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Abstract— Segmentation of brain from magnetic 

resonance (MR) images has important applications in 

neuroimaging, in particular it facilitates in extracting 

different brain tissues such as cerebrospinal fluids, 

white matter and gray matter. That helps in determining 

the volume of the tissues in three-dimensional brain MR 

images, which yields in analyzing many neural 

disorders such as epilepsy and Alzheimer disease.  The 
Fisher information is a measure of the fluctuations in 

the observations. In a sense, the Fisher information of 

an image specifies the quality of the image.  In this 

paper, we developed a new thresholding method using 

the Fisher information measure and intensity contrast to 

segment medical images. It is the weighted sum of the 

Fisher information measure and intensity contrast 

between the object and background.  This technique is a 

powerful method for noisy image segmentation. The 

method applied on a normal MR brain images and a 

glioma MR brain images.  Experimental results show 

that the use of the Fisher information effectively 

segmented MR brain images. 

 
Index Terms— Thresholding; Magnetic resonance 

images; Medical image; Histogram; Fisher information 

measure; Entropy 
 

I. INTRODUCTION 

The segmentation of Brain MR images to the 

different tissue such as white matter, gray matter and 

cerebrospinal fluid, is a topic of great importance and 

much research.  MR brain images are widely used not 

only for detecting tissue deformities such as cancer and 

injuries but also for studying brain pathology [1]. In 

addition, many neurological diseases and conditions 

alter the normal volume and regional distribution of 

brain parenchyma (Gray and white matter), 

cerebrospinal fluid. Such abnormalities are commonly 

related to the conditions of hydrocephalus, cystic 

formation, brain atrophy and tumor growth.  Manual 

segmentation of MR images is difficult, time 

consuming and costly. Errors can occur due to poor 

hand-eye coordination, low tissue contrast, unclear 

tissue boundaries caused by partial volumes and 

operator interpretation. Therefore, a highly accurate and 

robust tissue segmentation technique that provides 

systematic quantitative analysis of tissue volumes in 

brain MR images is became an important tool in many 
studies of neurodegenerative diseases. Extensive 

research has been already conducted to introduce new 

and more robust thresholding techniques [2]. 

Histogram-based thresholding is commonly known as a 

very popular tool in image segmentation. Here, the 

objective is to determine an efficient threshold for bi-

level thresholding.   

Image thresholding, which is a popular technique for 

image segmentation, is also regarded as an analytic 

image representation method [3].  It is computationally 

simpler than other existing algorithms, such as 
boundary detection [4, 5] or region dependent 

techniques [6, 7].   Its aim is to find an appropriate 

threshold for separating the object of interest from the 

background. The output of a thresholding process is a 

binary image where all pixels with gray levels higher 

than the determined threshold are classified as object 

and the rest of pixels are assigned to background, or 

vice versa. 

Many approaches, including comprehensive 

overviews and comparative studies of image 

thresholding can be found in [8, 9, 10, 11].  Among 

these approaches, three of the most popular are Otsu's 
method [12], the minimum-error method [13, 14] and 

entropy based threshold method.  Otsu method [12] can 

determine the threshold for image segmentation 

dynamically by maximizing the separability measures 

of the classes according to the image gray-level 

histogram.  The minimum-error method ranked as the 

best in a comprehensive survey of image thresholding 

conducted by [2].  
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Qiao et al. [15] analyzed the limitation of 

thresholding methods based on within-class variance for 

images whose background and object have very 

different sizes and suggested a thresholding criterion 

based on the convex combination of within class 

variance and intensity contrast between the object and 

background.  Recently Li Z, et al. [16] introduced 

another improvement for thresholding based on within-

class variance and proposed a novel statistical criterion 

for threshold selection that takes class variance sum and 

variance discrepancy into account at the same time.  

Gamil and Abo-Eleneen proposed a thresholding 

method based on histogram projection by Fisher 
discriminate. This method is taken intensity contrast 

and within class variance into account at the same time 

[17]. 

