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Abstract: The research article presents a robust solution to detect surgical masks using a combination of deep learning 

techniques. The proposed method utilizes the SAM to detect the presence of masks in images, while EfficientNet is 

employed for feature extraction and classification of mask type. The compound scaling method is used to distinguish 

between surgical and normal masks in the data set of 2000 facial photos, divided into 60% training, 20% validation, and 

20% testing sets. The machine learning model is trained on the data set to learn the discriminative characteristics of 

each class and achieve high accuracy in mask detection. To handle the variability of mask types, the study applies 

various versions of EfficientNet, and the highest accuracy of 97.5% is achieved using EfficientNetV2L, demonstrating 

the effectiveness of the proposed method in detecting masks of different complexities and designs. 

 

Index Terms: Surgical mask detection, EfficientNet, face mask recognition, face mask detection, surgical mask 

recognition, machine learning, image processing, COVID-19, Segment Anything Model, Transfer learning. 

 

 

1. Introduction 

The COVID-19 pandemic has expanded rapidly around the world. This has impacted many companies around the 

world to think about the precautions to avoid health issues related to COVID-19. Many countries have developed 

particular measures to limit the transmission of coronaviruses, such as social distancing combined with the wear of 

masks to protect the mouth and nose, to reduce infection. Alongside the health-related requirements, many companies 

also changed their skill requirement policies to avoid appointing unskilled employees [1]. It is observed that not every 

nation has made face masks mandatory, a recent study by the World Health Organization suggests that wearing one can 

be quite effective in preventing the spread of COVID-19 [2]. 

In the field of computer vision and image processing face mask detection is a minimal subset of the field. To get a 

better understanding of how to improve classification model-related literature [3,4,5,6,7,8,9] is to be investigated 

alongside the subset.  

In this context, various studies on mask detection have been published in recent years. There has been a significant 

amount of research conducted on the topic of detecting and recognizing faces [11]. A comprehensive strategic review is 

conducted by Vibhuti et al. Al. [10] where the pros and cons of each method have been analyzed, and sources to 

multiple datasets are mentioned. Rodrguez et al. Al. [12] developed a technique to identify medical masks worn in an 

operating room. By utilizing two separate detectors, one for detecting faces and the other for identifying medical masks, 

their approach significantly improved the model's accuracy. Specifically, the method achieved a 95% accuracy rate in 

detecting faces that were wearing surgical masks. Zekun et al. Al. [13] achieved an accuracy of 89% and developed a 

web application for user access.  

Sanjaya & Rakhmawan [14] developed a machine learning model MobileNetV2 which can detect people who wear 

a face mask and do not wear it with an accuracy of 96.85%. Arjya, Mohammad, and Rohini [15] proposed a method that 

detects the face in the image correctly and then identifies whether it has a mask on it or not, and achieves accuracy up to 

95.77% and 94.58%, respectively, on two different datasets. Loey et al. [16] introduced a framework that employs 
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machine learning to identify face masks using a collection of high-quality images of faces that resemble those captured 

at conferences. Their model demonstrated remarkable precision, with an accuracy rate of 99.64% to 100% when 

identifying face masks. Nevertheless, these images were captured when the face was facing a computer camera situated 

just a few inches away, and as such, it is not suitable for real-world scenarios where individuals could be walking 

around at varying distances and angles, resulting in only a partial view of their faces and masks. Qin & Li [17] 

presented a technique to evaluate the suitability of wearing a mask by analyzing where it is placed. Their method 

categorizes each scenario into three groups: proper mask placement, incorrect mask placement, and no mask present. 

The method was successful in identifying face masks and their positions with a 98.7% accuracy rate. Shay & Ghaith 

[18] used three components: The resNet-50 model, multitask convolutional neural networks (MT-CNN), and CNN 

classifier to detect face masks. Furthermore, they implemented their technique on a mobile robot called ‘Thor’ and 

achieved an accuracy of 81.3%. Eashan & Brian [19] experimented with a huge dataset of 653,997 real-world webcam 

images and implemented some of the object detection algorithms to understand their effectiveness in such a real-world 

application. A model based on InceptionV3 was used by G. Jignesh Chowdary et al. Al. [20] to achieve a 99.9% 

accuracy on the Simulated Masked Face Dataset (SMFD). Amit et al. Al. [21] presents a two-stage face mask detector: 

RetinaFace model, Dlib & MTCNN. They selected the NASNetMobile-based model to classify face mask detection and 

achieved 99.23% accuracy. Shilpa et al. Al. [22] proposed a method that combines one-stage and two-stage detectors to 

achieve low inference time and high accuracy and achieved high accuracy (98.2%) when implemented with ResNet50. 

