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Abstract—Lyapunov exponents (LE) identification prob-

lem of dynamic systems with periodic coefficients is con-

sidered under uncertainty. LE identification is based on 

the analysis of framework special class describing dy-

namics of their change. Upper bound for the smallest LE 

and mobility limit for the large LE are obtained and the 

indicator set of the system is determined. The graphics 

criteria based on the analysis of framework special class 

features are proposed for an adequacy estimation of ob-

tained LE estimations. The histogram method is applied 

to check for obtained estimation set. We show that the 

dynamic system can have the LE set. 

 

Index Terms—Dynamic systems with periodic coeffi-

cients, Lyapunov exponents, framework, histogram. 

 

I.  INTRODUCTION 

Lyapunov exponents widely apply to the analysis of 

dynamic system qualitative behavior. They allow estimat-

ing trajectory behavior of various objects in physics [1], 

medicine [2-4], economy [5], astronomy [6]. LE deter-

mine on the basis of time series analysis most often. 

Many authors suppose that the a priori information is 

known about system structure. [7] contains the review of 

large LE calculation for various classes of systems. Lya-

punov exponents estimation algorithm for an unknown 

dynamic system is proposed in [8]. It allows calculating 

all LE and is based on the application of networks with 

the multidimensional prediction. The basis of the network 

is monotonic sigmoid functions. The task solution is 

based on parameter selection of functions approximating 

a time series on the square criteria.  

Various algorithms use for calculation of the large LE 

for time-varying systems on experimental data. Applica-

tion of these algorithms is based on Takens theorem [9]. 

Takens showed that the phase portrait (attractor) of a sys-

tem can be recovered (reconstructed) on the basis of one 

time series (experimental data). Therefore, the theorem is 

the basis for calculation of various indicator dynamic 

system. Takens theorem is a basis for the LE estimation. 

Wolf [10] and Rosenstein, Benettin [11] methods apply to 

the definition of the large LE. Many authors generalize 

and develop these methods. In [12], algorithms are pro-

posed for the calculation of the large (first) Lyapunov 

exponent based on logarithm and interpolation of a time 

series, and also a method of logarithm allocation. The 

application of the interpolation algorithm gives best re-

sults for time-varying systems. The model having the 

form of the exponent and the sinusoid with phase shift is 

proposed for compensation of a nonstationary component 

in a time series. Such approach allows eliminating a non-

stationary component from the time series. This proce-

dure is not applicable for time-varying system LE identi-

fication as it is removed with a layer of valuable infor-

mation. Notice that implementation of Rosenstein method 

represents the labor-consuming procedure associated with 

choice and specification of system parameters. The neural 

network algorithm is proposed in [13] for the estimation 

of the largest LE. It is based on the application of multi-

layer perceptron.  

Two main methods exist for Lyapunov exponents es-

timation on the time series [14]. The application of these 

methods is based on previously a recovered attractor in a 

phase space of some dimension with the help of Takens 

theorem. The first method [10] determines by two close 

trajectories in the recovered phase space and traces their 

behavior on some time interval (Benettin's algorithm 

[ 15]). The estimation of the LE spectrum is obtained to 

the scheme coinciding with LE procedure calculation on 

an initial system of equations and equations in variations. 

The relative simplicity is the advantage of this method. 

The shortcoming of this method is the difficulty of all 

spectrum Lyapunov exponent identification as the deter-

mining role by consideration of two close trajectories is 

played with the large LE. The second method [16, 17] is 

based on the use of Jacobin as LE is possible to determine 

by as Jacobi matrix eigenvalues for a system which gen-

erated the considered realization. The advantage of this 

method is the possibility of non-negative Lyapunov ex-

ponents spectrum estimation on short implementation, 

and the shortcoming is high sensitivity to noise and errors 

for which reduction various methods and algorithms are 

used. 

Application Takens theorem which is widely used for 

system State reconstruction in the form of frameworks 

depends on features of the time series [18]. Naturally, it 

influences on the efficiency of criteria applied to the or-

derliness estimation of the system (an attractor). Imple-

mentation complexity of LE identification methods can 

be explained with features of the time series. 

So, various method modifications of Rosenstein, 
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Benettin, Wolf and Takens theorem are widely applied to 

Lyapunov exponents identification of stationary systems. 