Works on thresholding have utilized information 

theoretical approach in threshold's images.  It constructs 

an optimization criterion based on the concept of 

entropy [18-20]. Sezgin and Sankur categorized the 

thresholding methods in six groups according to the 

information theory are exploiting [2]. One of these 

categories uses entropy as thresholding criteria.  

Generally these methods subdivided into entropic 

thresholding [21-24], cross-entropic thresholding [26] 
and fuzzy entropic thresholding [27].  

The distribution of intensities in MR brain images is 

usually very complex, therefore, determining a 

threshold is difficult and most of the above mentioned 

thresholding methods fail. Mostly, thresholding method 

is combined with other methods [28]. The region 

growing method extends thresholding by combining it 

with connectivity. This technique needs seed for each 

region and has the same problem of thresholding for 

determining suitable threshold for homogeneity [29].  

Clustering is the most popular method for medical 
image segmentation, with fuzzy c-means clustering and 

expectation– maximization algorithms being the typical 

methods, the applications of the expectation– 

maximization algorithm to brain image segmentation is 

reported in [30, 31]. A common disadvantage of 

expectation– maximization algorithms is that it is a 

supervised method and depends on the prior model and 

its parameters beside; the intensity distribution of brain 

images is modeled as a normal distribution, which is 

not the fact for noisy images. The fuzzy c-means 

clustering algorithm [32, 33] only considers intensity 

of image and in noisy images, intensity is not trustful. 

As a result, this algorithm does not produce a good 

result in noisy and in homogeneity images  [32].  It has 

the drawback of increase in sensitivity of the 

membership function to noise. If MR image contains 

noise or is affected by artifacts, their presence can 
change the pixel intensities, which will result in an 

improper segmentation. 

A second measure of disorder, besides entropy, exists 

which is called Fisher information measure (FI) [34]. 

The importance of this second type of ―entropy‖ for the 

mathematical form of the laws of physics [34].  The 

Fisher information is a measure of the fluctuations in 

the observations. In a sense, the Fisher information of 

an image specifies the quality of the image. The images 

contain a certain amount of Fisher information by 

which the highest precision, that is, the lowest variance, 

with which the structure parameters from these images 

can be estimated is established. 

In this paper, a new thresholding method using the FI 
measure incorporate intensity contrast to segment 

medical images. It is the weighted sum of the Fisher 

information measure and intensity contrast between the 

object and background of the FI measure and intensity 

contrast between the object and background. The 

intensity contrast defined as the difference in mean 

intensities of the background and object.   In this 

criterion, the FI within the two classes measures the 

intensity homogeneity within the object and background 

while intensity contrast captures the intensity difference 

between them. This method is useful in extracting 

objects of interest in images especially medical ones. 

Tests against a variety of brain MR images where the 

contrast is low or there is an overlap between modes, 

show that objects extracted successfully. The rest of this 

paper organized as follows: The Fisher information 

measure, related measures and the proposed threshold 
algorithm are presented in section II, the experimental 

results are presented in section III  and the conclusions 

are presented in section 4. 

II. FISHER INFORMATION MEASURE & RELATED 

MEASURES 

In this section, the FI measure concept and related 

measures are reviewed. A new thresholding objective 

function and the corresponding algorithm are then 

proposed. 

A. Fisher Information Measure 

In statistics and information theory, the FI measure is 

thought of as the amount of information that an 

observable random variable carries about an 

unobservable parameter upon which the probability 

distribution of X depends.  The Fisher information 

)(F can be written as [35] 
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where );( xp is the probability density (mass) 

function for the random variable X. 

The FI measure has applications in finding the 

variance of an estimator through the Cramer–Rao 

inequality, which states that the mean squared error of 

any estimate of a deterministic parameter has a lower 

bound known as Cramer–Rao lower bound [36]. 

Specifically, an intuitive interpretation behind the 

Fisher information is that it serves as a quantity, which 

determines the information of an observation X 

conveys with respect to estimating the parameter .  

