
I.J. Image, Graphics and Signal Processing, 2017, 6, 23-28 
Published Online June 2017 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijigsp.2017.06.03 

Copyright © 2017 MECS                                                        I.J. Image, Graphics and Signal Processing, 2017, 6, 23-28 

Model-based Synthesis Method of Multiple 

Patterns Linear Arrays with the Minimum 

Number of Antenna Elements: A State Space 

Approach 
 

Jianfeng Liu
 1,2

 
1 University of Science and Technology of China, Hefei, China 

Email: jfl@mail.ustc.edu.cn 

 

Jinhong Guo 
2
, Guowei Xu

 2,
Kuncheng Li

2
 

2 State Key Laboratory of 92773 in China, Wenzhou, China 

Email: hello_gjh@sina.com; xgwz_81@163.com;ustc_liu@sina.com 

 

 

Abstract—In this paper, we propose a synthesis method 

for synthesizing the reconfigurable multiple patterns with 

the minimum number of antenna elements based on the 

state space model. The proposed method is to obtain the 

common element locations for the multiple patterns using 

fewer antenna elements within desired performance 

bounds. The proposed approach introduces the state-

space method to represent the multiple patterns and then 

uses the multiple pattern data to construct a combined 

Hankel matrix which is used to estimate the model 

parameters from which the number of elements and the 

common element locations can be extracted. Numerical 

results show the effectiveness of the proposed methods. 

 

Index Terms—Multiple patterns, state space model, 

antenna pattern synthesis, non-uniformly spaced arrays  

 

I.  INTRODUCTION 

Our work is mainly to study the synthesis of a desired 

multiple patterns with as few elements as possible. 

Recently, some non-uniform linear array reconstruction 

techniques are proposed [1-5]. Despite these synthesis 

methods give good performance, when applied to the 

problem of the reconfigurable multiple patterns, those 

methods failed because of the change of the optimal 

element locations with different patterns. In this paper, 

this problem which is solved by the state-space synthesis 

method will be shown. Note that although the method 

proposed by Y. Liu et al. in [3] is the base of our method, 

our method is another implementation which is totally 

different from the above-mentioned method. By using the 

proposed methods, we can use a single antenna array to 

generate two or more radiation patterns, the optimal 

common element locations can be computed for the 

multiple patterns and the minimum number of elements 

can be determined, also the excitations of the multiple 

patterns can be obtained. 

II.  DATA MODEL 

It is assumed that the reconfigurable linear array 

antenna be composed of M identical elements with equal 

spacing d , which can generate multiple patterns by 

changing the element locations and phase. Therefore the 

corresponding array factor is given by   
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where  denotes the wavelength,  is measured from the 

endfire of the linear array antenna, K is the total number 

of the desired pattern, and k

iI denotes the complex 

excitation of the ith element for the kth pattern.  

Defining ( )u cos  and
id di  respectively, then Eq. (1) 

can be rewritten as 
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The array factor is sampled uniformly at N spaced 

points over the observation range ( 1,1)u  , then the 

sampled array factor of the kth pattern is expressed as 
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According to the sampling theorem [1], for the M-

element uniform antenna array with the half wavelength 

spacing, 2 1N M  must be satisfied.  

Generally, 2 4N M M can be required. 

Define
2

i id
N





 , then Eq. (3) can be written as 
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Introduce the parameter m , then Eq. (4) can be also 

written as 
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III.  STATE SPACE REPRESENTATION FOR THE DESIRED 

MULTIPLE PATTERNS 

In this section, we will connect a relationship between 

the state space model and the desired sampled multiple 

patterns. As shown in Eq. (5), the kth sampled array 

pattern can be considered to be a sum of M complex 

exponentials. Such a signal is assumed to be the output of 

a self-generating system. It means that a special ARMA 

model is employed whose poles are all on the unit circle 

and input powers are all 0’s, which is expressed as    
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Here we introduce the state space method to model the 

desired sampled multiple patterns. The state space 

representation for the desired pattern at the mth sampling 

point for the kth pattern is defined as [5,6,7] 
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where ( )k mX  is a 1M   state vector at the mth sampling 

point for the kth pattern and F  is the state transition 

matrix of size M M .From Eq. (7), after some 

manipulations, we have  

 

( ) (0)k m ky m  hF X                              (8) 

 

then the sampled data ( )ky m  is used to form the forward 

Hankel matrix which is written as  
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Generally, the parameter L is chosen 

between 4 / 3N and 6 / 3N . Combining Eq. (8) with Eq. (9), 

then Eq. (9) can be further factorized as follows: 
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where  
T

denotes the matrix transpose. 

