objects 
simultaneously. 

The detection accuracy is very 
low. Large grid cells result in 
miss detection of small-scale 
vehicles. Poor localization. 

Low Medium Low 

 
SSD 
[20] 
 

Introduced more anchor points to 
precise localization. Utilize multi 
scale features to enhance detection 
accuracy for small scale vehicles.  

Poor detection accuracy 
specially for small scales 
vehicles when vehicles are 
away from the cameras. 

Low Medium Low 

 
YOLO 
V2 [21] 
 

Introduced multi-scale training, 
adoptive anchor boxes and proposed 
Darknet19 a CNN based backbone 
architecture.  

Proposed model cannot handle 
scale variation of vehicles in 
consecutive video frames [22]. 

Low High Low 

 
HVD-
Net 
[[22]] 

Introduce multilevel and multiscale 
features to handle gradient vanashing 
and class variation problems. 

DSPP becomes ineffective if the 
window size increases to a  
large number [33]. Moreover 
DSPP differnt size windows 
increase model complexity and 
impede end-to-end training. 

High Medium High 

 
Retina-
Net [25] 
 

Proposed a single stage detector with 
focal loss, to resolve the issue of 
class imbalance problem during 
training. 

Detection speed is slow as 
compared to other single stage 
detectors. 

Medium Medium High 

 
In [30], a subcategory-aware CNN model is proposed for object detection. The model generates a feature pyramid 

of various scales with Region of Interest (RoI) pooling and a final convolutional layer used for subcategorization. One 
of the challenges in RDA is that a vehicle at a long- distance is seen as a small-scale object. Therefore, object detection 
using CNN is still a challenging problem because pooling damages small-scale objects. To minimise the effect of 
pooling, [27] proposed a RoI pooling method implemented for small-scale object detection. 
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Another RoI-pooling based method to detect vehicles on the road is proposed in [31]. The proposed system used 
global average pooling to avoid overfitting issues. In [32], author proposed a cascade-CNN based vehicle detection 
method. Their work combined two different CNNs. First, the network handles variant data on a small scale. The second 
CNN is designed for feature extraction, selection, and decision-making. After individual implementation, both CNN 
combined to achieve better performance. But their proposed network failed to detect extremely small vehicles and 
vehicles with a high inter-class variation. Ashraf et al.,[22]  proposed Hybrid Vehicle Detection Network (HVD-Net) 
for traffic survellince applications. They introduce Dense Connection Block (DCB) and Dense Spatial Pyramid Pooling 
(DSPP) block to handle class variation and small sized vehicle detection. DSPP becomes ineffective if the window size 
increases to a  large number and increase complexti [33]. Moreover multi scale windows increase model complexity 
and impede end-to-end training.  Table 1 critically analyses and briefly describes various vision-based detectors. 

3.  Proposed Method 

A.  Vehicle Detection 

The proposed vehicle detection model integrates the strengths of the YOLO object detection system, which is 
known for its efficiency and accuracy in real-time object detection tasks. The core design rationale behind our approach 
is to optimize vehicle detection in dynamic environments, such as roads or highways, by leveraging the benefits of 
YOLO. 

The chosen architecture divides the input video frame into a 13x13 grid, a decision made based on prior evidence 
that such a division provides a balance between granularity and computational efficiency [22]. Each cell in this grid is 
designed to predict bounding boxes and confidence scores for those boxes. By dividing the frame into grid cells, we 
allow the model to localize vehicle objects spatially. This granularity ensures that even when multiple vehicles are 
closely packed or overlap in a scene, the model can distinctly recognize and categorize each one [21]. 

If the vehicle centroid falls into a grid cell, then that grid is responsible for vehicle detection. Out of 13x13 grid 
cells, each grid cell estimates confidence scores and bounding boxes. The confidence score is pivotal as it provides a 
probabilistic measure of detection accuracy. The confidence score (i.e., 𝑃𝑃𝑟𝑟(𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃_𝑇𝑇𝑟𝑟𝐺𝐺𝑃𝑃ℎ )  indicates 
whether or not the box contains a vehicle. The confidence score should be zero if there is no vehicle present. If the 
vehicle is present in the box, the model tries to use the confidence score to equal the Intersection over Union (IoU) 
between the ground truth and predicted Bounding Box (BB). Each BB predicts five components: the vehicle's centre 
(i.e., x and y coordinates), the confidence score, and the predicted vehicle's height and width. The  SIH vehicle detection 
mechanism shown in Fig. 3. 

