
I.J. Intelligent Systems and Applications, 2018, 11, 36-49
Published Online November 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.11.05

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

Basis Path Based Test Suite Minimization Using

Genetic Algorithm

Anbunathan R
Test Manager and Research Scholar, Bharathiar University, Coimbatore, India

E-mail: anbunathan.r@gmail.com

Anirban Basu
Professor, Department of CSE, APS College of Engineering, Bangalore, India

E-mail: abasu@anirbanbasu.in

Received: 01 November 2017; Accepted: 09 February 2018; Published: 08 November 2018

Abstract—UML State Diagram is used to represent the

behavior of the System Under Test (SUT) when an event

occurs. The state of the system is determined by the event

that occurs randomly. The system state changes when the

transition relationship between the States is satisfied. Test

cases are generated from State Chart Diagram to test the

behavior of the system. When multiple decision nodes are

present in the same path, path explosion occurs. A

method is proposed to generate Basis Path (BP) test cases

with node coverage using Genetic Algorithm (GA) to

overcome this problem. Experiments are conducted upon

various Android applications and the efficiency of the

algorithm is evaluated through the code coverage and the

mutation analysis. Using this approach, BP test cases,

Robotium test scripts are generated for 10 Android

applications and observed an average of 70% reduction in

the test case number concerning all path test cases. The

resulted average code coverage is 74%, and Defect

Removal Efficiency (DRE) is 95%. The experimental

results show that the proposed method is effective when

compared to other methods.

Index Terms—Test automation, Genetic Algorithm,

Executable Test generation.

I. INTRODUCTION

Software testing involves both black box testing and

white box testing. Unit test cases are derived from source

code in the case of white box testing. System and

functional test cases are derived from requirements in the

case of black box testing. Unified Modeling Language

(UML) State Chart Diagram (SCD) is used to capture

user scenarios, and test cases are generated from SCD.

Although software testing is having substantial

contributions towards test generation from State Chart

Diagrams [3], [4], [7], [9], [18], [19], test generation for

the SCD remains an open research problem. These

methods missed discussing path explosion problem when

multiple decisions are present in the same path. These

paths increase exponentially by the multiplication factor

equal to the number of branches present in the decisions.

As path explosion problem results in a large number of

test cases, all path test cases generated from SCD are not

practically usable. The objective of this paper is to create

BP test cases using a Genetic Algorithm (GA) and reduce

the number of test cases to solve path explosion problem.

Although similar approaches are present in literature, the

effectiveness of the approach is not quantitatively

analyzed. In the proposed method, SCD is used as input,

and the diagram components such as edges, labels, nodes

are extracted from SCD, Basis Path test cases are

generated by GA, and Robotium scripts are generated by

identifying Application Programming Interfaces (APIs),

and their arguments. A menu tree database is extracted

from the target Android device, which helps to provide

the exact menu item to be used in API’s argument, even

though user input is not accurate.

The existing test generation methods [14-16] focus on

only code coverage and mutation analysis to validate

their approach. The performance improvement of the

algorithms involved in their methods is not empirically

evaluated. This work leads to the following research

questions:

1. Any significant improvement is achieved in GA

performance?

2. Any significant reduction in the number of

generated test cases is achieved in the case of path

explosion?

3. Are the generated Basis Path test cases effective?

In this paper, an empirical study is done to compare all

path and BP test cases, to prove there is a significant

reduction in the number of BP test cases compared to all

path test cases. Statistical analysis is done with these two

data, and the 2T test is performed to prove a significant

reduction in number. Also, GA performance is improved

by applying a smart mutation, and the effectiveness is

empirically evaluated. The number of generations with

and without the smart mutation is statistically analyzed,

the 2T test is performed to prove there is a significant

reduction in the number of generations in the case of

smart mutation is applied. Finally, the approach is

 Basis Path Based Test Suite Minimization Using Genetic Algorithm 37

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

evaluated by executing the generated test cases on ten

different Android applications. The code coverage is

found using EMMA and JACOCO tools, and the

mutation analysis is performed using Jester tool. EMMA

is used for Eclipse based Android applications whereas

JACOCO is used for Android Studio based applications.

The study shows that the average code coverage is 74%

and defect removal efficiency is 95% for Android

applications, which is encouraging.

The primary contributions of this paper are

(1) This work presents a novel approach that generates

Basis Path based optimized executable test cases using

Genetic Algorithm with UML State Chart Diagram as

input.

(2) This work proposes a chromosome representation

of Basis Path, gene representation of edge, and smart

mutation to speed up generations in Genetic Algorithm.

(3) The proposed approach empirically validates the

effectiveness of the generated test cases by executing

generated Robotium scripts on Android mobile device to

find out code coverage and defect removal efficiency.

(4) The proposed approach empirically evaluates that

there is a significant reduction in test case number using

this approach.