Properties of the time series describing change of system 

variables have significant effect on the accuracy of ob-

tained LE estimations. Various modifications which in-

cluded the available a priori information are developed 

for application simplification of specified methods. These 

approaches are applied to LE estimation of time-varying 

systems. As a rule, the considered methods allow finding 

the high (first, large) Lyapunov index. The overwhelming 

number of publications is devoted to the analysis of sys-

tems in which there can be chaos. Time-varying systems 

have the specifics [19]. In particular, they may contain 

Lyapunov exponents set. The further modification is re-

quired for the approaches and methods considered above 

for LE estimation. Criteria and procedures for verification 

of obtained decisions are proposed not always. In [20] the 

approach to identification of Lyapunov exponents based 

on the analysis of frameworks special class is proposed. 

Frameworks describe LE change dynamics of stationary 

systems under uncertainty. They do not demand the ap-

plication of the procedures and methods considered above. 

Below generalization is given this approach on a class of 

periodic systems. 

The paper has the following structure. The problem 

statement is given in section II. The method of system 

general solution obtaining which is the basis for identifi-

cation of LE is described in section III. The static model 

is proposed for determine of system general solution and 

the question its an identifiability (section IV) is consid-

ered. Section V contains formulas for calculation of char-

acteristic indicators. The system coefficient of structural 

properties which is a basis for the design of frameworks 

considered further is proposed. Section VI contains bases 

almost periodic functions to Bohr and the concept  -

almost periodic function in Bohr sense is introduced. 

Framework design method for the LE estimation is stated 

in section VII. Further frameworks are applied to the es-

timation of system order and Lyapunov exponents set 

(sections VIII, IX). Modeling results are presented in 

section X. 

 

II.  RELATED WORKS 

We apply a standard formula to LE deriving [9, 14, 19]. 

Obtained arrays for LE are the basis for the design of 

frameworks reflecting LE change dynamics in special 

structural space. We apply an approach and a method 

proposed in [20]. The structural approach allows deter-

mining by a parameter number for LE which are obtained 

theoretically in [19]. The criteria proposed for LE set 

select are based on the idea of paper [20]. 

 

III.  PROBLEM STATEMENT 

Consider the linear dynamic system 

 

( ) ,

,U

X A t X BU

Y CX W U

 

 
                          (1) 

 

where mX R  is state vector, kU R , nY R  are input 

and output, n k

UW R  , n mC R  , ( ) ,m mA t R   m kB R  . 

Let the matrix ( )A t  satisfy conditions. 

A1. ( )A t  is a continuous Frobenius matrix and limited. 

 

( ) AA t                                 (2) 

 

where 0A  ,   is norm of a matrix. 

A2. ( )A t  is almost periodic [19], i.e. the subsequence 

which is uniformly convergent on all axis to some almost 

periodic matrix ( )A t  can be chosen from any sequence 

[19] 

 

( ) ( )i i iA t A t   .                           (3) 

 

A3. ( )A t  is Hurwitz matrix for almost all 0t  . 

Experimental information for (1) has the form 

 

  0 1I ( ), ( ), ,o Y t U t t J t t   .                 (4) 

 

Write the solution of the system (1) as 

 

0( ) ( , , )X t t U t X                           (5) 

 

where X  is the operator who is determined by matrixes 

,A B . 

Obtain from (5) the solution of system (1) at 

0 0( )X X t  

 

( ) ( ) ( )g qX t X t X t  ,                     (6) 

 

where ( )qX t  is a particular solution (1) with IoU  , 

( )gX t  is a general solution (1) with ( ) 0U t   at the un-

known 0 IoX  . 

Let 0( , )gX X t  is a general solution of system (1) with 

0 0 0( ) IoX X Y  . 

Task: determine by decision estimations  

 

0( ) ( , , )g g qX t X X X t  

 

on the set Io  and make the decision on eigenvalues spec-

trum and the order of system (1). 

 

IV. ESTIMATION ( )gX t  

Apply operation    ( ) ( )\ qX t X t  and create the set 

 ( )gX t  for LE estimation.  
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We will state solution method of the task [20] on the 

example of second order system (1) with one input and an 

output. 0UW  . Introduce designations: y Y , u U .  

Let ( )yD  , ( )uD   are frequency spectrum ,u y , 

| ( ) |y t   , | ( ) |u t   . As the matrix ( )A t  satisfies the 

A3 condition obtain ( ) ( )y uD D  , i.e. the system (1) 

is time-varying. The proposed approach to the design of a 

model eliminates this delay.  

Present Io
 as 

 

I I ( ) I ( )q g

o o q o gJ J , 

 

where q gJ J J R  ; I q

o
, I g

o
 are sets containing the 

information about 
qX  and 

gX . 