 

 
Fig. 3. Vehicle Detection Mechanism 

B.  Scale Invariant Hybrid Convolutional Neural Network (SIH-CNN) 

The  To address the problems of the baseline Darknet-19 backbone architecture, this study presents the SIH-CNN 
backbone architecture. SIH-CNN shown in Fig. 4 initially downsamples the convolutional structure to extract the 
features using multiple convolution and max-pooling units. On a 416x416 input image, the first unit performs 
Convolution_1 with 32 3x3 filters and a stride value of 1. Following Convolution_1, a max pooling layer was applied to 
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416x416x32 using a 2x2 filter with an S value of 2, yielding 208x208x32 feature maps. The entire CNN architecture 
used the same parameters for max pooling as used in the initial max pooling layer. Convolution_2 is performed in the 
second unit using 64 kernals of 3x3 size, and return feature maps of size of 104x104x64 after max-pooling_2. Three 
convolutional layers are used in the third unit: Convolution_3 (3x3), Convolution_4 (1x1), and Convolution_5 (filter 
size 3x3), with 128, 64, and 128 kernals, respectively. 

After 3rd max pooling, we get 52x53x128 feature maps. The fourth unit utilized 3- Convolution layers (i.e., 256-
Convolution_6 (filter size  3x3), 128-Convolution_7 (filter size 1x1), and 256-Convolution_8 (filter size 3x3)), and then 
4th max pooling returns 26x26x256 feature maps. 

After the fourth unit, we get more robust feature maps. To improve feature extraction, we now present the Dense 
Connection Block (DCB), which also mitigates the impact of gradient vanishing during in-network backpropagation. In 
the DC architecture, feature maps from Layer L-1 are combined with those from the present Layer L and the following 
Layer L+1. Too many DC-convolution layers in the CNN design slow down detection and add complexity to the model. 
Taking this into account, SIH-CNN uses DCB in the second-last convolutional block to derive the most informative 
semantic features. The suggested SIH-CNN design utilizes a dense connection module with four DC units, each of 
which is made up of a 1x1 and a 3x3 Conv-layer. Each DC unit incorporates a batch normalization (BN) layer before its 
3x3 convolutional layer.  

After DCB, SIH-CNN utilised inception block. To extract multi-scale features, the previous layer's feature maps 
are processed with three different dimension filters (i.e., 1x1, 3x3, and 5x5) and one max-pooling filter at the start. Once 
the multi-scale feature maps have been extracted, they are chained together to form a robust framework suitable for 
recognizing the smaller cars. When the CNN is designed to execute all of its convolutions on the same layer, the 
network expands in width but not depth. as well as enhance the capability of extracting characteristics across multiple 
scales. The final convolutional layer receives the feature images that were generated by the inception block. The 
overfitting and total number of factors are then decreased by switching from the flatten layer to the global pooling layer. 
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Fig. 4. Proposed SIH-CNN Backbone Architecture 

4.  Experiments 

To assess the capability of suggested methodology all trials were performed on Intel(R) Core(TM) i7-7700K CPU, 
4.50 GHz Max Turbo Frequency, and NVIDIA Titan X GPU with 12.00 GB memory. 

A.  Model Training 

The SIH-CNN model employs Stochastic Gradient Descent (SGD) as its optimizer. SGD fine-tunes model weights 
by referencing the gradient of the loss function with respect to these weights. SGD is sensitive to its initial learning rate 
settings. Therefore, a learning rate of 0.0001 has been select. Typically, selecting for a smaller value is favored as it 
promotes stable convergence and mitigates the risk of bypassing the optimal solution point. SIH-CNN model utilizes 
the Leaky Rectified Linear Unit (Leaky ReLU). Functionally resembling the conventional ReLU, Leaky ReLU 
differentiates itself by holding a slight non-zero gradient for negative input values, ensuring no neuron falls into an 
inactive state during the learning process. And prevent the vanishing gradient problem and improve the model's ability 
to learn. The batch size selected for the SIH-CNN model training is 32. That determines the number of training 
examples processed in each iteration and affects both the speed and stability of the training process. A larger batch size 
lead to faster convergence but require more memory, while a smaller batch size lead to more stable convergence but 
slower. 
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B.  Benchmark 

