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Abstract—At present, most of image decomposition 
models only apply to some ideal images, such as, noise-
free, without blurring and super resolution images, and 
so on. In this paper, they propose a novel decomposition 
model based on dual method and texture detecting 
function for noisy image. Firstly, they prove the 
existence of minimal solutions of the noisy 
decomposition model functional. Secondly, they write 
down an alterative implementation algorithm. Finally, 
they give some numerical experiments, which show that 
their model can effectively work for Gaussian noisy 
image decomposition. 
 
Index Terms—texture detecting function, texture, cartoon, 
image decomposition 

 

I. INTRODUCTION 

Image decomposition is only a class of image 
processing which is between the middle-level image 
processing with low-level image processing or image 
analysis, but also plays an important role in middle-level 
image analysis and high-level image understanding or 
computer vision. Given  f x , for simplicity, is denoted 

by f , where  1 2,
T

x x x  is a vector in domain  . Let 

f   be an observed image contained texture, such as 

f u v  , where the first component u  represents 

cartoon part, with some simple geometric description, 
the second component v  is oscillating part included 
texture and/or noise, i.e. v f u  . The main aim of 

image decomposition is to separate cartoon part u  and 
texture,  or noise part v  from an observed image f . 

Recently, many researches have proposed many PDE-

methods for noise-free image decomposition; see, such 
as AABC model[2], LJL model[10], ROF model[13], 
and other models[6,9,11,14-15]. In this paper, they will 
mainly offer an image decomposition method for partly 
noisy images. However, the noisy image decomposition 
task is still challenging and important. 

In 1992, Rudin et al.[13] presented the ROF model 
to denoise. The model is 

   2

2
min   .

2 Lu
E u Du u f




    

where   is a positive constant,   is a domain. As we 
know, this model performs very well for image 
denoising, and preserves some details, such as, edge, 
texture, etc. On the one hand, since the TV 
regularization term is isotropic diffusion, the ROF model 
will lead to block effect and over-smooth, for example, 
small details, such as texture, are destroyed if the 
parameter   is too small, the other is the function u , 
which is a function of bounded variation(BV), belonging 
to BV space. As we know, BV space ensures the 
regularity of solutions and non-continuity of some 
regional, it is an ideal space for image processing. The 

regularization term Du
  can be defined as follows: 

    1
1 2 0sup , , , .

N

nDu udiv C    


       

where   1.
L

  
  But it is difficult to find such a 

function   when they take the numerical 

implementation. So, in the numerical implementation, 

they transfer the regularization term Du
  

into u dx

 , which is to say, u  belongs to the Sobolev 

space, which causes the inconsistency between the 
theoretical model and numeri- -cal simulation. 
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In 2011, Liu et al.[10] proposed a new image 
decomposition model by using a dual method inspired by 
[3]. The model can be described as 

     2 2

2 2

,
min  , .

2 2L Lu w
E u w wdx w u f u

 
 

       

They call this model as LJL model. This model 
overcomes the inconsistency between the theoretical 
model and numerical simulation by introducing a new 
function w  in Sobolev space. At the same time, Liu also 
proved the existence of solutions of minimal functional 
model, and show that the LJL model works very well for 
image decomposition of noise-free images. The results of 
their proposed model in this paper will be compared them 
with those of LJL model. 

In 2009, Li et al.[9] designed a variational denoising 
model for partly textured images by introducing a texture 
detecting function in the ROF model. The model is to 
minimize the following energy functional 

    2
min  1 .

2u
E u u dx g u f dx


 

       

where g  is a texture detecting function according to the 

derivatives of the noisy image with texture. Li used the 
idea of total variation(TV) flow to remove the noise, that 
is,  

.
f f

div
t f

  
     

 

And then, they offered to extend the structure tensor by 
using the first and second order derivatives to extract the 
texture feature in a noisy image. The six feature channels 
are as follows 

1 2 1 2

1 1 2 2 1 2

2 2
1 2 3

2 2 2
4 5 6

 ,   ,   ,  

, ,  .

x x x x

x x x x x x

u f u f u f f

u f u f u f

  

  
 

Since the noise in f  is amplified by taking derivatives, 

they again used the TV flow to denoise each part iu , i.e. 