 

IV.  THE COMBINED MATRIX STRUCTURE 

Because the solutions for the element positions can not 

be complex numbers, the forward-backward combined 

matrix must be employed. According to Eq. (9), the 

backward Hankel matrix is similarly expressed as 
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Where 
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where *(.) denotes the complex conjugation. Hence the 

combined matrix structure constructed by the forward-

backward Hankel matrix is written as 

 
fb f b  Y = Y   Y

                              
(15) 

 

thus state space representation for the combined matrix 

structure can be written as  
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V.  PROPOSED METHOD  

To obtain much more freedom and minimize the 

number of array elements, the synthesis of a non-uniform 

spaced array is desired. In this paper, we use the low-rank 

matrix to approximate the forward-backward data matrix, 

so the SVD method must be employed. Therefore Eq. (16) 

can be decomposed as [8,9,10] 
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where
1 denotes the diagonal matrix composed of 

the P dominant singular values 1 2    P . 

1 1,U V denote the left and right singular vector respectively 

corresponding to the dominant singular values.  

Now we focus on the choice of 1 2    P . 

Generally, there shouldn't be zero singular values for the 

forward-backward data matrix formed by the desired 
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patterns[12]. However, the number of principal singular 

values is always less than the total number of singular 

values which correspond to the number of elements for 

the desired antenna arrays. That means that we can 

neglect the very small values to reconstruct a low-rank 

approximation matrix, which corresponds to a new 

antenna array composed of fewer array elements. 

Typically, the singular values beyond P should be equal 

to zero, but in practice all of the singular values are not 

zero but close to zero. The value P  is chosen as follow. 

Consider the singular value P so such that [11,12] 
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where P is the number of significant decimal digits. In 

our simulation, as mentioned in section VI, 2 ~ 3q can 

obtain good performance. 

Hence the low rank approximate matrix of the 

combined matrix fb
Y is shown as [13,14,15] 
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which approximates the desired multiple patterns that can 

be generated by fewer elements, where (.)H denotes the 

complex conjugate transpose.  

According to Eq. (18), we can obtain 1/2

1 1
ˆ = U . From 

Eq. (12), 1̂ and 2̂ can be obtained as following: 
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where  
T

denotes the matrix transpose. From Eq. (20), 

we can easily obtain the following equation: 
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where †(.) denotes the pseudo-inverse. 

Using eigenvalue decomposition for the parameter 

matrix F̂ , i.e 
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where  1 2 P U = u u u , , 1,2...pj

pv e p P


  .   

It is worthy to note that the above-mentioned diagonal 

matrix directly corresponds to the common element 

positions of the antenna array elements which can be 

computed from the diagonal elements of this matrix. 

Hence, the estimates of the common element positions 

can be computed as follows: 
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where  denotes the imaginary part. The estimated 

excitations of multiple patterns are given as 
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where I , V and G are shown in (25),(26) and (27) 

respectively.      
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The algorithm is summarized as follows[12]: 

Step 1: Employing the sampled array factor 

( ), 0...2ky m m N to form the forward-backward 

combined data matrix 
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Step2: Performing SVD on 
fb

Y  and obtaining the 

approximate the forward-backward data matrix ˆ fb
Y  
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Step3: Factorizing the pre-processed ˆ fb
Y to obtain ̂ , 

i.e.: 

 
1/2

1 1
ˆ = U

 
 

Step4: Computing the model parameter F̂ using Eq. 