In this research, the UA-DETRAC benchmark [35] was used to evaluate the proposed system in real-world traffic 
video sequences. The UA-DETRAC benchmark contains of a total of 1.21 million vehicle’s boxes, covering four 
distinct vehicle categories, including cars, buses, vans, and others. In this research, 80% of benchmark is used for 
training and rest of the data used for evaluation. Using this benchmark, the proposed system is tested against a wide 
range of vehicle types and scales, providing a comprehensive evaluation of its performance. The benchmark provides 
ground truth data, allowing for the calculation of various performance metrics. Fig. 5 shows few samples from the UA-
DETRAC benchmark, illustrating the variety of vehicle types and scales present in the dataset. By testing the proposed 
system against this benchmark, we can assess the ability of proposed CNN architecture to accurately detect vehicles in 
real-world scenarios, which is crucial for evaluating the system's effectiveness and potential in practical applications. 
Since the UA-DETRAC dataset covers real-world traffic data with different weather conditions and various vehicle 
classes, it can serve as a suitable proxy for evaluating the proposed SIH-CNN model's performance in a relevant context. 
The dataset's diversity allows for a comprehensive evaluation of the model's effectiveness in handling real-world 
scenarios, including vehicle detection in river dredging areas. 
 

 
Fig. 5. UA-DETRAC benchmark samples 

C.  Evaluation Metrics 

The mean Average Precision (mAP) is a commonly used metric to evaluate the performance of object detectors, 
including vehicle detectors. It measures the precision of the detection algorithm by calculating the average precision 
across all object classes and scales. This study utilized mAP to measure the performance of the proposed vehicle 
detector. The performance evaluation was conducted using the UA-DETRAC benchmark, which provided ground truth 
annotations for vehicle detection. Fig. 6 shows a sample image from the UA-DETRAC dataset, with examples of False 
Positive (FP), False Negative (FN), and True Positive (TP) cases that were used in the performance evaluation.  

 

 
Fig. 6. UA-DETRAC detection sample 

To calculate mAP, we used a set of performance evaluation matrices represented in equations(i)-(iv). 
 

Precision = TP
TP+FP

                                                                          (1) 
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Recall = TP
TP + FN

                                                                              (2) 
 

Average precision (AP) :  = ∫ P(r) dr1
0  =  1

11
∑ Pinterp(rec)  
rec=0,0.1,0.2,....,1                            (3) 

 

mean Average precision (mAP) = ∑ APi  
 k
i= 1
k

                                                      (4) 
 

Frame Per Second (FPS) = 𝑁𝑁𝐺𝐺𝑁𝑁𝑁𝑁𝑃𝑃𝑟𝑟 𝐺𝐺𝑜𝑜 𝑜𝑜𝑟𝑟𝑓𝑓𝑁𝑁𝑃𝑃𝑓𝑓
Duration in seconds

                                                   (5) 

D.  Performance Evaluation 

The performance evaluation of the proposed SIH-CNN model was conducted by comparing its results with other 
well-known detection models, including [18-21]. 

Fig. 7-10 offer an in-depth comparative evaluation of the proposed SIH-CNN model against state-of-the-art 
methodologies. These sketches explain the Area Under the Curve (AUC) derived from the precision and recall metrics 
for detected vehicles across various classes, buses, cars, motorbikes, and trains. An AUC in a Precision-Recall (PR) 
curve is representative of a model's detection capability. The empirical results clearly showcase that the SIH-CNN 
model stands out, superior performance across all vehicle categories. It shows that SIH-CNN' as an exceptionally 
effective and precise model, real-world vehicle detection. 

