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Abstract— The objective of this article was to study the 

effects of Chi meditation on heart rate variability (HRV). 

For this purpose, the statistical and spectral measures of 

HRV from the RR intervals were analyzed. In addition, 

it is concerned with finding adequate Auto-Regressive 

Moving Average (ARMA) model orders for spectral 

analysis of the time series formed from RR intervals. 

Therefore, Akaike’s Final Prediction Error (FPE) was 

taken as the base for choosing the model order. The 

results showed that overall the model order chosen most 

frequently for FPE was p = 8 for before meditation and p 

= 5 for during meditation. The results suggested that 

variety of orders in HRV models upon different 

psychological states could be due to some differences in 

intrinsic properties of the system. 
  

Index Terms— Heart rate variability, Meditation, Model 

order estimation, Spectral analysis, Time domain 

analysis 

 

I. INTRODUCTION  

Meditation refers to a family of mental training 

practices that is designed to familiarize the practitioner 

with specific types of mental processes [1]. Meditation 

is a physiological state of demonstrated reduced 
metabolic activity – different from sleep – that elicits 

physical and mental relaxation and it is reported to 

enhance psychological balance and emotional stability 

[2]. In addition, meditation is recommended as non-

medicated treatment for some psychological disorders 

because, unlike medication, meditation has no side 

effects. 

A large number of studies aimed at studying observed 

effects of meditation on heart rate signals [3-7]. Heart 

rate variability (HRV) can be described as variation of 

R-R intervals with respect to the time or beat number. 

HRV that is a nonstationary signal gives information 
about parasympathetic and sympathetic activity of 

autonomic nervous system (ANS) [8-9]. 

Previously [10-11], power spectral density (PSD) 

distribution of HRV signals was integrated in the very 

low-frequency band (VLF), (0-0.03 Hz), the low-

frequency band (LF) (0.04–0.15 Hz) and the high-

frequency band (HF) (0.15–0.4 Hz). It has shown that 

VLF caused by thermoregulation and humoral factors; 

LF comes from baroreflex-related heart rate variability; 

and the HF arises from the respiratory sinus arrhythmia 

(RSA). 

Eigenvector methods are used for estimating 

frequencies and powers of signals from noisecorrupted 

measurements. These methods are based on an eigen-

decomposition of the correlation matrix of the 

noisecorrupted signal. Even when the signal-to-noise 

ratio (SNR) is low, the eigenvector methods produce 

frequency spectra of high resolution. These methods are 

best suited to signals that can be assumed to be 
composed of several specific sinusoids buried in noise 

[12-13]. In this study, some eigenvector methods (e.g. 

pisarenko, multiple signal classification (MUSIC), and 

minimum-norm) were selected to generate the PSD 

estimates. In addition, the Autoregressive (AR), ML-

Capon, Periodogram, methods are employed to 

determine PSDs of heart rate signals during two states: 

before meditation and during meditation. 

A number of spectral estimation techniques have 

recently been developed and have been compared to the 

more standard fast fourier transform (FFT) method, for 
biomedical signal processing [13-16]. FFT-based power 

spectrum estimation methods are known as classical 

methods and have been widely studied in the literature 

[17]. Autoregressive moving average (ARMA) and AR 

methods are model-based (parametric) methods. 

ARMA model is the most general and important tool 

of modeling system. However, the main difficulty to use 

this method is the estimation of the optimum model 

order [18–20]. Accordingly, some algorithms were 

proposed to solve this problem, such as the final 

prediction error (FPE) and the Akaike’s information 
criterion [21,22], the Parzen’s criterion of autoregressive 

transfer function [23], and the Rissanen’s minimum 

description length method (MDL) [24]. 

In this study, The RR interval data were analyzed in 

terms of HRV parameters both in time domain and 

frequency domain. In addition, it is concerned with 

finding adequate ARMA model orders for spectral 

analysis of short segments of the time series formed 

from RR intervals. Jones [25] noted that Akaike’s final 

prediction error (FPE) and Akaike’s information 
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criterion (AIC) tend to predict identical model orders for 

the same frames of measured data. Therefore, in this 

article FPE is applied to estimate the identical model 

order. 

The outline of current study is as follows. In the next 
section, the set of HRV signals used in this study is 

briefly described. Then, the computation of the ARMA 

model and the FPE is explained. Finally, the results of 

present study are shown and the study is concluded. 

II. BACKGROUND  

A.  Data selection 

In this study, we used heart rate signals from 

Physionet [26], of subjects prior and during meditation. 