Let the class of ‗‗unbiased‘‘ estimates, obeying the 

http://statintquant.net/siq/html/soqweb/soqwebli1.html#Xfisher:statistical*1
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variance of such than estimator )ˆvar(  obeys a 

relation [36]. 
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The special case of translation families deserves 

special mention. These are mono parametric families of 

distribution of the form )( xf  which are known 

up to the shift parameter  All members of the family 

possess identical shape, and here FI measure adopts the 

appearance 
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This form of FI measure constitute the main 

ingredient of a powerful variational principal devised by 

Frieden [28], that gives rise to a substantial portion of 

the physics. In the consideration that follow we shall 

restrict ourselves to  the form (3) of Fisher information 

measure. 

B. Fisher Information Measure Versus Global 

Measures 

Let X be a physical system that takes on a finite or 

accountably infinite number N of values that are 

characterized by the probability density 

ipi , where
ip is the probability of 

ix and ,),(  baxi
is assumed to be 

normalized to unity so that  

N

i ip
1

. In this case, 

X can be specified by a probability vector, 

}....,,{ ,21 NpppP   Its distribution over 

the interval (a; b) can be studied by using the following 

complementary spreading and information-theoretic 

measures: the FI measure [34] and the Shannon entropy 

[37].  The FI measure [34, 38, 39] and the Shannon 

entropy [36] of X are defined by the following 

respectively.  
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which follows from a suitable discretization of (2) and  
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These two quantities, which have a qualitatively 

different character, quantitatively measure the spreading 

of the random variable X in different and 

complementary ways. Shannon entropy H(X) uses 

uncertainty as a measure to describe the information 

that is contained in X. The sum in Eq. (5) can be taken 

in any order. Graphically, this scenario means that, if 

the curve )( nxp undergoes a rearrangement of its 

points (
nx , )( nxp ), although the shape of the curve 

will drastically change the value of H remains constant. 

H is then said to be a global measure of the behavior 

of )( nxp . tails is not relevant, of course, when the tails 

fall of exponentially, which  is the case for Gaussian or 

quasi-Gaussian distributions.  

In contrast the Shannon entropy, the FI measure is 

very sensitive to the difference in the density at adjacent 

points of the variable. Indeed, when the density )( nxp  

undergoes a rearrangement of points
nx , although the 

shape of the density can change drastically the value of 

the entropy power remains constant according to Eq. 

(5), however the local slope 

values )()( 1 nn xpxp 
change drastically and thus, 

the sum in Eq. (4), which defines the Fisher 
information, will also change substantially [34, 39].  

The preceding discussion implies that the analytical 

properties of the Shannon entropy and the FI measures 

are quite different. Thus, whereas Shannon entropy is a 

global measure of smoothness in )(xp , FI is a local 

measure. Hence, when extremized through the variation 

of )(xp , Fisher‘s form gives a differential equation 

whereas Shannon‘s form always gives directly the same 

form of solution, an exponential function [34]. 

Therefore, if one of the two measures Shannon entropy 

(global) or FI (local) is to be used in a variation 

principle in order to derive the physical law )(xp  

describing a general scenario, a preference is given to 

the local measure, FI [34, 36]. For different applications 

of FI measure and more comparisons between the FI 

measure and information-theoretic measures we refer 

the reader to the book by Frieden [34]. 

C. The Proposed Threshold Algorithm 

Let I denote a gray-scale image with L gray 

levels ]1...,,1,0[ L . The number of pixels with 

gray level i is denoted by
in and the total number of 

pixels by
110 ....  LnnnN . The 

probability of gray level i appeared in the image is 

defined as: 







1

0

.1,0,
L

i

ii
i

i pp
N

n
p

 

Suppose the pixels in the image are divided into two 

classes A and B by a gray level, t. A is the set of 

pixels with levels ]...,,1,0[ t , and the rest of pixels 

belong to .B A and B normally correspond to the 

object class and the back ground one, or vice versa. 