 

 
Fig. 7. AUC of Bus class 

 
Fig. 8. AUC of Car class
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Fig. 9. AUC of Van class 

 
Fig. 10. AUC of Others class 

Table 2. shows a broad performance evaluation of different vehicle detection models using the UA-DETRAC 
dataset, concentrating on four distinct vehicle classes: buses, cars, vans, and others. The proposed SIH-CNN model 
shows superior performance by attaining the highest mAP score of 77.76%. This model impressively scores the highest 
AP for cars (86.03%), vans (77.25%), and the category labeled as others (63.15%). While the AP score for buses, at 
84.61%, is slightly lower than the Faster-RCNN model. But, the Faster-RCNN model achieves an mAP of 72.67%, 
SSD300 model records 73.08%, SSD512 touches 75.99%, and the YOLO-V2 model attains 73.82%. 

Diving deeper into speed metrics, the Faster-RCNN model, built on the VGG-16 backbone, presents an mAP of 
72.67% with a frame rate of 12.7 FPS. This processing speed underscores its high accuracy and may restrict its 
deployments in real-time surveillance applications. The SSD300 model, accomplishes an mAP of 73.08% and a 
commendable speed of 25.2 FPS. While its other variant, the SSD512, demonstrates a superior mAP of 75.99% but 
trails slightly in speed at 19.6 FPS. The YOLO-V2 model, underpinned by the DarkNet-19 architecture, observes itself 
with an FPS rate of 51.7, making it ideal for real-time surveillance, while maintaining an mAP of 73.82%. Evidently, 
the proposed SIH-CNN detector stands out, not only by achieving the high point mAP of 77.76% across the evaluated 
models but also by claiming a notable frame rate of 48.4 FPS. This highlights the model's capability to set the 
benchmark in both accuracy and speed in vehicular detection activities for surveillance applications. 

The spider graph in Fig. 11 compares the average precision of all four vehicle classes (i.e., car, bus, van, and others) 
for different detectors. The graph shows that the proposed SIH-CNN model outperforms all other detectors in terms of 
average precision for all classes, with the largest area covered by the SIH-CNN curve. This indicates that the proposed 
model is more accurate and reliable in detecting different types of vehicles than other state-of-the-art detectors. 
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Table 2. Performance comparison 

Vehicle Detection 
Framework 

CNN 
Architecture 

Input Size Buses 
AP % 

Cars AP % Vans AP % Others 
Catogery 

AP % 

mAP % FPS  

Faster-RCNN [18]  
VGG-16 

 
600x600 85.49 84.4 70.49 50.29 72.67  

12.7 
SSD300 

[20] 
VGG-16 300x300 81.56 84.05 71.85 54.86 73.08  

25.2 
SSD512 

[20] 
VGG-16 512x512 84.32 84.46 76.64 58.55 75.99  

19.6 
YOLO-V2 Baseline 

[21] 
 

DarkNet-19 
 

416x416 80.86 82.63 72.22 59.57 73.82  
51.7 

Proposed 
Framework 

 

   SIH-CNN 416x416 
84.61 86.03 77.25 63.15 77.76 

 
48.4 

 

 
Fig. 11. Average precision of all vehicle classes 

The qualitative results of vehicle detection on the UA-DETRAC benchmark are shown in Fig. 12. The proposed 
framework detects vehicles of different sizes with their class labels using traffic video frames. 

 

 
Fig. 12. Vehicle detection 
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5.  Conclusion 

The proposed SIH-CNN model has been utilized for real-time vehicle detection for surveillance applications like 
river dredging areas. The model combines multilevel and multiscale features that increase the feature extraction 
capabilities of the SIH-CNN architecture. And enable SIH-CNN to detect vehicles with scale changes while 
maintaining the original structures of vehicles. Real-world traffic surveillance benchmark is used to justify the strength 
of the proposed SIH-CNN model, and results proved that it outclass well-known vehicle detection models on real world 
data. In conclusion, the suggested SIH-CNN model can be used for real-time vehicle detection in river dredging areas 
surveillance applications, with potential applications in other similar scenarios. In future work, the same multilevel and 
multiscale features will be employed to design a vehicle license plate recognition procedure, that is the next phase of 
vehicle surveillance in river dredging areas. 
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