These two types of signals are shown in Fig. 1. Subjects 

were considered to be at an advanced level of meditation 

training. The Chi meditators [26] were all graduate and 

post-doctoral students. They were also relative novices 

in their practice of Chi meditation, most of them having 

begun their meditation practice about 1–3 months before 

this study. The subjects were in good general health and 

did not follow any specific exercise routines.  

The eight Chi meditators, 5 women and 3 men (age 

range 26–35, mean 29 years), wore a Holter recorder for 

about 10 hours during which time they went about their 

ordinary daily activities. At approximately 5 hours into 

the recording each of them practiced one hour of 

meditation. Meditation beginning and ending times were 

delineated with event marks. 

During these sessions, the Chi meditators sat quietly, 

listening to the taped guidance of the Master. The 

meditators were instructed to breathe spontaneously 

while visualizing the opening and closing of a perfect 

lotus in the stomach. The meditation session lasted about 

one hour. The sampling rate was 360 Hz. Analysis was 

performed offline and meditation beginning and ending 

times were delineated with event marks [26]. 

 

 

Figure 1.  Heart rate variability (record C1): (top) before meditation 

(bottom) during meditation. 

B. Time Domain Analysis  

Consider two random variables, x and y that the joint 

probability function of which is given. Let a new 

random variable, z=f(x, y), be a single valued function of 

these two variables. The expectation, E{z}, is defined 

[27] by: 

    







 dxdyyxpyxfyxfEzE ,,)},({}{           (1) 

The expectation is also known as the statistical 

average or mean. If x and y are discrete such that x gets 

the values xi, i=1, 2, …, I and y gets yj, j=1, 2, …, J, then 

the expectation is: 
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It is easy to show that the expectation is a linear 

operator. For example, consider the function z=xn. The 

expectation of xn is known as the nth moment of x: 
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The first moment of x, m=E{x}, is called the mean, 
which is similarly defined as (4): 

)}({ txE                                                                    (4)  

The second central moment has a special importance; 

it is called the variance and is denoted by 2. 
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The skewness and kurtosis are defined as (6) and (7), 

respectively: 
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C. Power Spectrum 

Let C denote the maxlag by maxlag matrix, with 

entries, C(i,j) = C4y(i – j,0,0) or C(i,j) = C2y(i – j). Also, 

let C = VSVdenote the eigen decomposition, where S is 

the diagonal matrix of eigenvalues, (k), and V is the 

matrix of eigenvectors, vk, k = 1, . . ., maxlag. Let 

]))1(maxexp(,),exp(,1[)(   lagjje            (8) 

denote the FFT vector; and p denote the chosen order 

(the parameter p order). Then, the power spectral 

estimates are obtained as follows: 
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where,
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where (k) is the Kronecker delta function. 

The Pisarenko method proposed by Pisarenko [28] is 

particularly useful for estimating PSD which contains 

sharp peaks at the expected frequencies. The polynomial 
A(f) which contains zeros on the unit circle can then be 

used to estimate the PSD. 
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where A(f) represents the desired polynomial, ak 

represents coefficients of the desired polynomial, and m 

represents the order of the eigen filter, A(f). 

The polynomial can also be expressed in terms of the 

autocorrelation matrix R of the input signal. Assuming 

that the noise is white: 
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                            (12) 

where x(n) is observed signal, S represents the signal 

direction matrix of dimension (m+1)×L and L is the 

dimension of the signal subspace, R is the 

autocorrelation matrix of dimension (m+1)×(m+1), P is 

the signal power matrix of dimension (L)×(L),  σν2 

represents the noise power, ∗  represents the complex 

conjugate, I is the identity matrix, # represents the 

complex conjugate transposed, T shows the matrix 

transposed. S, the signal direction matrix is expressed as 

][ 21 LSwSwSwS                                                   (13) 

where w1, w2, … , wL represent the signal frequencies: 
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In practical applications, it is common to construct the 

estimated autocorrelation matrix R̂  from the 
autocorrelation lags: 
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where k is the autocorrelation lag index and N is the 

number of the signal samples. Then, the estimated 

autocorrelation matrix becomes 
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Multiplying by the eigenvector of the autocorrelation 

matrix a, (14) can be rewritten as 

avaSPSaR 2#ˆ                                                      (17) 

where a represents the eigenvector of the estimated 

autocorrelation matrix R̂  and a is expressed as 

T
maaaa ][ 10                                                   (18) 

The Pisarenko method uses only the eigenvector 

corresponding to the minimum eigenvalue to construct 

the desired polynomial (11) and to calculate the 

spectrum [28]. Thus, the Pisarenko method determines a 

such that S#a=0. The eigenvector a can then be 

considered to lie in the noise subspace, and (17) reduces 

to 

avaR 2ˆ                                                                     (19) 

under the constraint a#a =1 where σν2 is the noise power 

which in the Pisarenko method is the same as the 

minimum eigenvalue corresponding to the eigenvector a. 