(5) A new genetic operator called Genetic History (GH)

is introduced to copy genetic information so far evolved

to offspring.

(6) This work empirically evaluates that there is a

significant performance improvement in GA after using

GH.

This paper is organized as follows. Section 2

summarizes the related works. Section 3 introduces the

path explosion problem and method for generating BP

test cases. Section 4 illustrates the approach in detail,

followed by Section 5 describing the experimental setup.

Section 6 presents the results of the experiments

conducted on many real subject systems. Section 7

compares this approach with other existing approaches.

Finally, Section 8 concludes the paper and anticipates the

future work.

II. RELATED WORK

Different test generation methods are present in the

literature [1]. Different algorithms are used for generating

tests such as Depth First Search (DFS), Breadth First

Search (BFS), Genetic Algorithm [2], recursive algorithm,

Ant Colony Optimization (ACO), Cuckoo, etc. Different

inputs are used for generating tests such as UML State

diagram, Activity diagram, Sequence diagram, source

code, etc. Different coverage criteria such as node

coverage, edge coverage, path coverage, etc. are used for

finding the effectiveness of algorithms.

A. Search Based Test Generation

In [3] and [4], Zhao et al. proposed search-based test

generation techniques. In [3], a binary tree structure is

used as input, GA is used to shape generation, and

constraint solving technique is used to value generation.

The effectiveness of generated test is evaluated by

running tests on a C program. The study proves that the

test generation cost is cubically increasing with the

increase of the number of pointer constraints. In [4], GA

is used to generate feasible paths from Finite State

Machine (FSM) models. An empirical study is done to

find key factors which affect the test generation. The

study proves that the number of numerical equal

operators present in condition influence the number of

generations required to get a feasible path.

Srivastava et al. [6-9] proposed search-based

techniques to generate the test sequence. In [6], a Control

Flow Graph (CFG) from code is created, and different

weights are assigned to edges based on criticality. A

Genetic Algorithm traverses through this CFG, finds

more critical paths and generates test cases for only those

paths. In [7], a state-transition model of the system is

used as input, and an optimal test sequence is selected

after traversing through the directed graph using Ant

Colony Optimization (ACO) technique. This method

ensures both state and transition coverage. In [8], a firefly

algorithm is used to generate optimal paths with the

reduction in number while comparing with independent

paths. A State Transition Diagram (STD) and CFG are

used as inputs to the algorithm, and a guidance matrix is

generated from adjacency matrix which guides the

traversal. In [9], a set of critical paths is selected using

Cuckoo search algorithm, taking State diagram as input

and generates optimal test sequences as output. An

empirical study is done to find the effectiveness of this

approach and found that the state and transition coverages

are outperformed. Similarly, other approaches [5], [11-

13], [17], [26] use search-based techniques to generate

test sequences.

B. UML State Diagram Based Testing

In literature, many approaches [18-21] are available for

generating tests from UML State diagram. In [18],

Samuel et al. proposed a function minimization technique

to create optimal test sequences from UML State diagram

to achieve transition coverage. In [19], Ranjitha et al.

suggested a function minimization technique to traverse

through UML State diagram and generate optimal test

sequence to achieve state, transition, transition pair, and

full predicate coverage. In [20], Santhosh et al. proposed

an approach to traverse through combined State and

Activity diagrams called SAD to achieve state and

activity path coverage. In [21], Shirole et al. proposed

GA based technique to traverse through EFSM diagram

and generate a set of feasible path test sequences to

achieve data flow coverage. Similarly, other approaches

[22], [25] generate test cases from UML diagrams.

C. Executable Test Generation

In literature, many approaches [14-16] are available for

Android testing. In [14], Nguyen et al. proposed a method

to combine both model-based testing and combinatorial

testing techniques to generate test sequences. UML State

diagram is used as input, the classification tree is used for

38 Basis Path Based Test Suite Minimization Using Genetic Algorithm

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

designing tests, and Robotium or Selenium scripts are

created. The effectiveness of the approach is evaluated by

finding code coverage and mutation coverage. In [15],

Mahmood et al. proposed a GA based approach called

Evodroid to traverse through the code, find segments in

the code, links the segments using Call Graph Model

(CGM), and generates test sequence to achieve better

code coverage. From the test sequences, Robotium scripts

are generated, and Emma is used for finding code

coverage. In [16], Aravind et al. proposed an approach

called Dynodroid which employs Executor to produce

Android events using Monkeyrunner tool, an Observer to

find next possible events to be triggered using Hierarchy

viewer and SDK, a Selector to select appropriate next

event. The effectiveness of this approach is evaluated by

obtaining code coverage. Similarly, other approaches [23],

[24] generate executable tests from UML diagrams.