,  1, ,6.i i

i

u u
div i

t u

  
     

  

and provided a texture detecting function as 

   1 2 2
1 2

1
, .

1 ,
g x x

k x x


 
 

where k  is a positive constant and  1 2,x x  is the 

largest eigenvalue of the geometric matrix 

     

     

1 1 2

1 2 2

6 6
2

1 1

6 6
2

1 1

1 ,

.

, 1

i i ix x x
i i

i i ix x x
i i

u u u

u u u

 

 

  
 
 

 
 

 

 
 

From the above construction, they can see that each 
component of u  is near zero such that g  goes to one in 

the homogeneous regions; at least one component of u  is 
very large such that g  goes to zero in the regions with 

texture or noise. 
The rest of the paper is organized as follows. In section 

II., they construct a new noisy decomposition model and 
write out the execution algorithm. In section III., they 

show the existence of minimal solutions of their proposed 
model. In section IV., they show some experimental 
results. In section V., they give some discussions and 
conclusions. 

 

II. PROPOSED MODEL AND ALGORITHM 

In this section, they develop a new model for noisy 
image decomposition. Based on the advantages of the 
texture detecting function[9], they are to minimize the 
following energy functional 

    2

,
min  , + 1

2u v
E u v g Du g v dx


 

    

 2
.

2
f u v dx




    

where   and   are two positive constants.  BVu   

is cartoon part of  2,f v L   is texture component, 

 2n f u v L      is noise component.  

Since there is the regularization term Du
  in the 

above energy functional, as aforementioned, in order to 
overcome the inconsistence shortcoming of theoretical 
model and implement algorithm, they are more willing 
to propose the following model inspired by the dual 
method [3,10],  

 

 

   

, ,

2

22

min  , ,

1
dx+

2

    + 1 .
2 2

w u v
E w u v

g w w u dx

g v dx f u v dx


 

 

 

  

   

 

 

(2.1) 

where ,     and   are three positive constants, 

 1,1 ,w W  2 ( ).u L    The others are the same as the 

above. The first and the second terms are the test and 
approximation terms on cartoon part u , respectively. 
The third term is the test term on texture component v , 
and the fourth term is the data-fidelity component, or 
noise component. According to the definition of the 
texture detection function (0,  1),g   they can see that 

the first term plays more roles when g  tends to one in 

the cartoon domain, and the third term takes more 
important part when g  goes to zero in the texture or 

noise domain. 
In order to solve the minimal solutions of their 

proposed model, they can first compute the Euler-
Lagrange equations. And then, they use the steepest 
descent method to find the evolvement equations. There 
are as following 

 1
,

w w
div g w u

t w 
  

      
                (2.2) 

 
,

1

w f v
u




 



                          (2.3) 

 
 

.
1

f u
v

g


 




 
                            (2.4) 
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In this paper, they follow the alternating iterative 
algorithm to implement the above evolution equations, 
the alternating minimization algorithm is running in the 
order of 

           2.2 2.3 2.4 2.2 2.3 2.4       . 

They will employ pseudo-codes to write down the 
specific steps in the following.  
Firstly, they compute the texture detecting function .g  

(1) Denoising a noisy image f  by TV flow 

Initialize (0)
0,  u f     (time step, Default 1).  