In principle, under the assumption of white noise all 

noise subspace eigenvalues should be equal, 

2
21   K                                              (20) 

where λi represents the noise subspace eigenvalues, i = 1, 

2, … , K and K represents the dimension of the noise 

subspace. 

From the eigenvector corresponding to the minimum 

eigenvalue, the Pisarenko method determines the signal 

PSD from the desired polynomial: 

2
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The order m of the autocorrelation matrix R̂  should 
be greater than, or equal to, the number of sinusoids L 

contained in the signal. However, this method, 

employing only the eigenvector corresponding to the 

minimum eigenvalue, may produce spurious zeros 

[12,28,29]. 

The multiple signal classification (MUSIC) method is 

also a noise subspace frequency estimator. The MUSIC 

method proposed by Schmidt [30] eliminates the effects 

of spurious zeros by using the averaged spectra of all of 

the eigenvectors corresponding to the noise subspace. 

The resultant PSD is determined from 
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where K represents the dimension of noise subspace, Ai(f) 

represents the desired polynomial that corresponds to all 

the eigenvectors of the noise subspace [12,28-30]. 

In addition to the Pisarenko and MUSIC methods, the 

Minimum-Norm method was investigated [12,23,29,31]. 

In order to differentiate spurious zeros from real zeros, 

the Minimum-Norm method forces spurious zeros inside 
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the unit circle and calculates a desired noise subspace 

vector a from either the noise or signal subspace 

eigenvectors. Thus, while the Pisarenko method uses 

only the noise subspace eigenvector corresponding to 

the minimum eigenvalue, the Minimum-Norm method 

uses a linear combination of all noise subspace 

eigenvectors. Using the Minimum-Norm method, the 

polynomial A(f) is written as [31] 
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where bk and ck are the coefficients of the two 

polynomial components of A(f). The polynomial A1(f) 

has L desired zeros on the unit circle while A2(f) has m − 

L spurious zeros. In order to force the zeros of A2(f) into 

the unit circle, A2(f) must be a minimum phase 

polynomial. The primary motivation behind the 

Minimum-Norm method is to construct A2(f) such that 
the value Q, defined below, will be minimum. This can 

be achieved by constructing A2(f) as a linear predictive 

filter [31]: 
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The polynomial A(f) can be estimated from either the 

signal subspace eigenvectors Es or from the noise 

subspace eigenvectors En. These eigenvectors can be 

expressed as [32] 
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where s and n vectors consist of the first element of the 

signal and the noise subspace eigenvectors. 
'
sE and 

'
nE have the same elements of Es and En, respectively, 

but with the first row deleted [32]. 

The desired eigenvector a can be constructed from 

either signal subspace eigenvectors or noise subspace 

eigenvectors: 
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The resulting eigenvector a has the desired zeros on 

the unit circle and the spurious zeros inside the unit 

circle: 

T
maaaa ][ 10                                                   (31) 

The Minimum-Norm PSD can be estimated from a as 

follows [12,29,31]: 
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where K represents the dimension of the noise subspace. 

The AR power spectrum is obtained as follows: First, 

a rank approximation of the matrix C is obtained, as 

VSVC  ˆˆ , where Ŝ  is obtained from S by setting (k) 

= 0, k = p + 1, . . ., M. The AR parameter vector is then 

obtained as the solution to 0ˆ aC ; the method in [33] is 

used, and the solution is forced to have unity modulus. 

The ML (Capon) solution is given by, 
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Let V denote the matrix of eigenvectors corresponding 

to the p largest eigenvalues of R. Partition matrix V as, 
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The AR parameter vector for the minimum-norm 

solution is given by (35). 
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The power spectrum is given by (36). 

2

)exp()(1)( 




p

ok

jkkaS                                   (36) 

Periodogram can be defined as finding to discrete 

fourier transform (DFT) of datasets, taking the 

magnitude squared of the results and estimating the PSD 

[34]. This definition is presented mathematically as: 
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where L is length of xL[n] signal and fs is sampling 

frequency. In practically, periodograms perform the N-

point PSD estimate and is defined as: 
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D. Autoregressive moving Average (ARMA) Model  

So far we have looked at nonparametric estimators. 