III. TEST GENERATION USING GA

In this section, the path explosion problem is explained

in detail. The relevant keywords and their definitions are

given. The method to generate executable test cases from

SCD is described in detail.

A. Path explosion problem

The path explosion problem is explained from SCD as

shown in Figure 2. There are three choices namely

choice1, choice 2 and choice 3. The number of branches

present in choices is two, three, and four respectively.

Since all decisions are found in the same path, the

number of test cases is the multiplication of the number

of branches which is equal to 24. The Cyclomatic

Complexity (CC) of this SCD is seven. The number of

BP test cases generated from this SCD is 7 which is equal

to CC. In this case, the number of test cases is reduced by

71%.

B. Definitions

The definitions for some relevant keywords used in

this paper are given below

All path coverage

All path coverage is a white-box testing concept that

considers the possible paths of the software under test.

Basis path

Basis path (sometimes called independent path)

through the program is any path from starting node to

terminal node that introduces at least one new set of

processing statements or a new condition.

Test coverage

Test coverage is defined as a technique which

determines whether the test cases are covering the

application code and how much code is exercised when

we run those test cases.

Code coverage

Code coverage is a measure used to describe the degree

to which the source code of a program is executed when a

particular test suite runs.

Fig.1. Key steps of the proposed approach for generating

executable test scripts.

C. Proposed method

The proposed framework is based on UML State Chart

Diagram (SCD) based testing. The major steps involved

in this approach are illustrated in a block diagram as

shown in Figure 1. In this approach, SCD is created to

capture input scenarios. The XML Metadata Interchange

(XMI) file obtained from this SCD is parsed to extract

model information such as States, Transitions, and their

labels. GA is used to obtain Basis Path (BP) test cases

from States and Transitions. From label names, the

Robotium APIs are identified. The parameters for these

APIs are determined from Transitions and menu tree

database. Finally, test scripts are generated using String

template tool.

Algorithm 1. Genetic Algorithm for Finding Bais Paths

 Basis Path Based Test Suite Minimization Using Genetic Algorithm 39

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

Algorithm 2. Genetic Algorithm for Identifying APIs

1) XMI Parser

A UML State Chart Diagram as shown in Figure 2 is

created using Papyrus tool. This SCD is represented in

the form of XMI notation and saves as *.uml file. This

XMI file is parsed using SAX parser and then different

SCD components such as States, Transitions and Labels

are extracted.

2) Basis Path Test Case Generation

When multiple decisions of an SCD present in the

same path, path explosion occurs as shown in Figure 2.

There are 24 different paths are possible to derive from

this SCD. A Genetic algorithm is developed to reduce the

number of paths to less than or equal to Cyclomatic

complexity computed from the SCD. The coverage

criteria to stop generating the paths is all States, and all

Transitions are covered. This method ensures a reduced

number of test cases are generated, even though path

explosion occurs. In the case of sample SCD, seven BP

test cases are created as shown in Figure 2. Algorithm1

shows GA which is used to generate BP test cases.

Fig.2. Sample State Chart Diagram and corresponding Basis Path test cases.

GA generates BP test cases from States, Transitions,

and Labels. A chromosome is defined as a set of genes.

An edge is encoded as a gene. The length of the

chromosome is equal to the number of edges in an SCD.

A population is generated with several random

chromosomes using the roulette wheel selection method.

The population evolves by applying genetic operators

such as multiple cross-over and smart mutation with a

configured value of the crossover probability and

mutation probability respectively. A smart mutation is

defined to change a gene to the adjacent edge. Also,

mutation changes a gene if any edge is missing in the

generated BP. A fitness function is defined to evaluate

the fitness value of a chromosome. The fitness value

increases if the genes are adjacent edges to form a BP and

decreases with a penalty if the genes are not adjacent. A

new genetic operator called Genetic History (GH) is

introduced to copy the best genes to offspring while

initializing next generation chromosomes. GH acts as a

catalyst to speed up the BP test case creation. GA exits if

all edges, all nodes are included in the created BP test

cases.

3) Identify APIs

The Robotium APIs are identified by parsing

Transition in an SCD. A Transition consists of multiple

words separated by an underscore (_), for example,

click_onbutton_open. The last word is considered as the

parameter. The rest of the words constitute the String

Under Evaluation (Se). A set of string matching

algorithms such as Longest Common Substring, Longest

Common Subsequence and Levenshtein Distance

algorithm is used to process Se and identify the candidate

APIs from API database of the target language. In our

approach, Robotium is the target language. Genetic

Algorithm is used to identify the right target API from the

40 Basis Path Based Test Suite Minimization Using Genetic Algorithm

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

candidate APIs.

Robotium APIs are determined from the transition

labels. For example, from the label click_onEditText_ID0,

Robotium API driver.clickOnEditText(0) is identified.