Ruchi & Manish [23] proposed a system that has achieved an accuracy of 98% in the synthesized benchmark datasets. 

The researchers utilized a face detection model called "Single Shot Multibox Detector" and an advanced architecture 

called "Deep Inception V3" (abbreviated as SSDIV3) to identify important image characteristics and classify them as 

either "with mask" or "without a mask." Muhammad et al. Al. [24] developed a deep-wise separable convolutional 

neural network model that achieved 93.14% accuracy. Balaji et al. [25] employed a VGG-16 CNN model that was 

created in Keras/TensorFlow and OpenCV to detect individuals who did not adhere to the mandatory face mask policy 

at government workplaces. Sufia et al. Al. [26] experimented on two sets of the dataset and achieved 98.96% accuracy 

by MobileNetV2, which outperformed VGG19 achieving an accuracy of 99.55%. Sadeddin [27] used a pre-trained 

ResNet-50 model on an image dataset of approximately 12,000 face mask images and achieved a 99% validation 

accuracy on 800 of those images. Dostdar et al. Al. [28] evaluated their experiment on two datasets and used the 

MobileNetV2 & DCNN models. The experiment showed that MobileNetV2 had a higher precision than DCNN on two 

different datasets. MobileNetV2 had 98% accuracy on dataset 1 and 99% accuracy on dataset 2, while DCNN had 97% 

accuracy on both datasets. Oumina et al. Al. [29] created a system that combines pre-trained deep learning models 

(Xception, MobileNetV2, and VGG19) to extract features from input images. They then used different machine 

learning classifiers, such as SVM and k-NN, to classify these extracted features into two classes (with mask and without 

mask) using a total of 1376 images. Their experimental results show that the combination of MobileNetV2 with SVM 

achieved the highest precision of 97.11%. Burhan et al. Al. [30] built a dataset of 14,535 images, including 5000 with 

incorrect masks, 4789 with masks, and 4746 without masks. They also developed a face mask detection system that can 

detect all three classes accurately with an average accuracy of 97.81%. In 2021, Afsana et al. conducted a 

comprehensive and meta-analytic review [31] on facemask detection techniques was done by Afsana et al. 

All of these studies have primarily identified surgical and nonsurgical masks as face masks, thus detecting any type 

of mask, resulting in no in-depth research focusing on the detection of surgical masks that can effectively prevent 

COVID-19 transmission.  The problem was to enforce the mask laws without mentioning any specific mask 

recommendations. During that time many people wore different types of masks, mostly nonsurgical. That is why this 

law helped very little to control the spread of the virus. A surgical mask prevents the coronavirus from entering through 

the mouth and nose, but other masks perform very poorly in this case. The capacity to prevent viruses is approximately 

50% in the case of surgical masks, whereas the normal mask has only a 10% chance of prevention or even below. 

Some research was published on facemask detection as mentioned above, but no publications were done to develop 

a complete surgical mask detection model for real-world application effectively. Therefore, in this paper detection of 

surgical masks is being emphasized to solve the problem. 

2. Proposed Method 

Various research initiatives are ongoing to utilize AI-driven methods to classify categories from different datasets 

[32,33,34,35]. Through completed and ongoing research, several observations can be made regarding the effectiveness 

of different methods on specific types of datasets. Judging from the previous literature we have decided to apply SAM 

[36] for segmentation and EfficientNet for feature extraction. Pre-trained models such as ResNet50, VGG16, Xception, 

and EfficientNet were used for feature extraction during classification. These pre-trained models were originally trained 

on a large image dataset called ‘ImageNet’ [37]. However, we found that the ResNet50, VGG16, and Xception models 

work well for classifying facemasks with less challenging conditions. The feature extraction approach in these models 

relies on color-based pixel information, which is ineffective in identifying surgical masks from a dataset of only masked 

faces.  