For n  (iterations, Default 20) 

( )
( 1) ( )

( )
.

n
n n

n

u
u u div

u





     
     

 

End 
They can get denoising result Endu I . If the image 

is a noise-free image, they just take 3.n   
(2) Denoising the six channels using TV flow 

Initialize 0   (time step, Default 1), 

1 2 1 2

1 1 2 2 1 2

2 2
1 2 3

2 2 2
4 5 6

 ,   ,  ,  

, , .

x x x x

x x x x x x

u I u I u I I

u I u I u I

  

  
 

For n  (iterations, Default 2) 

( )
( 1) ( )

( )
.

n
n n i

i i n
i

u
u u div

u





     
     

 

End 
(3) Computing the detecting function .g  

Secondly, they decompose the noisy image. 
Initialize (0) ,u z (0) (0) 255 ,v u g  (0) ,w u 0   

(time step, Default 2), 0k k  (positive constant, Default 
45 10 ), 0 0,       (two positive parameters, 

Default 0.01), 0 0   (Default 0.1), 0=   (Default 
51 10 ). 

For n  (iterations, Default 20)  

 ( ) ( )( )
1( 1) ( )

( )
0

,
n nn

n n

n

w ug w
w w div

w







       
     

 

  ( 1) ( )

( 1) ,
1

n n

n
w f v

u







 




 

 
 

( 1)

( 1) .
1

n

n
f u

v
g



 







 
 

End 
After running, they can receive the results of image 

decomposition by their proposed model, which include 
cartoon part Endu u , texture/noise part Endv v , and 

residual part .n f u v    

 

III. EXISTENCE OF MINIMAL SOLUTIONS 

In this section, they prove existence of minimal 
solutions of their proposed energy functional model. Now, 

they relax the energy functional(2.1) into the following 
form: 

   

   

2

2

2

, ,

22

1
min  , ,

2

                             1
2 2

Lw u v

L

E w u v g wdx w u

g v dx f u v




 





   

    




                 

 22 .
2

w w dx



                    (3.1) 

where      2 2 1,2,  ,  .v L u L w W       

 
Proposition 1 Fix 0  , there is a minimal solution 

 ˆ ˆ ˆ, ,w u v    of the problem (3.1), where  ˆ ˆ ˆ, ,w u v    in 

     1,2 2 2W L L     . 

Proof: Fix 0,   it is clear that  , ,E w u v  is 

coercive. Let  , ,n n nw u v    be a minimizing sequence for 

the problem(3.1), then they can obtain that there is a 
generalized positive constant M  such that 

   

     

2

2

2

2 2

1
, ,

2

                            1
2 2

n n n n n n L

n n n L

E w u v g w dx w u

g v dx f u v

      

  


 





   

    





                   2 2
.

2 n nw w dx M 


     

Then,  

   2 2
,  ,  n n n nL L

w u M f u v M   

 
      

   2 2
,  .n nL L

w M w M 

 
    

Hence, they have 

     2 2 1,2
,  ,  .n n nL L W

u M v M w M  

  
    

That is to say, they get that ,  n nw u   and nv  are bounded 

in    1,2 2,  W L   and  2L  , respectively. So, there 

exist ˆ ˆ,w u   and v̂  in    1,2 2,  W L   and  2L  , 

and three subsequences such that ˆnw w   in 1,2W -norm, 

ˆnu u   in 2L -norm and ˆnv v   in 2L -norm, 

respectively. According to the convexity, they gain that 

 ˆ ˆ ˆ, ,w u v    is a solution of problem (3.1). 

 

Proposition 2 Fix 0  , if  ˆ ˆ ˆ, ,w u v    are minimal 

solutions of problem(3.1), then they separately satisfy the 
Euler-Lagrange equations 

 ˆ 1
ˆ ˆ ˆ ˆ 0,

ˆ

g w
div w u w w

w


   


 



        
  

   (3.2) 

   
1

ˆ ˆ ˆ ˆ( ) ( ) 0,w u f u v   


                    (3.3) 

ˆ ˆ ˆ(1 ) ( ) 0.g v f u v                         (3.4) 

with the Neumann boundary condition, 
ˆ

0
w

N





 . 
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Proposition 3 Fix 0  , if  f L  and  ˆ ˆ ˆ, ,w u v    

are minimal solutions of problem (3.1), there are two 
constants ,  a b  such that 

0 1ˆinf sup ,k ess f w ess f k

 
     