Determine by particular solution estimation of the sys-

tem (1) on the set I ( )q

o qJ . As 
1 ,x y y R   apply varia-

ble y  differentiation operation to obtaining the compo-

nent 
2 1x x  vector 2X R . Designate 

2x y . 

 

Statement 1 [20]. Model 

 

ˆˆ ( ) ( )q qX t A W t    
qt J                     (7) 

 

is applicable for the identification ( )qX t  on the set I q

o
 

where 2 2ˆ
qA R   is the parameter matrix of the model, 

[ ]TW u u . 

Model (7) properties depend on the choice of the inter-

val 
qJ J . The model (7) is applicable also to the case 

2m  . 

Determine by the estimation of the particular solution 

ˆ ( )qX t  of the system (1) using the model (7) on the set I g

o
. 

Next obtain the estimation of general solution 

 

ˆ ˆ( ) ( ) ( )g qX t X t X t   gt J  , 

 

where ˆ ˆˆ( ) [ ( ) ( )]T

g g gX t y t y t . 

The proposed approach is generalized to the multidi-

mensional case. Further we consider the system (1) with 

one input u  and one output y . We suppose that the sys-

tem (1) is identified. Perform this condition check on the 

basis of the approach proposed in [20]. 

 

V.  LE. SYSTEM COEFFICIENT OF STRUCTURAL 

PROPERTIES 

Apply Lyapunov exponents [19] to the estimation of 

system (1) properties. LE for a real function ( )h t  deter-

mine as 

 

ln ( )
[ ] lim

t

h t
h

t



 ,                        (8) 

is lim
t

 upper limit. 

LE 
i  ( 1, )i m  of stationary system (1) nonzero solu-

tion coincides with real parts of matrix A  eigenvalues 
i . 

Let the estimation of general solution ( )gX t  
gt J   

be known for the system (1) and condition A3 is satisfied. 

Apply (8) to ˆ ( )gy t  

 

ˆln ( )
ˆ lim

g

g
t t

y t
y

t



    ,                       (9) 

 

where 
gt J  is the upper bound t  on an interval 

gJ J . 

(9) there is large LE. If the limit (8) exists, that ˆ
gy     

is matrix A  maximum eigenvalue estimation. Therefore, 

ˆ
gy     is the stability degree of the system (1). If 2m   

the obtain for ˆ
gy  

 

ˆln
ˆ lim

g

g
t t

y
y

t




  
 

.                       (10) 

 

Also, the indicator 

 

 
ln ( )

lim
t

h t
h

t




 ,                     (11) 

 

is applied where lim
t

 is the bottom limit. It is the Perron 

bottom index [19, 20]. 

The idea of Lyapunov exponents application in identi-

fication problems is presented in [20]. The proposed ap-

proach is based on the analysis of structural properties 

coefficient (CSP) [20]. Below development of this ap-

proach is given. Show at first to an association between 

CSP and LE. 

Introduce the indicator for the system (1) 

 

 ˆ ˆln ( )g g gy y t     g gt J J   ,         (12) 

 

where  0 ,gJ t t  determine on the basis of (9). 

Consider a system with the input t  and the output 

 ˆ
gy . Then CSP for the estimation of system structural 

properties has the form 

 

 ˆ ( )
( , )

g

s

y t
k t

t


  .                       (13) 

 

( , )sk t   is the main variable for indicator ˆ[ ]gy  calcula-

tion on the interval gJ . 

So, interdependence between LE ˆ
gy     and the



4 About Lyapunov Exponents Identification for Systems with Periodic Coefficients  

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 11, 1-10 

coefficient of structural properties ( , )sk t   is showed on 

the informational set   ˆI ( ) ,g gy t t J   . 

Consider the set 

 

     ˆ
ˆˆ ˆI , ( ) , I ( )\

g
g g g g g gX

y t y t t J y t t J    ,   (14) 

 

which data about the change of the variable ˆ
gy  contains 

on the interval 
gJ . 

We suppose that the system (1) is stable, i.e. 

Re( ( )) 0i t  , 1,i m  for 0t   where ( ) ( )i t A   is 

i -th state matrix eigenvalue. 

Problem: estimate Lyapunov exponents and the order 

of the system (1) on the basis of sets I , Ig
 analysis. 

As the set (14) is formed on the basis of the model (7), 

the obtained estimation ˆ
gy  will contain error  . There-

fore, the function ˆ ( )gy t  will be almost "periodic".  