Then the probabilities of the two classes are given by 
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The within-class variance, can be defined Otsu‘s 

method [12] 
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Otsu selects a threshold t that minimizes the within-

class variance 2

w ; that is 

}.min{arg 2

1 wLtt                               (7) 

Kapur [23] has been employed the entropy criterion 

method in determining whether the optimal 

thresholding can provide a histogram based image 

segmentation with satisfactory desired characteristics. It 

selects a threshold t that maximizes the function.  
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The new method proposes FI as an optimality 

criterion as the following.  The priori Fisher information 

for each distribution defined as. 
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The Fisher information )(tF is parametrically 

dependent upon the threshold value t for the foreground 

and background. We define the fisher information 

within the two classes as the following.  

))()(()( 21 tFwtFwtF BA                                    (9) 

We propose a new criterion that combines the FI 
within the two classes and the intensity contrast, 

,))()(()()1(),( 2

21 tmtmtFtJ  
 

where )(1 tm and )(2 tm are mean intensities of 

the object and background, respectively, )(tF is 

defined in Eq. (9).    In this criterion, the FI within the 

two classes measures the intensity homogeneity within 

the object and background while intensity contrast 

captures the intensity difference between them. The 

parameter  is a weight that balances their 

contributions. When ,1 the new criterion 

degenerates to the FI within the two classes. If 0 , 

thresholding is determined only by the intensity 

contrast, which may yield the threshold at the largest 

intensity of the image. Therefore, the weight should be 

in the range of ]0, 1[. The optimum threshold 
*t is 

selected by maximizing the new criterion, 

).,(max),( * tJtJ
t

                  (10) 

Eq. (10) actually tries to increase the Fisher 
information within two classes and decrease the 

intensity contrast simultaneously. In this way, the 

intensity contrast becomes an explicit factor for 

determining the optimum threshold. 

D. Algorithm  

The proposed algorithm is a simple and effective 
thresholding method. It defines a new criterion based on 

the FI and intensity contrast corresponding to two 

thresholded classes, and determines the optimal 

threshold by maximizing the criterion. For the above 

image I with L gray levels, the process determining the 

optimal threshold *t  in our method is as follows: 

(1) Initialize Max  to be infinite and 0t , where 

Max  is the maximum value of  ),,( tJ  t is the 

temporal gray level. 

 

(2) Repeat steps 3–4, L times. 
 

(3) Compute the value of the criterion 

),( tJ  corresponding to gray level t by Eq. (10). 

 

(4) Compare ),( tJ  and Max , if 

MaxtJ ),( , then 

tttJMax  *),,( and 1 tt ; else, 

1 tt . 
 

III. EXPERIMENTAL RESULTS 

In this experiment, we implement threshold 

optimization method based on the Fisher information 
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measure. To evaluate the performance of the proposed 

method, we apply it to a variety of MR brain images 

including normal axial, T2-weighted brain MRI slices, 

T1-weighted brain MR slices and glioma MR brain 

images. All of the images used are 256×256 and have 8-

bit (i.e. 256 gray levels) types. The results from the 

proposed method compare with the most commonly 

used methods in the literature, namely Otsu‘s method 

[14], Kapur‘s method [22], MET [13]. 

A. Normal MR Images 

The first set of experiments are related to the 

segmentation of normal MR brain images. MR brain 

images contain the lateral ventricles, the 

interhemispheric fissure, Cortex, the gray matter and the 

white matter. The MR brain images segmentation 

facilitate in extracting these different brain tissues that 

helps in determining the volume of the tissues in three-

dimensional brain MR image, which yields in analyzing 

many neural disorders such as epilepsy and Alzheimer 

disease.  In this study, a variety of MR brain images 

including T2-weighted brain MR slices and T1-

weighted brain MRI slices.   The original slices are 

displayed in Figs. 1-8 (a).  The results yielded by the 

proposed method compared with the most commonly 
used methods in literature, Otsu‘s method [12] Kapur‘s 