0 1ˆinf sup ,k ess f u ess f k

 
     ˆ .b v a   

Proof: Let  1
1 sup ,k ess f G C


    is a truncation 

function, ( ) 0G t   on ( ,0] , and ( )G t  is strictly 

increasing on (0, ) . Given 1ˆ( )z G w k  , and then 
'

1ˆ ˆ( )z G w k w     . They multiply equation (3.2) by 

z  and integrate in  , then they can get  

     1 1

1
ˆ ˆ ˆ ˆ ˆg w G w k dx w u G w k dx    

 
         

   2

1 1ˆ ˆ ˆ ˆ 0.w G w k dx w G w k dx    
 

          

Since ' 0,  (0,1)G g   and 0G  , they must satisfy 

     1 1

1
ˆ ˆ ˆ ˆ ˆ 0.w u G w k dx w G w k dx    

  

         (3.5) 

i.e. 

 

 

1

1 1
ˆ ˆ

1
1 1

ˆ ˆ

1 1
ˆ ˆ ˆ

1 1
ˆ ˆ ˆ 0.

w u

w u

w u G w k

w u G w k

 

 

  


 

  


 


 


 

   
 

   
 

       
  

         
  




 

Thus, if and only if there is 

 1

1 1
ˆ ˆ

1 1
ˆ ˆ ˆ 0.

w u

w u G w k
 

  


 


    

 

        
  

  

The inequality (3.5) is always set up. In fact, it is equal 
to zero since 0.G   Therefore,  

1 1
ˆ ˆ

0,
w u 

 
     
  

   

where  is Lebesgue measure, then, 
1 1

ˆ ˆ ,w u 
 
   
 

 

and ˆ ˆ .w u   
According to (3.3) and (3.4), they have  

ˆ1 ( )
ˆ ˆ

1 (1 )

f u
u w f

g


  

  
  

         
 

Furthermore, they derive 
ˆ(1 )

ˆ .
(1 )

g f u
u

g


  

 
 


 

 

Therefore, they get 1û k  . Similarly, they can get 
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Since 0 1ˆk u k  , they have 0 1ˆ2 2 .b k v k a      

 

Theorem 1 Let  f L  , then there is at least one 

minimal point  ˆ ˆ ˆ, ,w u v  in      2 2BV ,L L      

such that  , ,E w u v of the functional(2.1) reaches its 

minimum at point  ˆ ˆ ˆ, ,w u v . 

Proof:  Based on the above discussions, they have 
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for all      1,2 2 2,  , .w W u L v L       Especially, 

they take 1,  1,  1w u v   ,  then 
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They can receive that ŵ  is uniformly bounded in 1,1W  

and BV space. Thus there exists a subsequence ˆ nw  and 

ŵ  in BV space such that ˆ ˆnw w   in BV- w  and 

ˆ ˆnw w   in 1L -norm. At the same time, û  and v̂  are 
uniformly bounded in 2L  space, then there are also two 

subsequences ˆ ˆ,  n nu v   and ˆ ˆ,  u v  in 2L  space such that 

ˆ ˆnu u   in 2L -norm and ˆ ˆnv v   in 2L -norm, where 
0n  , if n  . According to the convexity, they get 
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So,        2 2ˆ ˆ ˆ, , BVw u v L L      is a minimal 

solution of the minimization functional (2.1). 
 

IV. NUMERICAL EXPERIMENTS  

In this section, they show some numerical results by 
their proposed model in the following, and compare 
them with some results by LJL model[10]. In the 
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following experiments, they take zero-mean Gaussian 
noisy images with variance 2 0.01  . 

 

  
                       (a)                                               (b) 

   
                       (c)                                               (d) 

  
                        (e)                                              (f) 
 

Figure 1.  Decomposition of the noise-free Logo image. (a) Logo 
image, (b) Cartoon part of their proposed model, (c) Texture part of 
their proposed model, (d) Texture detecting function, (e) Cartoon part 
of LJL model[10], (f)Texture part of LJL model[10]. 