To overcome this challenge, we turned to the compound scale-based feature extraction method used by the 

EfficientNet model. EfficientNet [38] is another pre-trained model based on ImageNet that uses a compound scale 



Enhanced Surgical Mask Recognition Using EfficientNet Architecture 

Volume 16 (2024), Issue 5                                                                                                                                                                       27 

approach for feature extraction. Consequently, in this study, EfficientNet was used to detect surgical masks and classify 

them into various types of masks. Fig. 1 shows a diagram representing our proposed method. 

 

 

Fig. 1. Proposed model for surgical mask identification 

2.1 Dataset 

For this experiment, a data set containing 2000 images is used. The dataset has two categories: surgical masks and 

non-surgical masks. The dataset contains images of various resolutions. Every category contains 1000 images. 1200 

images are used for training (600 images from each category). 400 images are used for validation (200 images from 

each category) and 400 images for separate testing (200 images for each category). The main image data set is from the 

Face Mask Detection Data Set [39] from ‘Kaggle’ and we have modified the data set by filtering them into two 

categories for our research. Because these images are variable in size, we reduced them to a standard resolution of 224 

× 224 pixels. 

2.2 Experimental Procedure 

First of all, the images of the dataset are categorized into two categories, those are surgical and nonsurgical masks. 

The machine cannot understand the pure colors, so using the ‘Numpy Arrays’ function, the information from the RGB 

channel is converted to matrices. This is a part of data preprocessing. After data pre-processing is done, the arrays  

 

 

Fig. 2. EfficientNet Model Flow Chart 
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containing image information are pipelined through SAM to ‘Efficient Network’. EfficientNet reduces the dimensions 

to 7 × 7 using the 'max pool' function. This output is further given as input to the dense layer of size 256 units. In the 

dense layer, the activation function 'ReLU' is being used to accelerate. The output layer, using the activation function 

'SoftMax', creates two neurons for the probability calculation, as the probable outputs are two. The process uses the 

concept of 'transfer learning'. The following Fig. 2 describes the whole process in brief using a flowchart.  

2.3 Feature Extraction 

Generally, CNN models extract features mostly using color-pixel-based factors. This is quite an effective method. 

But in our case, the color-pixel-based decision is not helpful as both mask categories contain masks of the 

same/different color, making the model incapable of identifying the masks properly. ‘EfficientNet’ uses a method that 

scales the models using a simple yet effective approach called the compound coefficient, which scales the 

dimensionalities of each portion keeping uniformity by using a predetermined set of scaling coefficients rather than 

randomly scaling with resolution, width, and depth. The compound scaling approach is based on the principle of scaling 

with a constant ratio so that the model can maintain balance among the resolution, width, and depth dimensionalities. 

The following equations demonstrate how it is done mathematically: 

 

Depth d = α
ϕ
, Width w = β

ϕ
, Resolution = γ

ϕ
 

Such that α. β
2
. γ

2 
≈ 2 and α ≥ 1, β ≥ 1, γ

 
≥ 1 … … …                                                (1) 

 

If the input image is larger, the network's understanding is that it requires additional layers to expand the receptive 

field and more channels to capture more fine-grained patterns on the larger image, thus finding better-defining features 

from images. 

2.4 Experimental setup 

During the experiment, in the training period, we used the 'Adamax' optimizer, as it is faster and more helpful for 

sparse data. We used ‘categorical cross entropy’ as a loss function. 50 epochs were used to train the model. The batch 

size was set to 30. The learning rate was primarily set at 0.001. But if in any epoch, the loss is greater than the previous 

epoch, the learning rate is automatically cut off by half. Accuracy matrices were defined to calculate the result. The 

whole experiment was carried out using a powerful computer that had a core i7 processor, 32 GB of RAM, and 8 GB of 

GPU memory. The GPU model is NVIDIA GeForce GTX 1070. To manage the CUDA cores [40] of the GPU, CUDA 

Toolkit version 11.4 and CuDNN [41] version 8.2.2 were used. To run the whole experiment, ‘Jupyter-Lab’ was used 

along with an anaconda navigator. Python version 3.8.3, Keras [42], Tensorflow [43] version 2.7, and the Scikit-Learn 

library were used to manage the machine learning functions. 