Parametric estimators are often useful, either because 

they lead to parsimonious estimates, or because the 

underlying physics of the problem suggest a parametric 

model. 

The basic idea is that if x(n) depends upon a finite set 

of parameters, , then all of its statistics can be 

expressed in terms of . For example, we obtain 

parametric estimates of the power spectrum by first 

estimating , and then evaluating Pxx(f|). 

The specific form we postulate for the relationship 

between and the sequence x(n) constitutes a model. A 

popular model in time-series analysis is the Auto-

Regressive Moving-Average (ARMA) model, 
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where u(n) is assumed to be a sequence, with variance 
2
u . The Auto-Regressive (AR) polynomial is defined 

by, 
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where a(0) = 1. A(z) is assumed to have all its roots 

inside the unit circle, that is, A(zo) = 0 |zo| < 1; this 

condition is also referred to as the minimum-phase or 

causal and stable condition. In general, no restrictions 

need to be placed on the zeros of the Moving-Average 

(MA) polynomial, 
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however, B(z) is usually assumed to be minimum-phase. 

The minimum-phase assumption is usually not true for 

discrete-time processes which are obtained by sampling 

a continuous-time process. 

The power-spectrum of the ARMA process is given 

by (44), 
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Note that the power spectrum does not retain any 

phase information about the transfer function H(z) = 

B(z)/A(z). Since we do not have access to the sequence 

u(n), one either assumes that u(n) has unit variance, or 

that b(0) = 1. Instead of estimating Pxx()[–
1/2,1/2], as in the nonparametric approach, we have to 

estimate only (p + q + 1) parameters, namely, 
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2
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Let h(n) denote the impulse response of the model in 

(41); hence, H(z) = B(z)/A(z). The AR and MA 

parameters are related to the impulse response (IR) 

through, 
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In practice, the observed process is noisy, that is, 

     nwnxny                                                          (46) 

where process w(n) is additive colored Gaussian noise; 

the color of the noise is usually not known. 

Given the noisy observed data, y(n), we want to 

estimate the a(k)’s and the b(k)’s in (41). We assume 

that the model orders p and q are known. The 

determination of the model orders p and q is an 

important issue (routines AR order and MA order 

implement AR and MA model order determination 

techniques). In general, it is better to overestimate model 

orders rather than to underestimate them (however, 

specific implementations or algorithms may suffer from 

zero-divided-by-zero type problems). 

E)  FPE criterion 

A different way of identifying ARMA models is by 

trial and error and use of a goodness-of-fit statistic. In 

this approach, a suite of candidate models are fit, and 

goodness-of-fit statistics are computed that penalize 

appropriately for excessive complexity. Final Prediction 

Error (FPE) and Akaike’s Information Theoretic 
Criterion (AIC) are two closely related alternative 

statistical measures of goodness-of-fit of an ARMA(p,q) 

model. Goodness of fit might be expected to be 

measured by some function of the variance of the model 

residuals: the fit improves as the residuals become 

smaller. Both the FPE and AIC are functions of the 

variance of residuals. Another factor that must be 

considered; however, is the number of estimated 

parameters. This is so because by including enough 

parameters we can force a model to perfectly fit any data 

set. Measures of goodness of fit must therefore 

compensate for the artificial improvement in fit that 

comes from increasing complexity of model structure. 
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Consider the sequence {Sk} k=0, 1, …,N-1 with its 

linear prediction of order p~ given by equation (47). Its 

prediction error is Ep given by [27] 
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It can be shown that the expectation of pE ~ as N 

approaches infinity is  
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Consider now another sequence {yk} infinitely long 

with the same statistical properties as {S(k)}. The 

predictor for this sequence will be  
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1ˆˆ                                                         (50) 

where pja j
~,...,2,1  are functions of {S(k)}. The 

variance of the residuals tends asymptotically to 

   211~1 GNp   as N approaches infinity. Hence, it is 

logical to estimate the FPE of the predictor (Equation 

(50)) by 

  21~
1~ G

N

p
pFPE 







 
                                              (51) 

Where G2 is the variance of the input sequence 

{GU(k)}. 

Since G2 is not known, its estimate from equation (49) 

can be used such that 

  pp E
pN

pN
E

N

p
N

p

pFPE ~~
1~
1~

1~
1

1~
1

~






























                   (52) 

And the optimal model order p~ is given by 

minimizing Equation (52). 

   pFPEMinpFPE
p

~~
~

                                               (53) 

III. RESULTS 

Heart rate signals before and during meditation, are 
shown in Fig. 1. Obviously, the amplitude and frequency 

of heart rate signals are affected by meditation. 