 

VI.  ALMOST PERIODIC FUNCTIONS TO BOHR 

Consider a class of almost periodic functions to Bohr. 

 

Definition 1 [21]. The numerical set     is called 

relatively dense on the real axis x   if such 

number 0l   exists that each segment a x a l    of 

length l  contains at least one element of our set, i.e. at 

any a  we have 

 

 , 0a a l   . 

 

Definition 2 [21]. The number ( )fT T   is called al-

most the function ( )f x  period accurate within   (or  - 

almost the period or  -shift) if inequality 

 

( ) ( ) , 0ff x T f x                         (15) 

 

fairly for any  ,x   . 

 

Definition 3 [21]. A function  ( ) ,f x     is called 

almost periodic in Bohr sense (BF -function) if relatively 

dense almost fT  set of the function ( )f x  exists accurate 

within  , i.e. such positive number ( )l l   exists that 

any segment  ,a a l  contains, at least, one number fT  

for which it is fair 

 

( ) ( )ff x T f x     for  ,x   . 

 

where   is any positive number. 

Function ˆ ( )gy t  belongs to exponential-sinusoidal 

function class. Therefore, the condition (15) cannot be 

satisfied. Provide the belonging ˆ ( )gy t  to BF -functions. 

Perform the following operations. 

Consider some point t R  and its neighbourhood 
tO . 

Determine the average value ˆ ( )gy t  for 
tt O  

 

,

1
ˆ ˆ

tg O i

it

y y
N

    , 

 

where 
tN  is the point quantity on 

tO , 
i tt O  is the cur-

rent coverage of the interval 
tO  with a step  . 

For t R  belonging to the neighbourhood 
ŷg

t TO obtain 

 

ˆ

ˆ

,

1
ˆ ˆ

t Tyg

yg

g i

it T

y y
N






  O
, 

 

Definition 4. The function ˆ ( ) ( , )gy t     is called al-

most periodic in Bohr sense ( BF -function) if relatively 

dense almost 
fT  set of the function ˆ ( )gy t  exists accurate 

within  , i.e. such positive number ( )l l   exists that 

any segment  ,a a l  contains, at least, one number 
fT  

for which it is fair 

 

ˆ ˆ( ) ( )g f gy t T y t


 


   for [0, )t  . 

 

VII.  FRAMEWORKS FOR LE ESTIMATION 

State to the approach to the LE estimation based on the 

analysis of frameworks proposed in [20]. 

Consider sets 

 

   ˆI , ( ) ,
sk s g gk t y t t J  , 

 

   ˆI , ( ) ,
sk s g gk t y t t J   . 

 

Determine on I
sk , I

sk   mapping 
,

I I
s s sk k k  S . The 

framework 
,sk 

S  describing LE change dynamics. Con-

sider on the set I
sk   the function 

 

     ˆ ˆ( ) , ( ) , ( )s s g s gk t k t y t k t y t              (16) 

 

describing the change of the first difference 

ˆ( , ( ( ))s gk t y t , where 0  . 

Form the set    ˆI , ( ) ,
sk s g gk t y t t J     and con-

sider the framework 
,sk SK  defined on 

, ,
I I

s sk k  . Con-

sider the mapping 
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 
, , ,

I I
s s sk k kB
     LSK ,                    (17) 

 

for the framework 
,sk SK  where  

,
I { 1;1}

skB
   . De-

fine by elements of the binary set  
,

I
skB


 as 

 

1 ( ) 0,
( )

1 ( ) 0,

s

s

if k t
b t

if k t

 
 

  
 gt J . 

 

Remark 1. The border of the limit superior to (9) is cho-

sen on basis of the change 
,sk 

S . 

 

Remark 2. Values range choice of the function ( )b t is 

defined by the convenience of its graphic analysis. ( )b t  

is possible to define on the binary set {0; 1}. 

The stated approach was proposed for a class of sta-

tionary systems. Some modification has required this 

approach for  -almost periodic systems. In particular, 

the framework 
,sk LSK  effectively works in the analysis 

of stationary systems. 
,sk LSK  is inefficient for periodic 

systems as the function ( )b t  reflects all changes in the 

framework 
,sk SK . 

 

VIII.  SYSTEM ORDER ESTIMATION 

All results presented further belong to the system (1) 

with Frobenius matrix y R , 0UW  , ,U u u R . 

We consider that the matrix A  satisfies A1-A3 condi-

tions.  

Propose a criterion for the estimate of the system order. 

It is based on the modification the theorem 1 [20] to con-

sider specifics of the considered system. 