3. Results 

3.1 Training-Validation and Test-Accuracy 

In this research, we have used EfficientNetB0’, EfficientNetB1’, ‘EfficientNetB2’, ‘EfficientNetB3’, 

‘EfficientNetB4’, ‘EfficientNetB5’, ‘EfficientNetB6’, ‘EfficientNetB7’, ‘EfficientNetV2M’ and ‘EfficientNetV2L’. In 

all cases, the training took approximately 10-12 minutes. The following graphs describe the accuracy and loss of the 

highest and lowest accuracy obtained from the training. In the case of ‘EfficientNetB5,’ the lowest validation accuracy 

is 89.75% and the test accuracy is 91%, which is achieved in the 33
rd

 epoch as shown in Fig. 3.  

 

 

Fig. 3. EfficientNetB5 training curve 

In the case of 'EfficientNetV2L', the highest validation precision is 96.75% and the test precision is 97.5%, which 

is achieved at the 33
rd

 epoch as shown in Figure 4. 
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Fig. 4. EfficientNetV2L training curve 

The training curve for all the models is demonstrated in Fig. 5 and the detailed result is shown in Table 1 below.  

Table 1. Accuracy and Loss Scores 

Model 
Training 

Loss 

Training 
Accuracy (%) 

Validation 
Loss 

Validation 
Accuracy (%) 

Test 
Accuracy (%) 

EfficientNetB0 1.632 100 1.75581 93 94 

EfficientNetB1 1.452 98.5 1.51858 95 95.75 

EfficientNetB2 1.544 100 1.63089 95.25 93.75 

EfficientNetB3 2.914 100 3.04204 94.5 94.25 

EfficientNetB4 1.432 100 1.53435 93.75 93.25 

EfficientNetB5 1.577 100 1.75885 89.75 91 

EfficientNetB6 1.797 100 1.86337 94 95.75 

EfficientNetB7 3.105 100 3.18348 94.75 94.5 

EfficientNetV2M 1.332 100 1.38311 95.25 94.75 

EfficientNetV2L 3.114 100 3.13626 96.75 97.5 
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Fig. 5. Accuracy Curves of all EfficientNet Models 

Fig. 6 represents the test accuracy comparison for various EfficientNet models. 

 

 

Fig. 6. Test accuracy comparison for all models 

3.2 Confusion Matrices 

The confusion matrices demonstrate which data was actually a nonsurgical mask and are also identified as a 

nonsurgical mask. And which data was a surgical mask but identified as a non-surgical mask. The same applies to 

surgical masks. The confusion matrices of all models are shown in Fig. 7. 

 

 

Fig. 7. Confusion Matrices 
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3.3  Classification Report 

In Table 2, the precision, recall, and f1 scores of the models are presented. 