   
                        (a)                                               (b) 

  
                        (c)                                              (d) 

  
                      (e)                                               (f) 

Figure 2.  Decomposition of the noise-free Badge image. (a) Badge 
image, (b) Cartoon part of their proposed model, (c) Texture part of 
their proposed model, (d) Texture detecting function, (e) Cartoon part 
of LJL model[10], (f) Texture part of LJL model[10]. 

Figure 1-2. show the decomposition results of the 
Logo image and Badge image without noise. Texture 
detection functions in Figure 1-2.(d) work well for 
searching the border and texture of noise-free images. 
Comparing Figure 1-2.(b) with Figure 1-2.(e), respective 
-ly, you can see that the cartoon parts of their proposed 
model are less geometry and texture details than those of 
LJL model. However, it is regret that there is over-
smooth in some parts of Figure 1-2.(b). Similarly, com-     
-paring Figure 1-2.(c) with Figure 1-2.(f), respectively, 
they can get that the texture parts of their proposed 
model are richer than those of LJL model[10]. 

 

   
                        (a)                                              (b) 

   
                        (c)                                              (d) 

  
                          (e)                                           (f) 

Figure 3.  Decomposition of the noisy Logo image. (a) Noise-free 
Logo image, (b) Noisy Logo image, (c) Cartoon part of their proposed 
model, (d) Texture part of their proposed model, (e) Residual part or 
noise of their proposed model, (f) Texture detecting function. 
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                        (a)                                              (b) 

   
                        (c)                                               (d) 

  
                        (e)                                              (f) 
 

Figure 4.  Decomposition of the noisy Badge image. (a) Noise-free 
Badge image, (b) Noisy Badge image, (c) Cartoon component of their 
proposed model, (d) Texture part of their proposed model. (e) Residual 
part or noise of their proposed model, (f) Texture detecting function. 

   
                        (a)                                              (b) 

   
                        (c)                                              (d) 

  
                        (e)                                                (f) 

Figure 5.  Decomposition of the noisy Flower image. (a) Noise-free 
Flower image, (b) Noisy Flower image, (c)Cartoon component of their 
proposed model, (d) Texture part of their proposed model. (e) Residual 
part or noise of their proposed model, (f) Texture detecting function. 

Figure 3-5. show the decomposition results of the 
Logo image, Badge image and Flower image with 
Gaussian noise. By observing the cartoon parts of Figure 
3-5.(c), you can see that the cartoon parts are decompos- 
-ed well for the noisy Logo, Badge and Flower images. 
In the same way, you can know that the texture parts are 
largely separated from the noisy Logo, Badge and 
Flower images by analyzing Figure 3-5.(d), but Figure 
3-5.(d) contain a part of noise component. Texture 
detection functions in Figure 3-5.(f) basically identify 
the texture parts of noisy images, but also include a 
fraction of the edge of noise. Residue part in Figure 3-
5.(e) don't involve texture or cartoon, that is, its are truly 
noise.  
 

V. CONCLUSION AND DISCUSSIONS 

In this paper, they have proposed a new model for 
noisy image decomposition based on dual method and a 
texture detecting function. Simultaneously, they also 
prove the existence of solutions of the minimal 
functional (2.1). From the numerical simulations, you 
can see that their proposed model not only processes 
well for noise-free images, but also deals well with 
images with Gaussian noise. However, they can't 
entirely decompose texture and noise for noisy images, 
see Figure 3-5.(d). Additionally, their proposed model 
can only deal with Gaussian noise image with small 
variance. In the case of large variance, the 
decomposition result of their model is not satisfactory. 
Therefore, further study will focus on these problems, 
for example, How to completely separate texture and 
noise, noisy images with large variance, and so on. 

 

ACKNOWLEDGEMENTS 

This work is supported by National Science Founda-  
-tion of China(10971239), Natural Science Foundation 
Project of CQ CSTC (CSTC2011JJA40033, CSTC2010- 
-BB2310), CQUT foundation (2010ZQ13).  
 