According to Fig. 1, during meditation signals become 

more periodic and their chaotic behavior is decreased. 

The mean of heart rate signals also decreased during 

meditation. 

Fig. 2 (a) and Fig. 2 (b), show the data and the 

histogram before and during meditation, respectively. 

The mean, skewness, and kurtosis of signals in both 

conditions were estimated as shown in Figs. 3 to 5. 

 
(a) 

 
(b) 

Figure 2.  Heart rate variability (record C4) and the histogram: (a) 

before meditation (b) during meditation. 

 

Figure 3.  Mean of heart rate variability before and during meditation.
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Figure 4.  Skewness of heart rate variability before and during 

meditation. 

 

Figure 5.  Kurtosis of heart rate variability before and during 
meditation. 

The (1,1) panel of Fig. 6 displays the singular values 

of the covariance matrix.  

 
(a) 

 
(b) 

Figure 6.  The singular values of the covariance matrix and the power 

spectrum estimations with different methods: (a) before meditation (b) 
during meditation 

The number of harmonics can usually be determined 

by examining the singular value plot. The plot indicates 

that only one singular value is significant.  

The number of dominant frequency components 

reflected by the peaks in the power spectrum.  

According to Fig. 6, there is one peak in the power 

spectrum, corresponds to p=1. The corresponding power 

spectral estimates are shown in the remaining panels of 

Fig. 6: All of the estimates have a strong peak at about 0 

Hz. 

ARMA model of each signal with 10 different orders 

(1–10) were constructed and each data was tested using 

the criterion described above. In other words, the 

Akaike’s Final Prediction Error for each model was 

calculated. Then, the histogram of the optimum model 

order for the data was produced (Fig. 7). 

 
(a) 
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(b) 

Figure 7.  The histogram of model order chosen most frequently for 

FPE (a) before meditation, (b) during meditation. 

According to Fig. 7, it can be seen that overall the 

model order chosen most frequently for FPE was p = 8 

for before meditation and p = 5 for during meditation. 

IV. DISCUSSION 

In this study, we investigate the heart rate variability 

during Chi meditation, in order to study the system 

behavior in different psychological states. The time 

domain and spectral measures of HRV from the R-R 

intervals were analyzed. Then, the HRV measures in 

meditation and rest were compared. Some measures in 
time domain including the mean heart rate and the 

second and third central moment of RR interval data 

were considered. 

The AR, Eigenvector, ML-Capon, Periodogram, 

Pisarenko, MUSIC, and Minimum-Norm methods were 

employed to determine PSDs of heart rate signals during 

two states: before meditation and during meditation. The 

number of harmonics can usually be determined by 

examining the singular value plot (as shown in Fig. 6). 

In all cases, the Pisarenko PSD showed extra peaks as 

compared to PSDs obtained from the other methods. 

Since the Pisarenko method showed tendency to 

generate spurious zeros, the Pisarenko was considered 

inappropriate for HRV signals. The MUSIC method 

eliminates these spurious zeros by averaging the spectra 

from all of the eigenvectors. The MUSIC method is the 

most widely applied in literatures as a result of simple 

computations and high-resolution [35-37]. The 

Minimum-Norm method treats the problem of spurious 

zeros by forcing them inside the unit circle. According 

to statistical analysis, the MUSIC method’s performance 

characteristics have been found to be superior to the 

Minimum-Norm method [38-41]. In PSD analysis, 
periodogram does not provide effective solution because 

of spectral leakage. 

The selection of the model orders in the ARMA 

spectral estimator is a critical subject. Too low order 

results in a smoothed estimate, while too large order 

causes spurious peaks and general statistical instability. 

The ARMA spectral estimator offers the promise of 

higher resolution. When the dimension of the 

autocorrelation matrix is inappropriate and the model 

orders are chosen incorrect, poor spectral estimates are 

obtained by the ARMA model. Heavy biases and/or 

large variabilities may be exhibited. In this study, 

Akaike’s Final Prediction Error [27] was taken as the 

base for choosing the model order. According to the 

results, model order (p) was taken as 8 before meditation 

and 5 during meditation. 

V. CONCLUSION 

The results suggested that variety of orders in HRV 

models upon different psychological states could be due 

to some differences in intrinsic properties of the system. 
In other words, difference in ARMA model order was 

probably caused by individual differences in HRV. 
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