(19), Eq. (20) and Eq. (21) 

 
†
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Step5: Performing eigenvalue decomposition for the 

model parameter F̂ to obtain
pj

e , i.e. 
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Step6: the estimates of the common element positions 

can be computed as follows:  
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where  denotes the imaginary part. The estimated 

excitations of multiple patterns are given as 
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where I , V and G are shown in (25),(26) and (27) 

respectively.  

According to our further study[12], the state-space 

method, the forward-backward matrix pencil method and 

extended matrix pencil method presented respectively by 

Y. Liu et al. in [2,3] are related and show nearly the same 

performance for the synthesis of the shaped-beam 

patterns. Hence, they are statistically equivalent. 

However, the state-space method is computationally more 

efficient in that only the eigenvalues of a P P matrix 

have to be computed [6]. Because of the same 

performance between our method and Y. Liu’s method 

shown in [2,3], the following numerical simulations 

mainly focus on the validity of our method for multiple-

pattern designs. 

 

VI.  SIMULATION RESULTS 

A complicated multiple-pattern is considered shown in 

the literature[16] with Fig. 2, which is composed of a 

pencil pattern, a flat-topped pattern, and a cosec-squared 

pattern. The multiple-pattern is generated by using 20 

uniform elements with the half wavelength spacing. In 

this simulation, ( )L = floor 4N / 3  and 4N M are set 

respectively. Fig.1 shows the reconstructed patterns for 

the desired multiple patterns with the state space method. 

As can be seen from Fig.1, the proposed method 

accurately reconstructs the desired multiple patterns with 

only 16 elements on the common element locations. 

Table1 lists the optimized common element locations. 

The advantage of the proposed method can be further 

verified by observing the distribution of singular values 

and the poles shown in Fig.2. As shown in Fig.2, all of 

the poles are exactly located on the unit circle (shown in 

Fig. 2(a)) and the singular values after the 16th value are 

nearly close to zero (shown in Fig. 2(b)). The very small 

singular values can be discarded because those values 

make no contribution to the reconstruction. This is the 

reason that the proposed method can save the number of 

antenna elements. In this case, the number of antenna 

elements is reduced nearly 20%. Fig. 3(a) and Fig. 3(b) 

respectively show the optimized the phase and amplitude 

distributions of the reconstructed multiple patterns by 

using the proposed method with 16 elements. As shown 

in Fig.3, both of the reconstructed pencil and flat-topped 

pattern have the symmetry amplitude-phase distributions, 

because the desired pencil and flat-topped pattern are axis 

symmetry. However the reconstructed cosec-squared 

pattern have the asymmetry amplitude-phase distributions, 

because the desired cosec-squared pattern is axis 

asymmetry.  
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Fig.1. Multiple patterns synthesized by [16] with 20 elements and the 

patterns reconstructed by the proposed method with 16 elements 
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(b)  Singular values distribution 

Fig.2. Distribution of singular values and the poles
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(a) Phase distribution 
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(b) Amplitude distribution 

Fig.3. Element amplitude-phase distributions of the multiple patterns 

reconstructed by the proposed method with 16 elements 

Table 1. Optimized Common Element Location of The Reconstructed 

Multiple Patterns with 16 Elements Shown In FIG.1 

Element 

No. 

Position 

ˆ /pd   
Element 

No. 

Position 

ˆ /pd   
Element 

No. 

Position 

ˆ /pd   

0 0.0045 6 3.2705 12 7.0708 

1 0.4836 7 3.9577 13 7.5649 

2 0.9546 8 4.6778 14 8.0694 

3 1.3419 9 5.3711 15 8.5489 

4 1.9451 10 6.0244   

5 2.6149 11 6.6089   

 

VII.  CONCLUSION 

A state-space synthesis method that reconstructs 

multiple patterns with the minimum number of elements 

is presented. The new synthesis method uses the sampled 

multiple pattern data that is represented by state-space 

model to form a combined Hankel matrix. There exists a 

constraint on the distribution of the poles in the combined 

Hankel matrix which achieves more accurate and robust 

synthesis performance consequently. By using the 

proposed methods, the optimal common element 

locations are found, individual amplitudes and phases for 

a multiple patterns are obtained, and the number of 

antenna elements is determined, the number of antenna 

elements can be saved nearly 20%. 
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