For this purpose, Genetic Algorithm is used to compare

strings and identify matching strings intuitively. GA

employs the above string matching algorithms to identify

Robotium API. Table 1 show SCD labels and their

corresponding Robotium APIs, which are identified using

GA. Algorithm 2 shows the GA which is used to identify

Robotium APIs [24].

Table 1. SCD Labels and Their Corresponding Robotium APIs

The SCD label consists of two parts such as API name

and parameter. API name is user-friendly, readable string

connected with the underscore, whereas parameter often

consists of keyword ‘ID’ and a number indicating index

value as shown in Table 1. For example, in the case of

click_oncheckbox_ID0, “click_oncheckbox” represents

API name and ID0 represents index value 0 to be passed

as an argument to the API. In the case of

set_progressbar_ID0_15, a second parameter for setting

progress bar value is given as ‘15’. In the case of

click_onbutton_open, the button name to be clicked is

given as “open”. Even though user entered an inaccurate

menu name “open”, an incorrect menu name “Open” is

obtained from Menu Tree (MT) database. In the case of

go_back, there is no argument involved.

4) Identify Parameter

The parameter in SCD label represents menu item to be

handled by the phone. For example, in the case of

click_onmenu_save, the menu item to be clicked is given

as “save”. But actually, it is displayed as “Save” on the

phone. In this case capital letter “S” is missing on the

label. The parameter is compared with strings present in

Menu tree database, and the correct string is obtained to

handle this situation.

The Menu tree algorithm as shown in Algorithm 3,

identifies layouts such as linear layout, relative layout,

frame layout, etc. From these layouts, it extracts User

Interface (UI) objects such as text, buttons, etc. When it

clicks one text item, it checks whether new page or popup

is opened. If it is a new page, it recursively calls itself to

do the learning of the new UI objects. If the UI object is a

popup or a button, it is handled differently. In this way,

all UI objects are learned, and then each item is clicked

based on the type of widget. The type of widget can be

text, radio button, button with text, button with

description, system event such as back key press, and

home key press.

Algorithm 3. Menu tree Generation

ALGORITHM :: Menu TreeGeneration (){
I. Extract widgets in current screen and add in stack
II. Take one widget from stack
III. Check stack is empty
IV. IF empty, RETURN
V. IF widget type = text, click and wait for new window
VI. Store widget name, widget type, path from root into Sqlite DB
VII. IF new window = new page, CALL ‘MenuTreeGeneration’
VIII. ELSE IF new window = popup, handle popup
IX. GOTO II
}

Menu tree algorithm stores all UI menu items along

with its path from root and type of widget in an SQLite

database, as shown in Figure 3. The type of menu item is

stored under column ‘widtype’ which can be TextView,

CheckedText, Button, CheckBox, etc. The menu item is

stored in ‘widname’ column. The path traced by the

Menu tree algorithm is stored under ‘rootpath’ column

for each menu item. The menu item that is extracted from

the SCD label is compared with each string under

‘widname’ column, and closest match is retrieved. In this

way, even though user provides an incorrect menu value

in SCD label, an accurate menu value is obtained from

MT database.

Fig.3. Menu tree database.

 Basis Path Based Test Suite Minimization Using Genetic Algorithm 41

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

5) Generate Robotium Scripts

String Template tool is used to generate Java source

code after identifying Robotium APIs from Basis Path

test cases. These Java files are executed from Eclipse

environment with Android JUnit plug-in on the target

which is either Emulator or Android mobile device. The

result of the test case is displayed as Pass if every API in

the test case is executed successfully.

IV. ILLUSTRATION

The proposed method is illustrated with the SCD of

Body Mass Index (BMI) calculator application as shown

in Figure 4. BMI SCD is created using Papyrus tool. It

consists of 13 nodes, 14 edges and its CC is 3. The test

scenario is captured in this SCD. The transition label is

carrying API name and its argument.

From the SCD, BP test cases are generated by GA, and

then Robotium scripts are generated. Figure 4 shows the

generated Robotium scripts. There are two choices in

BMI SCD with each having two branches. So, it is

possible to derive four test cases from this SCD. But only

three BP test cases are generated by GA and number of

test cases reduced by 25%. The code coverage achieved

by these test cases is 89%, and the defect removal

efficiency is 100%. This result shows this approach is

effective and satisfactory.

V. EXPERIMENTAL SETUP

The experimental approach is simple and

straightforward. Papyrus tool is used to make the SCD. A

tool called Virtual Test Engineer (VTE) is developed to

parse the XMI file from the SCD and extract nodes, edges,

and labels. There are 10 Android applications taken for

evaluation. The number of all paths from the SCDs is

varying from 4 to 2048 for the Applications Under

Evaluation (AUE). These paths are optimized by the GA

which generates the BP test cases. The Robotium scripts

that are generated from the BP test cases are executed on

the corresponding AUE. Finally, code coverage analysis

and mutation analysis are performed to find out the

effectiveness of this approach.