method [23] and MET method [13]. Figs. 1-8 (f), show 

that the cortex and the ventricles are well extracted by 

the proposed method (i.e. different brain tissues) and 

showed its details in a clear way. Moreover, as can be 

seen in the segmented images in Figs. 1-8 (f), lesion or 

abnormal mass is not identified, and the ventricular 

system is not extensive and it is a median. Therefore, 

the image is a normal brain MR images. Otsu‘s method 

(Figs. 1-8 (c)) extracted only the contour of the brain, 

the result of Kapur‘s method and MET [13]are the 

worst (Figs. 1-8 (d) and (e)) All gray matter and white 

matter are misclassified, which is an unacceptable result. 
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Fig.1. axial, T2-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method  with α  = 0.04. 
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Fig.2. axial, T2-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method  with α  = 0.025. 
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Fig.3. axial, T2-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.65. 
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Fig.4. axial, T2-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.007. 
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Fig.5. axial, T2-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.025. 
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Fig.6   T1-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.02. 
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Fig.7   T1-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.0001. 
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Fig.8   T1-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.0001. 

B. Abnormal MR Images 

1) In this experiment two MR brain slices are used, 
one is sane MR brain image and the other is 

pathological MR brain image.  The MR slices are 

displayed in Fig 9 (a) and Fig 10 (a).  In this case, 

the goal of the segmentation is to quickly detect 

the different spaces and the white matter 

surrounding the ventricular space.  The results 

yielded by the proposed method compared with, 

Otsu‘s method [12] Kapur‘s method [23] and 

MET [13]. Fig 9 (f) and Fig 10 (f), show that the 

cortex and the ventricles are well extracted by the 

proposed method. From these Figs. we notice that 

in the pathologic case , the modification of the size 

of the ventricle due to the atrophy is well extra 
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Fig.9  axial, T2-weighted MRI slice of human brain: (a) original sane, 

(b) histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.033. 
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Fig. 10 axial, T2-weighted MRI slice of human brain: (a) original 

pathology, (b) histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) 

The proposed method with α  = 0.79. 

2) In this experiment three MR brain images with 

tumor (glioma ) are used [40].  The original MR 

brain images with tumor are displayed in Figs 11-

12 (a).  Figs 11 to 12 (c, d, e, f ) demonstrate the 

results of segmentation of each images yielded by 

the proposed method, Otsu‘s method [12]  Kapur‘s 

method [23] and MET [13].  Figs. 11-12 (f), show 

that the proposed method segmented MR brain 

images with tumor well and showed its details in a 

clear way. 
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Fig.11   T2-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.0001. 
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Fig.12   T2-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.0001. 
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Fig.13   T2-weighted MRI slice of human brain: (a) original, (b) 

histogram, (c) Otsu‘smethod (d) Kapur, (e) MET  (f) The proposed 

method with α  = 0.0001. 

IV. CONCLUSION AND PROSPECTS 

Medical images generally contain unknown noise and 

considerable uncertainty, and therefore clinically 

acceptable segmentation performance is difficult to 

achieve. Probably, we will never find a super algorithm 
that can be successfully applied to all kinds of images. 

Therefore, it is appropriate to look for new techniques. 

The FI is a measure of the state of disorder of a system 

or phenomenon that makes it plays an important role in 

a physical theory.  We have developed a simple but 

effective criterion for image segmentation that employs 

the combination between the FI measure and the 

intensity contrast. The underlying idea of the proposed 

method is to maximize the criterion.  We applied the 

criterion on a normal MRI brain image and on a glioma 

MRI brain image. The results show that the method 

segments not only brain MR image without noise but 

also those with noise.  The segmented normal and 
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glioma MRI brain images can be analyzed for diagnosis 

purpose. The proposed method has the following 

advantages: 

1- It characterized by its nonparametric and 

unsupervised nature of threshold selection.  

2- The implementation of the method is very simple.  
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