IJISA Vol. 10, No. 10, 8 Oct. 2018
Cover page and Table of Contents: PDF (size: 698KB)
Full Text (PDF, 698KB), PP.42-52
Views: 0 Downloads: 0
M-tourism, recommendation system, collaborative filtering, SLOPE ONE algorithm, POI rating prediction
Mobile tourism or m-tourism can assist and help tourists anywhere and anytime face the overload of information that may appear in their smartphones. Indeed, these mobile users find difficulties in the choice of points of interest (POIs) that may interest them during their discovery of a new environment (a city, a university campus ...). In order to reduce the number of POIs to visit, the recommendation systems (RS) represent a good solution to guide each tourist towards personalized paths close to his instantaneous location during his visit. In this article, we focus on (1) the detection of the spatiotemporal context of the tourist to filter the POIs and (2) the use of the previous notations of the places. These two criteria make it possible to integrate the evolutionary context of the visit in order to predict incrementally the most relevant transitions to be borrowed by the tourists without profile. These predictions are calculated using collaborative filtering algorithms that require the collection of traces of tourists to better refine the recommendation of POIs. In our software prototype, we have adapted the SLOPE ONE algorithm to our context of discovering the city of Chlef to avoid problems like data scarcity, cold start and scalability. In order to validate the use of this prototype, we conducted experiments by tourists in order to calculate indicators to assess the relevance of the recommendations provided by our system.
Nassim DENNOUNI, Yvan PETER, Luigi LANCIERI, Zohra SLAMA, "Towards an Incremental Recommendation of POIs for Mobile Tourists without Profiles", International Journal of Intelligent Systems and Applications(IJISA), Vol.10, No.10, pp.42-52, 2018. DOI:10.5815/ijisa.2018.10.05
[1]N. Dennouni, Y. Peter, L. Lancieri and Z. Slama, “State of the art on orchestration techniques of mobile learning activities,” Proceedings of the 4th International Symposium on Concepts and Tools for Knowledge Management (ISKO-Maghreb), November 9-11, 2014, Algiers, Algeria.
[2]N. Dennouni, Y. Peter, L. Lancieri and Z. Slama, “To a Geographical Orchestration of Mobile Learning Activities, ” International Journal of Interactive Mobile Technologies (iJIM), Vol.8, No.2, pp. 35-41, 2014.
[3]N. Dennouni, Z. Slama, Y. Peter and L. Lancieri, “Recommendation Techniques in Mobile Learning Context: A Review,” International Journal of Modern Education and Computer Science (IJMECS), Vol.9, No.10, pp. 37-46, 2017. DOI: 10.5815/ijmecs.2017.10.05
[4]B. Renault, «Gratuité et valeur attachée à l’objet de consommation culturelle : le cas des musées et des monuments», pp. 54-55, 2009.
[5]V. Bonneau, le Guide du m-tourisme, 2011.
[6]S. Bourliataux-Lajoinie and A. Riviere « Le m-tourisme : une opportunité pour les destinations touristiques? Le cas des villes », 2013.
[7]H. M. Chuang & C. H. Chang, “Verification of POI and Location Pairs via Weakly Labeled,” Proceeding of the 24th International Conference on World Wide Web Pages 743-748ISBN:978-1-4503-3473-0, 2015. DOI: 10.1145/2740908.2741715
[8]A. Konstan and J. Riedl, “MovieLens Unplugged Experiences with an Occasionally Connected Recommender System,” In Proceedings of the eighth international conference on intelligent user interfaces, pp. 263–266, 2013.
[9]J. SU, H. YEH, P. YU and V. TSENG, "Music Recommendation Using Content and Context Information,” IEEE Intelligent Systems, Issue 25, pp. 16-26, 2010.
[10]R. Mooney and L. Roy “Content-based Book Recommending using Learning for Text Categorization,” In Proceedings of the fifth ACM conference on Digital libraries, pp. 195–204, 2000.
[11]B. Robin, “Hybrid Web Recommender Systems,” pp. 377–408. 2007.
[12]A. Das, M. Datar, A. Garg and S. Rajaram, “Google News Personalization: Scalable Online,” WWW’07: Proceedings of the 16th International Conference on World, pp. 271–280, 2007.
[13]K. Miyahara and M. Pazzani, “Collaborative Filtering with the Simple Bayesian Classifier,” PRICAI 2000 Topics in Artificial Intelligence, pp. 679–689, 2000.
[14]D. Pavlov, E. Manavoglu, D. Pennock and C. Giles, “Collaborative Filtering with Maximum”, IEEE Intelligent Systems, Issue 19, pp. 40–48, 2004.
[15]G. Bonnin, « Vers des systèmes de recommandation robustes pour la navigation Web: inspiration de la modélisation statistique du langage. Informatique », Université Nancy II, 2010.
[16]N. Dennouni, "Orchestration des activités d’apprentissage mobile, " thèse de doctorat en cotutelle entre l’université de Lille1 et l’université de Sidi Bel Abbes, école doctorale sciences pour l’ingénieur, pp. 122-129, 2016.
[17]N. Dennouni, Y. Peter, L. Lancieri and Z.Slama, "Towards to an Bio-inspired Orchestration of Mobile Learning Activities," International Journal of Modern Education and Computer Science (IJMECS), Vol.4, No.7, pp. 1-11, 2015. DOI: 10.5815/ijmecs.2015.04.01
[18]B. Robin, “Hybrid Recommender Systems: Survey and Experiments, User Modelingand User-Adapted Interaction,” Kluwer Academic Publishers, pp. 331–370, 2012.