A. Subjects for experiments

There are ten different Android applications are

downloaded from F-Droid application portal with varying

size from 243 to 11442 Lines Of Codes (LOC) as shown

in Table 3. These applications are built with either

Eclipse or Android Studio platform. The corresponding

SCDs are constructed using Papyrus tool with varying

nodes from 13 to 73 and edges from 14 to 88. The CC of

these SCDs is ranging from 3 to 20 as shown in Table 3.

The all path test cases from these SCDs are varying from

4 to 2048.

Table 2. Time Taken for the Generation With/Without Genetic History

Fig.4. BMI SCD and Robotium scripts.

42 Basis Path Based Test Suite Minimization Using Genetic Algorithm

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

B. Test generation

A Genetic Algorithm is developed to generate BP test

cases from SCD as shown in Algorithm 1. Initially, the

smart mutation was not applied, and GA took more time

to find BP test case. Sometimes, it was not converging to

locate the solution till it reaches maximum generations.

The maximum generation is defined as 100000

generations with multiple crossovers. An edge is defined

as a gene, a chromosome is a set of genes, and the length

of the chromosome is equal to the number of edges. The

encoding of an edge is done with the number equal to the

order it appears in the XMI file. The fitness function is

defined as shown in Algorithm 1. Whenever adjacent

edges are found on a chromosome, the fitness value

increases. When there is no adjacent edge found, a

penalty is given. When the adjacent edge has the final

node as the target node, the objective function score is

made 0. This is considered to be a successful generation

of a BP test case. A smart mutation is applied to speed up

the generation, to replace a nonadjacent edge with an

adjacent edge. Also, smart mutation periodically checks

any edge is missing, if so, replaces that edge in its order

and position. After applying smart mutation, GA

converges and finds the solution quickly as the time taken

for the generation is reduced as shown in Table 2. To

further optimize GA performance, a new genetic operator

known as Genetic History (GH) is applied. The following

steps are followed to apply GH:

1. Get Basis path

2. Find next missing edge

3. Find the previous edge for this missing edge

4. Search this previous edge in existing Basis paths

5. If found, take history sequence of genes from start

edge to this missing edge

6. Initialize all chromosomes in the pool, with this

history sequence of genes

7. Now GA evolves and solves with reduced number

of generations and time

GA ensures the node coverage, and the number of

generated BP test cases is less than or equal to CC. The

following configurations are used for GA:

Population size = 200

Maximum generations = 100000

Cross over probability = 0.5

Mutation probability = 0.15

Tournament selection size = 10

Basic metrics

Table 3. Basic Metrics

The basic metrics are as shown in Table 3. The

definition of key metrics are given below:

Number of Nodes (NON): The number of nodes that are

present in the SCD

Number of Edges (NOE): The number of edges that are

present in the SCD

Cyclomatic Complexity (CC): It is calculated as

CC=NOE-NON+2

Number of BP test cases (NOBP): The number of BP

test cases that are generated by GA

Number of All Path test cases (NOAP): the number of

all path cases resulted from the path explosion

Percentage reduction in number (PRIN): It is calculated

as the ratio of NOBP and NOAP

Executable Lines Of Codes (ELOC): The executable

lines of code that are present in an application

Percentage code coverage (PCC): It is calculated as the

ratio of LOC covered and ELOC

Number of Menu Items Found (NOMIF): The total menu

items including the missed menu items

Number of Menu Items Missed (NOMIM): The menu

items that are missed to capture by MT algorithm

Efficiency of MT Algorithm (EOMTA): The ratio of MT

captured (NOMIF-NOMIM) and NOMIF

Number of Mutations (NOM): The number of mutants

that are generated by the Jester tool

Number of Not Killed Mutations (NONKM): The

number of mutants that are not killed by the Jester tool

 Basis Path Based Test Suite Minimization Using Genetic Algorithm 43

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

Defect Removal Efficiency (DRE): The ratio of mutants

killed (NOM-NONKM) and NOM

Similarly, GA metrics are shown in Table 2 and defined

as follows:

Time Taken With Genetic History (TTWGH): The time

taken by the GA to generate the BP test cases with

Genetic History

Time Taken WithOut Genetic History (TTWOGH): The

time taken by the GA to generate the BP test cases

without Genetic History

Generations With Genetic History (GWGH): The

number of GA generations required to generate the BP

test cases with Genetic History

Generations WithOut Genetic History (GWOGH): The

number of GA generations required to generate the BP

test cases without Genetic History

C. Data collection

Time taken by GA to generate BP test cases for the

SCD is captured with and without mutation as TTWM

and TTWOM. For every application, the corresponding

test scenarios are captured in the SCD. An MT database

is generated from this application using the MT tool.