Consider the framework defined on 
, ,

I I
s sk k   and de-

scribed by function ( ) :sk s sf t k k . The function 

( )skf t  is BF -function. Therefore, ( )skf t  contains areas 

skD  which have sharply changing amplitude. 

 

Definition 5. The area skD  of the function skf  is called 

 -area on the interval  ,skJ t t T   changes t  if it 

corresponds to the change BF -function ( )sk t  on this 

interval. 

 

Theorem 1. Let the system (1) satisfy conditions A1-A3. 

Then the system (1) have an order m  if the function 

( )skf t  contains not fewer m  areas 
skD  on the interval 

*

0 , gt t J      *t t . 

 

Proof of Theorem 1. Consider the case of simple real 

roots. The system (1) is stable. Let system eigenvalues of 

the system (1) be located in decreasing order 

1 2 m     . ( )i t   1,i m  is the periodic func-

tion. The function   ˆexp ( )i gt t y   is  -almost period-

ic on some subinterval 
i

J J  .  exp ( )i t t corresponds 

to LE 
i  belonging to the lineal ( )i tL , and 

i  corre-

sponds to the area i

skD  on the framework 
,sk SK . The 

area i

skD  is congruent in system (1) decision space to the 

lineal ( )m i tL  (see definition [19]). The transition be-

tween lineal can be performed 1m  time. The function 

 ˆ ( )gy t  depends from ˆ ( )gy t , therefore, each such tran-

sition gives to the change of framework 
,sk SK  proper-

ties.  

 

Remark 3. As matrix A  eigenvalues ( )i t  are periodic 

functions of time, a lineals ( )i tL  and 1( )i tL  can be inter-

sected. This case can lead to an infinite LE spectrum. 

This feature is noted in [19]. 

 

Remark 4. If frequency spectra of lineal ( )i tL  and 

1( )i tL  are intersected, then we have instead of the pyra-

mid [19] corresponding to a step set of lineal 

 
0 10 ( ) ( ) ( ) ( )nl ll mt t t t    L L L L  

 

the pyramid with almost smooth sides. Such representa-

tion influences on obtained Lyapunov exponents spec-

trum. 

 

IX.  STRUCTURAL APPROACH TO LE ESTIMATION 

Below we develop an approach which does not de-

mand the set I
sk  processing to the identification of Lya-

punov exponents. It is stated in [20] and based on the 

analysis of frameworks properties proposed in section VI. 

The approach is based on the analysis of system frame-

work S  change in a special space. 

It is known [20] that system characteristic indicators 

influence on a change S . Consider frameworks 
,sk 

S  and 

,
i
sk 

SK  ( 1i  ) an example of a framework S .  

We introduce the framework 
,

i
sk 

SK which is defined on 

the set I I i
s s

k k
  and 

,sk SK  where i  designates i -th de-

rivative ˆ ( )gy t , 

 

   ( )ˆI , ( ) ,i
s

i

s g gk
k t y t t J  .                 (18) 

 

The framework 
,

i
sk 

SK  as shown in [20] reflects LE 

change. Indicators ˆ
i gy    correspond to local minima 

,
i
sk 

SK . m  correspond to a global minimum, a 1  
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correspond to a maximum of the function describing the 

change 
,

i
sk 

SK . 

 

Theorem 2 [20]. If the system (1) is stable and contains 

simple eigenvalues, then frameworks 
,

i
sk 

SK , 1,i m  

contain the information on Lyapunov exponents. 

The local minima location on 
,

i
sk 

SK  coincides with ar-

eas 
skD  of the framework 

,
.

sk SK  The analysis i

skD  

gives the set 
LEM  containing LE estimations of the sys-

tem (1). The cardinal number 
LEM  cannot coincide with 

Lyapunov exponent’s number of the system. 
LEM  char-

acterizes an available set of system (1) lineales. 

Perform the choice of time t in (10) on the basis 

framework 
,sk SK  change analysis. 

 

Remark 5. The framework 
,

i
sk 

SK where 1i   can be 

applied decision-making on LE. 