Table 2. Classification Report 

Model   Precision Recall f1-score Model   Precision Recall f1-score 

Efficient 

NetB0 

Normal 0.92 0.96 0.94 Efficient 

NetB5 

Normal 0.97 0.85 0.9 

Surgical 0.96 0.92 0.94 Surgical 0.87 0.97 0.92 

Accuracy     0.94 Accuracy     0.91 

Macro Avg. 0.94 0.94 0.94 Macro Avg. 0.92 0.91 0.91 

Weighted Avg. 0.94 0.94 0.94 Weighted Avg. 0.92 0.91 0.91 

Efficient 

NetB1 

Normal 0.97 0.94 0.96 Efficient 

NetB6 

Normal 0.98 0.93 0.96 

Surgical 0.95 0.97 0.96 Surgical 0.93 0.98 0.96 

Accuracy     0.96 Accuracy     0.96 

Macro Avg. 0.96 0.96 0.96 Macro Avg. 0.96 0.96 0.96 

Weighted Avg. 0.96 0.96 0.96 Weighted Avg. 0.96 0.96 0.96 

Efficient 

NetB2 

Normal 0.95 0.92 0.94 Efficient 

NetB7 

Normal 0.97 0.92 0.94 

Surgical 0.92 0.95 0.94 Surgical 0.92 0.97 0.95 

Accuracy     0.94 Accuracy     0.94 

Macro Avg. 0.94 0.94 0.94 Macro Avg. 0.95 0.95 0.94 

Weighted Avg. 0.94 0.94 0.94 Weighted Avg. 0.95 0.94 0.94 

Efficient 
NetB3 

Normal 0.97 0.92 0.94 Efficient 

NetV2M 

Normal 0.96 0.94 0.95 

Surgical 0.92 0.97 0.94 Surgical 0.94 0.96 0.95 

Accuracy     0.94 Accuracy     0.95 

Macro Avg. 0.94 0.94 0.94 Macro Avg. 0.95 0.95 0.95 

Weighted Avg. 0.94 0.94 0.94 Weighted Avg. 0.95 0.95 0.95 

Efficient 
NetB4 

Normal 0.97 0.9 0.93 Efficient 

NetV2L 

Normal 0.98 0.97 0.97 

Surgical 0.9 0.97 0.93 Surgical 0.97 0.98 0.98 

Accuracy     0.93 Accuracy     0.97 

Macro Avg. 0.93 0.93 0.93 Macro Avg. 0.98 0.97 0.97 

Weighted Avg. 0.93 0.93 0.93 Weighted Avg. 0.98 0.97 0.97 

3.4 Receiver Operating Characteristics 

ROC stands for Receiver Operating Characteristic. It is a curve that is commonly used to evaluate the performance 

of a binary classifier, which is a model that predicts binary outcomes (e.g., yes or no, positive or negative) based on 

some input features. The ROC curve is a graphical representation of the trade-off between the true positive rate (TPR) 

and the false positive rate (FPR) of the classifier, as the classification threshold is varied. The true positive rate is the 

proportion of positive instances that are correctly identified by the classifier, whereas the false positive rate is the 

proportion of negative instances that are incorrectly classified as positive. Fig. 8 illustrates the ROC comparison for all 

EfficientNet models. 

 

 

Fig. 8. ROC comparison 

Fig. 9 illustrates the ROC curves for all EfficientNet models. 
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Fig. 9. ROC curve 
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4. Discussion 

During the period of COVID-19, the prevalence of face masks has increased. Wearing face masks has become 

mandatory in various institutions and public gatherings. But wearing face masks only for the sake of covering the face 

is not enough to prevent covid-19 certain categories of face masks, especially surgical or medical face masks, wearing 

can significantly reduce the transmission of COVID-19. 

Initially, various institutions emphasized wearing only face masks rather than surgical or medical masks. For this 

purpose, various types of research have been conducted for automatic face mask detection, some of which have been 

applied successfully. Some such research datasets are available on online platforms. However, since there is no research 

and data set specifically on surgical mask identification, we had to prepare our data set for this research, which is why 

our data set had to be created entirely by ourselves, which took some time. Also, our dataset contains only 2000 images 

which is somewhat less. 

Another challenge of our research is that we have to differentiate two categories which are both images of people 

wearing masks. Previous research studies have used various methods to detect images of people with and without 

masks. On the other hand, we had to detect surgical face mask images from masked images. For this, the process of 

feature extraction was quite complicated, and it was very difficult to get more accuracy in this work. 

In our proposed method, we applied scale-based feature extraction instead of color-based feature extraction. For 

this reason, our machine learning model did not randomly identify all masks that match the color of the surgical mask as 

a surgical mask and used features other than the color that is only present in the surgical mask as defining features. As a 

result, our proposed model was able to successfully distinguish surgical masks from normal ones in our prepared 

surgical mask dataset. 

5. Conclusions 

In conclusion, the proposed method of surgical mask segmentation and recognition using deep learning techniques 

presents a robust solution for detecting the presence of surgical masks in images, with high accuracy. The study utilized 

the Segment Anything Model (SAM) to detect masks and EfficientNet to extract features and classify mask types. The 

study was motivated by the global epidemic of Covid-19 and the proposed method can be useful in enforcing mask-

wearing laws in public places. We compared our proposed method with existing literature on face mask detection and 

surgical mask detection and found that no research projects were carried out to develop a surgical mask detection model. 

Therefore, the study fills a significant literature gap by developing a surgical mask detection model and provides a 

valuable contribution to the field. The proposed method can be useful in real-world applications such as airports, 

hospitals, and other public places where masks are mandatory. We used various versions of EfficientNet to handle the 

variability of mask types and designs, and the high precision of 97.5% demonstrates the effectiveness of the proposed 

method in detecting masks of different complexities and designs. Future research can expand on this study to develop a 

more comprehensive system that can recognize masks in videos and real-time settings. Overall, this research is a 

significant step toward making our society safer and healthier. 
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