[19]R. Singh, K. chuchra and A. Rani, "A Survey on the Generation of Recommender Systems," International Journal of Information Engineering and Electronic Business (IJIEEB), Vol.9, No.3, pp.26-35, 2017. DOI: 10.5815/ijieeb.2017.03.04.
[20]M. Balabanović and Y. Shoham, “content-based, collaborative recommendation,” Communications of the ACM Volume 40 Issue 3, March 1997, pp. 66-72. DOI: 10.1145/245108.245124
[21]A. Gediminas and Alexander Tuzhilin. “Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions,” pp 734 – 749, 2005.
[22]M. J. Pazaani, “Framework for collaborative, contentbased and Demographic Filtering,” Artificial Intelligent Review, vol. 13, pp. 393-408, 1999.
[23]N. Dennouni, Y. Peter, L. Lancieri and Z. Slama, "Vers un système d’orchestration adaptatif et collaboratif des activités d’apprentissage en mobilité", 15ème conférence internationale sur l'extraction et la gestion des connaissances/Atelier GAST–Gestion et Analyse de données Spatiales et Temporelles, Luxembourg, 2015.
[24]C. Desrosiers and G. Karypis, “Methods, A comprehensive survey of neighborhood-based recommendation,” pp. 107-144, 2011.
[25]M. J. Barranco, J. Noguera, C. Jorge and L. Martiınez, "Advances in Intelligent Systems: A Context-Aware Mobile Recommender System," Management Intelligent Systems, First International Symposium, pp 153-162, 2012.
[26]J. Noguera, M. J. Barranco, R. J. Segura and L. Martiınez. "A mobile 3D-GIS hybrid recommender system for tourism", Information Sciences 215, pp 37–52, 2012.
[27]L. Baltrunas, L. Bernd, S. Peer and R. Pers Francesco, "Context relevance assessment and exploitation in mobile recommender systems," Ubiquit Comput (2012) 16, 2012: pp.507–526, 2012.
[28]T. Anteneh Alemu, A. Kumilachew Tegegne and A. Nega Tarekegn, "Recommender System in Tourism Using Case based Reasoning Approach," International Journal of Information Engineering and Electronic Business (IJIEEB), Vol.9, No.5, pp. 34-43, 2017. DOI: 10.5815/ijieeb.2017.05.05.
[29]N. Dennouni, Y. Peter, L. Lancieri and Z. Slama, "Vers une approche Bio-inspirée pour l’orchestration pédagogique des activités mobiles d’apprentissage," La 7ème édition de la conférence EIAH (Environnements Informatiques pour l'Apprentissage Humain), 2-5 juin 2015, Agadir, Maroc.
[30]A. Fridi and S. M. Benslimane,"Towards Semantics-Aware Recommender System: A LOD-Based Approach", International Journal of Modern Education and Computer Science (IJMECS), Vol.9, No.2, pp.55-61, 2017. DOI: 10.5815/ijmecs.2017.02.07
[31]R. Sharma, S. Vinayak and R. Singh, "Guide Me: A Research Work Area Recommender System", International Journal of. Intelligent Systems and Applications (IJISA), Vol.8, No.9, PP.30-37, 2016. DOI: 10.5815/ijisa.2016.09.04
[32]S. Walunj and K. Sadafale, "An Online Recommendation System for E-commerce Based on Apache Mahout Framework", ACM, 2013.
[33]E. Guàrdia-Sebaoun, V. Guigue and P. Gallinari, "Recommandation Dynamique dans les Graphes Géographiques," Road Materials and Pavement Design, RMPD volume 22-No.1/2014. DOI: 10.3166/RMPD.22.1.-11.
[34]N. S. Savage, N. E. Baranski, M. Chavez and T. Holle. "I’m feeling LoCo: A Location Based Context Aware Recommendation System," Eighth International Symposium on Location-Based Services, Vienna, pp. 37-54, 2011.
[35]P. Yang and H. Fang, “Exploration of Opinion-aware Approach to Contextual Suggestion,” in E. M. Voorhees, A. Ellis (eds), NIST Special Publication 500-308 : The Twenty-Third Text REtrieval Conference Proceedings (TREC 2014), 2014.
[36]X. Li, G. Cong, X. L. Li, T. A. N. Pham and S. Krishnaswamy, “Rank-GeoFM : A Ranking Based Geographical Factorization Method for Point of Interest Recommendation,” Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’15, ACM, New York, NY, USA, pp. 433-442, 2015.
[37]J. Sang, T. Mei and C. Xu, “Activity Sensor: Check-In Usage Mining for Local Recommendation”, ACM Transactions on Intelligent Systems and Technology (TIST), vol. 6, no 3, pp. 41:1-41:24, April 2015.
[38]D. Gavalas and M. kenteris, “A web-based pervasive recommendation system for mobile tourist guides. Pers Ubiquit Comput,” pp. 759–770, 2011.
[39]D. Nurbakova, L. Laporte, S. Calabretto and J. Gensel, « ANASTASIA : recommandation de séquences d’activités spatio-temporelles », Rencontres Jeunes Chercheurs en Recherche d’Information (RJCRI CORIA-CIFED), Mar 2016, Toulouse, France. pp.10. <hal-01328062>
[40]C. Zhang, H. Liang, K. Wang and J. Sun, “Personalized Trip Recommendation with POI Availability and Uncertain Traveling Time,” Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15, ACM, New York, NY, USA, pp. 911-920, 2015.
[41]D. Menezes, A. Lacerda, L. Silva, A. Veloso and N. Ziviani, “Weighted Slope One Predictors Revisited,” International World Wide Web Conference Committee (IW3C2). May 13–17, Rio de Janeiro, Brazil. ACM 978-1-4503-2038-2/13/05, 2013.