The proposed approach gives the estimation of the 

smallest Lyapunov exponent ˆ
i gy    . It is the difference 

between this approach and procedures proposed in the 

literature. If the framework 
,sk SK  contains single abrupt 

change of the value, then it is a sign that 
,

i
sk 

SK  contained 

the estimation  .m   As    m i     where 

1, 1i m  ,  m   designate as 
m  and call the upper 

bound of the smallest LE. Explain this fact that the corre-

sponding lineal ( )m tL  has the minimum definitional do-

main. Function ˆ ( )gy t  on ( )m tL  is not  -almost period-

ic, so its parameters ,   quickly decreases. Therefore, 

the condition (15) is not satisfied. Therefore lineal ( )m tL  

contains only one value which corresponds 
m . So, fairly 

 

Statement 2. Let the system (1) satisfy conditions A1-A3 

and the framework 
,

i
sk 

SK  contains a point M  in which 

value sharply changes. Then the global minimum corre-

sponds to the point M  on the framework 
,

i
sk 

SK  and the 

global minimum value is the upper bound 
m  of the 

smallest ˆ
i gy    . 

 

Remark 6. As the decision is to accept on the basis of 

several frameworks 
,

i
sk 

SK  ( 1i  ) choose the upper 

bound from ,m i  and designate it as 
m . 

The set 
LEM  is formed on the basis of minimum 

,
i
sk 

SK  analysis and the remark 5. 

Consider the definition problem of the domain which 

belong the set LEM . Explain it with the fact that the set 

LEM  can be big (see the remark 3). Find an admissible 

domain for 
LEM  and the number defining mobility of the 

highest Lyapunov exponent. This domain is limited to the 

indicator 
m  from below. Determination of the specified 

parameters is realized on the interval  0, t  where t  is 

chosen according to (9). Realize variation domain 
1  

choice on the basis of the framework 
,

i
sk 

SK  analysis. 

The area 
,

1
i
s

sk k 
D SK  is the existence 

1  indicator. The 

fragment 
,

1
i
sk 

V  on the framework 
,

i
sk 

SK  which changes 

on the interval 
,

1
i
sk

J


 corresponds to the area 1

skD . There-

fore, 
,

1

1 i
sk

J


  . Then the admissible mobility boundary 

of the higher indicator 
1  is determined as 

 

,

1

1 sup i
sk

J


  .                            (19) 

 

The inequality (19) gives to the admissible boundary 

(boundary of mobility on [19]) the change 
1  under un-

certainty. Areas of mobility for 
i  ( 1i  ) are determined 

similarly. 

Consider criteria for the estimation of set 
LEM  ele-

ments and (19). The concept of the adequacy accepted in 

parametrical identification theory in this case is inappli-

cable. As shown in section I, the publications majority is 

devoted to the calculation of Lyapunov exponents. Ques-

tions of the quality check of obtained estimations were 

not considered. Such theoretical indicators as durability 

attainability do not give in to validate under uncertainty. 

Further, the method is offered for verify so-called  -

adequacy of obtained LE estimations. It is based on the 

analysis of frameworks proposed above.  

Consider the framework ˆˆ ,g gy y
S  described by the func-

tion ˆˆ ,
ˆˆ: g gy y

f y y  in space  ˆˆ ,y g gy yR . As the sys-

tem (1) satisfies A1-A3 conditions, ˆˆ ,g gy y
S  contains areas 

which reflect  -almost periodic behavior of the system. 

Consider frameworks 
,

i
sk 

SL  and 
,

i
sk 

SL  which are de-

scribed by functions 

 

,
,

ˆ:
iks

i

sf y k


SL , 
,

,
ˆ:

iks

i

sf y k





SL .               (20) 

 

Definition 6. Estimations of Lyapunov exponents i  are 

 -adequate in space R  if their definition ranges coin-

cide with  -almost periodicity areas of the framework 

ˆˆ ,g gy y
S .  

Introduce fragments 
,

i
s

j

sl k 
D SL  ( 1)j   by analogy 

with 
,

i
s

sk k 
D SK  in space yR . Designate the defini-

tional domain j

slD  as dom j

slD . 
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Theorem 3. If fragment j

slD  definitional domains of the 

framework 
,

i
sk 

SL  coincide with  -almost periodicity 

areas of the framework ˆˆ ,g gy y
S , then estimations 

i  are 

 -adequate to areas  -almost periodicity ˆˆ ,g gy y
S . 

 

Proof of the theorem 3. Function ( )skf t  contains not 

fewer m  areas j

skD  according to the theorem 1. Frame-

works 
,

i
sk 

SK  also 
,

i
sk 

SL  have an identical range of val-

ues. This statement is true also for j

skD , j

slD . j

skD , j

slD  set 

by LE area change. Congruence of value ranges j

skD , j

slD  

follows from equality of definition ranges j

skD , j

slD . If the 

fragment j

slD  definition range of the framework 
,

i
sk 

SL  

and region  -almost periodicity ˆˆ ,y y
S  coincide, then we 

obtain at the existence of the dependence between func-

tions 
,

iks

f


SL  and 
,

iks

f


SL  that some element set of the set 

LEM  corresponding  -almost periodic region ˆˆ ,g gy y
S . 