NOMIF, NOMIM are captured, and then EOMTA is

calculated. The XMI file from SCD and MT database are

given as inputs to VTE. VTE generates BP test cases and

Robotium scripts. NOBP and NOAP are captured, and

then PRIN is calculated. These scripts are executed on

corresponding Android application to find code coverage.

EMMA and JACOCO tools are used to capture code

coverage. These tools provide ELOC and LOC covered

information. PCC is calculated from this information. The

Jester tool is used to generate the mutants and execute the

mutant programs; as a result, NOM and NONKM are

captured. Finally, DRE is calculated from NOM and

NONKM.

VI. EXPERIMENTAL RESULTS

In this section, the performance of GA is examined

through statistical analysis and effectiveness of this

approach is validated through the code coverage and the

DRE metrics. TTWM and TTWOM are analyzed

statistically to find out that the time taken by the GA to

generate the BP test cases is reduced significantly. Chi-

squared test, Box plot, 2T test and Lavene test are

performed to conclude. Similarly, NOBP and NOAP are

statistically analyzed to find out that the number of test

cases is reduced significantly.

A. Analysis and Discussion

Research Question 1 (Performance): Any significant

improvement is achieved in GA performance?

1) Analysis of Time Taken by GA

The values of TTWGH and TTWOGH and the

corresponding mean values are plotted in Figure 5. The

values of TTWOGH are fluctuating, whereas values of

TTWGH are almost stable. The mean values show there

is a substantial reduction in time taken for generation of

Basis Paths.

Fig.5. TTWGH Vs. TTWOGH Mean Values

Fig.6. GA time taken analysis (a). Box plot (b). Levene’s test (c). 2T test (d). Wilcox test.

44 Basis Path Based Test Suite Minimization Using Genetic Algorithm

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

TTWGH and TTWOGH are analyzed using R Studio

as shown in Figure 6. Box plot and Levene’s test are

performed to check whether the variants of TTWGH and

TTWOGH are equal. The 2T test is carried out to check

TTWGH and TTWOGH are from two independent

groups.

The statistical results are analyzed, and the following

conclusions are drawn:

1. Box plot shows the variances of TTWGH and

TTWOGH are not equal

2. Levene’s test shows p-value is lesser than 0.05. So,

the null hypothesis is rejected. It is concluded that

two variances are not equal

3. 2T test shows the mean values of TTWGH and

TTWOGH are 0.43 and 18.2 respectively. It is

concluded that TTWGH and TTWOGH are two

different groups

4. Wilcox test shows that p-value is lesser than 0.05.

So null hypothesis is rejected, and it is concluded

that TTWGH and TTWOGH are independent

groups.

The conclusion is TTWGH and TTWOGH are having

two different mean values like 0.43 and 18.2 respectively.

There is a significant reduction in time taken for the

generation.

2) Analysis of Number of Generations

The values of GWGH and GWOGH and the

corresponding mean values are plotted in Figure 7. The

values of GWOGH are fluctuating, whereas values of

GWGH are almost stable. The mean values show there is

a substantial reduction in the number of GA generations

to derive the Basis Paths.

GWGH and GWOGH are analyzed using R Studio as

shown in Figure 8. Box plot and Levene’s test are

performed to check whether the variants of GWGH and

GWOGH are equal. The 2T test is carried out to check

GWGH and GWOGH are from two independent groups.

Fig.7. GWGH Vs GWOGH Mean Values.

Fig.8. Number of GA generations analysis (a). Box plot (b). Levene’s test (c). 2T test (d). Wilcox test.

The statistical results are analyzed, and the following

conclusions are drawn:

1. Box plot shows the variances of GWGH and

GWOGH are not equal

2. Levene’s test shows p-value is lesser than 0.05. So,

the null hypothesis is rejected. It is concluded that

two variances are not equal

3. 2T test shows the mean values of GWGH and

GWOGH are 77.1 and 19956 respectively. It is

concluded that GWGH and GWOGH are two

different groups

4. Wilcox test shows that p-value is lesser than 0.05.

So, the null hypothesis is rejected, and it is

concluded that GWGH and GWOGH are two

distinct groups.

The conclusion is GWGH and GWOGH are having

two different mean values as 77.1 and 19956 respectively.

There is a significant reduction in time taken for the

generation.

3) Analysis of Number of BP Test cases

Research Question 2 (Efficiency): Any significant

reduction in the number of generated test cases is

obtained in the case of path explosion?

 Basis Path Based Test Suite Minimization Using Genetic Algorithm 45

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

The values of NOAP and NOBP and their

corresponding mean values are plotted as shown in

Figure 9. Path explosion is visible in NOAP whereas

NOBP is stable. It is evident from mean values that a

substantial reduction results in the case NOBP.