 

REFERENCES  



 Noisy Image Decomposition Based On Texture Detecting Function 21 

Copyright © 2012 MECS                                                        I.J. Image, Graphics and Signal Processing, 2012, 3, 15-21 

[1] G. Aubert and J. Aujol, A variational approach to 
remove multi-   -plicative noise, SIAM Journal on 
Applied Mathematics, 2008, 68 (4), pp. 925-946. 

[2] J. Aujol, G. Aubert, L. Blanc and A. Chambolle, 
Image decompo--sition into a bounded variation 
component and an oscillating component, Journal of 
Mathematical Imaging and Vision, 2005, 22(1), pp. 
71-88.  

[3] X. Bresson, S. Esedoglu, P. Vandergheynst, J. 
Thiran and S. Osher, Fast global minimization of 
the active contour/snake model, J. Math. Imag. Vis., 
2007, 28(2), pp.151-167. 

[4] A. Chambolle and P. Lions, Image recovery via 
total variational minimization and related problem, 
Numerical Mathematics, 1997, 76(3), pp. 167-188. 

[5] T. Chan and S. Eaedoglu, Aspects of total variation 
regularized L1 function approximation, SIAM, 2005, 
65(5), pp. 1817-1837. 

[6] S. Chao and D. Tsai, An improved anisotropic 
diffusion model for detail and edge-preserving 
smoothing, Pattern Recognition Letters, 2010, 
31(13), pp. 2012-2023.  

[7] G. Gilboa, N. Sochen and Y. Zeevi, Variational 
denoising of partly textured images by spatially 
varying constraints, IEEE Transactions on Image 
Processing, 2006, 15(8), pp. 2281-2289. 

[8] K. Krissian, K. Vosburgh, R. Kikins and C. Westin, 
Anisotropic diffusion of ultrasound constrained by 
speckle noise model, Tech. report, Harvard Med. 
School, 2004. 

[9] F. Li, C. Shen, C.-L. Shen and G. Zhang, 
Variational denoising of partly textured images, 
Journal of Visual Communication and Image 
Representation, 2009, 20(4), pp. 293-300. 

[10] R. Liu, R. Jia and F. Li, Image Variational 
decomposition based on dual method, ISRN Singal 
Processing, under reviewing, 2011. 

[11] Y. Meyer, Oscillating patterns in image processing 
and in some nonlinear evolution equations, The 
Fifteenth Dean Jacqueline B. Lewis Memorial 
Lectures, University Lectures Series, 22, 2001. 

[12] M. Nikolova, A variational approach to remove 
outliers and impulse noise, Journal of Math. 
Imaging and Vision, 2004, 20(1-2), pp. 99-120. 

[13] L. Rudin, S. Osher and E. Fatemi, Nonlinear total 
variation based noise removal algorithms, Physica 
D, 1992, 60, pp. 259-268. 

[14] L. Vese and S. Osher, Modeling textures with total 
variation minimization and oscillating patterns in 
image processing, Journal of Scientific Computing, 
2003, 19(1-3), pp. 553-572. 

[15] L. Vese and S. Osher, Image denoising and 
decomposition with total variation minimization and 
oscillatory functions, Journal of Mathematical 
Imaging and Vision, 2004, 20(1/2), pp. 7-18. 

 
Ruihua Liu received his BSc degree in Mathematics 
from the Beijing Jiaotong University in 1999, his MSc 
degree in Mathematics from the South West China 
Normal University in 2005, and his PhD degree in 
Mathematics from the East China Normal University in 
2008. He was a teacher in Wuhan University of Science 
& Technology from 1999 to 2002, and worked in 
Chongqing University of Technology from 2008. 
Currently, He is a post-doctoral in CASIA, and works in 
Beijing ViSystem Co., LTD. His research interests are 
image processing based on PDE’s methods and 3DMM 
problems. 
 

 