Therefore, estimations 
i  are  -adequate in space 

yR .  

The histogram method is applied in [20] to check of 

LE estimations (a type of roots) stationary systems. Next, 

we give to its application. 

 

X.  EXAMPLES 

Let the requirements to system (1) stated in the section 

I am fair. The set (4) is known for system (1).  

1. Consider a system which phase portrait is showed in 

Fig. 1. Input is ( ) 5 2sin(0.2 )u t t  . Fig. 1 will show 

that at system there are fluctuations. 

 

0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2
-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

y

y

 

Fig.1. Phase portrait of system 

Apply the model (7) to obtaining of the general solu-

tion from ( )y t  on the time gap [5; 40] s. The model (7) 

has the form  

 

 ˆˆ ( ) 1 ( ) ( )
TT

q qy t A u t u t ,  0,302;0,189; 0,203ˆ T

qA  . 

 

The coefficient of determination is 0.95. The estima-

tion is obtained for ˆ ˆ( ) ( ) ( )g qy t y t y t   on the basis of 

the model (7). Determine by the estimation for ( )gy t  by 

analogy 

 

  0.17; 0.89;0.27ˆ ( ) 1 ( ) ( )
T

qy t u t u t  .            (21) 

 

The determination coefficient of the model (21) is 0.99. 

Construct the system portrait in the space 
yR  to check 

that the system (1) belongs to systems with periodic coef-

ficients. It is showed in Fig. 2. 

 

-0,12 -0,06 0,00 0,06 0,12 0,18
-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

0,04

ˆ
gy

ˆ
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Fig.2. System phase portrait in space yR  

LE identification results are shown in Fig. 3-6. Change 

of frameworks 
,sk SK  and 1

,sk 

S  is presented in Fig. 3 

where 
sk   has the form (16), 

sk  is described by expres-

sion (13), and 

 

 
1

ˆ ( )
( , )

g

s

y t
k t

t


  .                       (22) 

 

-1,2 -1,0 -0,8 -0,6 -0,4 -0,2 0,0
-2,0

-1,6

-1,2

-0,8

-0,4

0,0

0,4

0,8

1

sk

sk

1

sk 1
,sk 

S

1
,sk 

SK

LEM

 

Fig.3. LE set 

We determine by Lyapunov exponents set 

 

  1.8, 1.21, 0.88LE    M  

 

on the basis of the analysis 
,sk SK . Apply the theorem 1 

and obtain that the system order is 2. The upper estima-

tion for the smallest LE is 1.8m   . The mobility ad-

missible limit of the higher indicator 1  is 0.8 . We 
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have another LE set on the interval  0.2, 0.13sk     

that confirms the inference in the remark 3. 

 -adequacy estimation results of the LE set are pre-

sented in Fig.4, 5.  -adequacy estimations in spaces 
yR  

and  ,
ˆ ,g sy k 

 R  on the time gap [3, 55] s are shown 

in Fig. 4. The function 
skf  regions i

skD  coincide with 

 -almost periodicity regions of the framework 1
,sk 

S  

that  -adequacy of LE estimations confirms.  

 

-0,12 -0,08 -0,04 0,00 0,04 0,08 0,12
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Fig.4.  -adequacy estimation results in spaces yR  and 
R  
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Fig.5.   -adequacy estimation results  in spaces yR  and 1k
R  

Fig. 5 represents  -adequacy results of Lyapunov ex-

ponents estimations in spaces yR  and  1

1

,
ˆ ,g sk
y k R . 

They are correlated with results presented in Fig. 4. 

Frameworks reflect the state of LE identification system 

for 3t  s. 

LE distribution example on the basis of parameter (22) 

change analysis is showed in Fig. 6. 

The histogram method [20] confirms obtained estima-

tions i . The histogram gives to a spectrum of Lyapunov 

exponents. The LE distribution example on the basis of 

parameter (22) change analysis is showed in Fig. 6, where 

n  is the number of hits i  in the specified interval. 