NOBP and NOAP are analyzed statistically using R

Studio as shown in Figure 10. Box plot and Levene’s test

are performed to check whether the variants of NOBP

and NOAP are equal. Wilcox test and Chi-squared test

are carried out to check NOBP and NOAP are from two

independent groups.

Fig.9. NOAP Vs. NOBP Mean Values.

Fig.10. Test case reduction analysis (a). Box plot (b). Levene’s test (c). Wilcox test (d). Chi-squared test.

The statistical results are analyzed and following

conclusions are drawn:

1. Box plot shows the variants of NOBP and NOAP

are equal if two outbound values are removed

2. Levene’s test shows p-value is greater than 0.05.

So, the null hypothesis is not rejected. It is

concluded that two variants are equal if outbound

values are removed

3. Wilcox test shows that the mean values of NOAP

and NOBP are 425.8 and 10.0 respectively. The P-

value is less than 0.5. The conclusion is NOBP

and NOAP are two different groups.

4. The chi-squared test shows that p-value is greater

than 0.05. So, the null hypothesis is not rejected,

and it is concluded that NOBP and NOAP are

independent groups.

The conclusion is NOBP and NOAP are having two

different mean values as 10 and 425.8 respectively. There

is a significant reduction in the number of test cases.

4) Effectiveness of BP Test cases

Research Question 3 (Effectiveness): Are the generated

Basis Path test cases effective?

Figure 11 shows code coverage achieved by generated

BP test cases varies from 64% to 89% and the average is

74%. The ELOC is ranging from 243 to 11442. The DRE

is ranging from 88% to 100%, and the average is 95%.

The Fault/Test varies from 0.4 to 3.3. The efficiency of

generated tests is measured by Fault/Test. For example,

in the case of Fault/Test is 3.3, it means that 3.3 mutants

are killed by 1 test case.

The code coverage achieved by the proposed approach

is benchmarked with the other methods available in the

literature as shown in Figure 12 (a). It is greater than that

of Android monkey, Dynodroid [16] and Magic [14]. The

values of Monkey, Dynodroid, and Magic are 33.8%,

53.3%, and 58.8% respectively. The code coverage

achieved by Monkey is low because it generates random

events to simulate user actions such as touch events.

Dynodroid also uses Monkey tool to generate random

events and selects appropriate events required for SUT.

46 Basis Path Based Test Suite Minimization Using Genetic Algorithm

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

Both the tools are not generating effective test cases.

Magic is generating test cases systematically. In [14], the

constraints are added manually. In the proposed approach,

decisions are used in State diagram to add constraints.

This approach helps to improve the code coverage.

Figure 12 (b) benchmarks Fault/Test factor of the

proposed approach with that of Magic [14]. It is found

that the proposed approach is capable of finding more

defects per test case. Fault/Test factor of the proposed

approach is 2.01 whereas that of Magic is 0.31. From

these results, it is concluded that the proposed method is

effective and the results are satisfactory.

Fig.11. Code coverage and DRE.

(a) (b)

Fig.12. (a). Code coverage bench marked (b).Fault/Test bench marked.

B. Threats to validity

The different subject program may lead to different

experimental results. The proposed approach is expected

to work with any native, non-native applications and

application with 3
rd

 party libraries. Sometimes menu

items are not captured by the MT algorithm. In this case,

manually menu item needs to be added to MT database

for adding the right argument to the API. The subject may

crash in a particular scenario. The generated test case

may not handle this situation and may lead to stopping

the execution. In this case, it may not allow performing

both the code coverage analysis and the mutation analysis.

The Jester tool is running only if all the test cases are

passing. If subject under evaluation has inherent hang or

crash, it may affect the validation of this approach. The

next biggest threat is Papyrus tool. It frequently crashes

while saving the SCD. This leads to unwanted transitions

added in XMI file. Because of this, the test case

generation logic may not work properly. It is better to

remove these unwanted transitions to have better and

faster generations. Another issue is the Jester

configuration. The mutant operators are selected based on

the Intent payload, Intent target, on click events, button

widget, edit text widget, etc. If the mutant operator is not

properly selected, the mutant may not be killed which

may affect the DRE.

VII. COMPARISON WITH OTHER METHODS

The proposed approach is compared with other

methods. Table 4 shows the comparison of the proposed

approach with other methods concerning different

parameters. The input UML diagram, test case generation,

test script generation, code coverage, mutation analysis,

test case optimization, menu tree usage, Evolutionary

algorithm usage are the parameters that are compared.

In [14], the State diagram is used for test generation

and script generation. The test cases are optimized using

the combinatorial technique, both the code coverage and

the mutation analysis are performed to evaluate the

effectiveness of the generated test cases. The proposed

approach exhibits better results compared with [14]. The

main drawback of [14] is menu tree is not used for the

menu item identification. Also, API identification needs a

manually created XML mapping file.