-2,0 -1,6 -1,2 -0,8 -0,4
0

2

4

6

8

10

12

1

,sk 

 

 

n

 

Fig.6. Distribution of Lyapunov exponents 

We will return to the original system (1). The second 

order system (1) has the following parameters 

 

1 2

0 1
( )

( ) ( )
A t

a t a t

 
  
 

, 

 

1( ) 3 0.2sin(0.02 )a t t   , 
2 ( ) 4 0.3sin(0.04 )a t t   . 

 

Matrix A  eigenvalues changed in the range: 

 

 1 1.325( ) , 0.819t    ,  2 ( ) 2.37, 3.48t    . 

 

Modeling results show that the proposed approach al-

lows obtaining LE estimations. 

2. Consider the system (1) which phase portrait is 

showed in Fig. 7. The information set (4) is known for the 

system. Input is ( ) 5 2sin(0.2 )u t t  . Fig. 7 shows that 

the system has oscillations. The input has only one fre-

quency. Therefore, existence in the framework of oscilla-

tions with other frequencies indicates what the system is 

possible belongs to periodic system class.  
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-0,6

-0,4
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0,0
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y
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Fig.7. Phase portrait of system 

Apply the approach stated in the first part of this sec-

tion to LE identification. Find the model (7) for obtaining 

of the general solution for ,y y . Apply operation of nu-

merical differentiation to calculation y . Models (7) have 

form 
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  0.75;0.07; 0.22ˆ ( ) 1 ( ) ( )
T

qy t u t u t , 

 

  0.394; 0.059;0,078ˆ ( ) 1 ( ) ( )
T

qy t u t u t  . 

 

The determination coefficients for these models are 

0.99. Next, find estimations for system free motion.  

Consider frameworks 
,sk SK , 1

,sk 

S , presented in Fig. 8, 

and apply them to system order estimation. The analysis 

of change 1
,sk 

SK will show that the system has the third 

order. We obtain Lyapunov exponent set  

 

 2.04; 1.842; 1.77; 1.167; 0.878LE      M  

 

on the basis of the analysis 1
,sk 

SK  and 2
,sk 

SK . The up-

per bound for the smallest LE is 2.04m   . The mobili-

ty admissible limit of the higher indicator 
1  is –0.8.  
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Fig.8. LE set 

 -adequacy check results of Lyapunov exponents are 

presented in Fig. 9, 10. We see that estimations are  -

adequate. Fig.10 represents Lyapunov exponent distribu-

tion. It coincides with the set 
LEM . The framework ˆˆ ,y y

S  

form (Fig. 8, 9) is defined by system (1) parameters. 
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Fig.8.  -adequacy estimation results in spaces yR  and R  

The initial system has following eigenvalues of the 

state matrix 

1( ) 1 0.2sin(0.02 )t t    , 

 

2 ( ) 2 0.3sin(0.04 )t t    , 

 

3( ) 3 0.2sin(0.06 )t t    . 
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Fig.9.  -adequacy estimation results in spaces yR  and 1k
R  
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Fig.10. Lyapunov exponent distribution 

So, modeling results show that the proposed approach 

allows obtaining estimations Lyapunov exponent estima-

tions. It gives a complex assessment of the Lyapunov 

exponent spectrum. This is the main advantage of this 

method. The basis of this method is frameworks describ-

ing to the LE dynamics change. The application of pro-

posed frameworks gives to criteria for LE set selection. 

We show that the obtained LE set has  -adequacy prop-

erty. The histogram method confirms obtained results. 

Proposed mathematical procedures give numerical con-

firmation of LE characteristics obtained theoretically by 

[19]. The structural approach gives the lineal distribution 

of a dynamic system. 

 

XI.  CONCLUSION 

Lyapunov exponents (LE) identification problem of 

dynamic systems with periodic coefficients is considered 

under uncertainty. The approach to LE identification ap-

plied in nonlinear dynamics problems is proposed. It dif-

fers from the great number of existing approaches based 

on the analysis of a time series and Takens theorem. The 

problem solution is based on the formation of the set 
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containing information on system general solution. We 

construct the phase portrait which analysis allows making 

the conclusion about system properties. The concept  -

almost periodic function in Bohr's sense is introduced as 

considered processes are not periodic in the standard 

sense. We propose frameworks reflecting dynamics of 

Lyapunov exponent change. Upper bound for the smallest 

LE and mobility limit for the large LE are obtained and 

the indicator set of the system is determined. The 

graphics criteria based on the analysis of framework spe-

cial class properties are proposed for the adequacy esti-

mation of obtained indicators. The histogram method is 

applied to check of the obtained estimation set. We show 

that the dynamic system can have Lyapunov exponent set. 
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