In [15], the source code is directly used to generate test

sequences. Test cases are generated by GA, and

Robotium scripts are generated. Code coverage is

excellent, but mutation analysis is not done. The main

drawback of this method is that it is not generating test

 Basis Path Based Test Suite Minimization Using Genetic Algorithm 47

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

cases for Android applications that are having native code

and libraries.

In [16], a method called “observe-select-execute” is

used to find test sequences. But there is no concrete test

case or test script. The code coverage is not good, and

mutation analysis is not performed.

Table 4. Comparison with Other Methods

Android monkey randomly generates events and try to

do monkey test. It may not traverse through all menu

trees. The number of events required to traverse a path is

not predictable. Test coverage is not guaranteed and the

code coverage is very low.

In [4], GA is used to find test sequence, but scripts are

not generated. Statistical analysis is performed to prove

that number of numerical equal operators in conditions

plays a very important role in test generation efficiency.

The code coverage and the mutation analysis are not

carried out to find the effectiveness of the generated test

cases.

In [7], Ant Colony Optimization is used to generate

test sequences. An optimal test sequence is generated

with transition coverage. But test scripts are not generated.

Test coverage is not ensured.

In [21], the State diagram is used as input to generate

test cases using a GA. JUnit based test scripts are

generated from these test sequences. Only feasible path

test cases are generated by eliminating infeasible paths.

But the code coverage and the mutation analysis are not

performed to find the effectiveness of the generated test

cases.

The previous works [23] and [24] are not considering

any algorithm performance improvement and the test case

optimization. A Sequence diagram is used as input in [23],

and Activity diagram is used in [24]. In [23], XML based

test cases are generated and wrapped in Android APK.

The proposed approach and [23] are using library

functions, but [24] is not using the library function. In

[24], a recursive algorithm is used to generate test cases

whereas in proposed approach GA is used to generate test

cases.

VIII. CONCLUSIONS

In this paper, the path explosion problem that occurs

when multiple decisions are present in the same path of

the SCD and the proposed solution are discussed. When

path explosion happens, the number of all path test cases

is large, and it is not practical to use these test cases. In

this paper, a method is discussed generating Basis Path

(BP) test cases from SCD which are reduced in number,

still retaining the test coverage. An SCD is created to

represent test scenarios, and the XMI file from this SCD

is parsed to extract edges, nodes, and labels. Using this

information, BP test cases are generated using a Genetic

Algorithm (GA) with node coverage as the coverage

criteria which is the main contribution of this work.

Another contribution is finding a smart mutation to

improve the efficiency of the GA to reduce the time taken

for each generation. From these BP test cases,

corresponding Robotium scripts are generated by

identifying the right API names from the user inputs

provided in SCD. A Menu Tree (MT) database is

generated from target Android device which helps to

identify the right menu items from the user inputs, even

though the user inputs are not accurate concerning menu

items. These menu items are used as arguments to the

APIs.

After introducing the smart mutation, the time taken by

each generation of GA is reduced to an average of 430

milliseconds with the Genetic History (GH) compared to

an average of 18 seconds without GH. The generated

scripts are evaluated by executing the scripts on the target

Android mobile phone. There are 10 Android

applications identified for experimentation with varying

number of Lines Of Code (LOC) from 243 to 11442. The

corresponding all path test cases for these applications

vary from 4 to 2048 whereas the reduced BP test cases

vary from 3 to 17. There is a significant reduction in the

test case number by an average of 70%. The GA

performance is measured which is varying from 6 to 37

seconds to find a BP test case. The MT efficiency is

48 Basis Path Based Test Suite Minimization Using Genetic Algorithm

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

varying from 64% to 100% with an average of 91%. The

experimental results show that the average code coverage

is 74% and the average Defect Removal Efficiency (DRE)

is 95%. This result shows the proposed approach is

effective and satisfactory.

In future, this work will be extended to explore more

Artificial Intelligence (AI) methods to generate test data.

This approach will ensure more test coverage with

improved DRE in a cost-effective manner.

REFERENCES

[1] Anirban Basu, Software Quality Assurance, Testing and

Metrics, PHI Learning, 2015.

[2] Goldberg, D.E, Genetic Algorithms: in search,

optimization and machine learning, Addison Wesley, M.A,

1989.

[3] Ruilian Zhao, Zheng Li, and Qian Wang. “Test Generation

for Programs with Binary Tree Structure as Input”,

International Journal of Software Engineering and

Knowledge Engineering, vol. 25, no. 07, pp. 1129-1151,

2015.

[4] Ruilian Zhao, Mark Harman and Zheng Li. Empirical

Study on the Efficiency of Search Based Test Generation

for EFSM Models, in the proceedings of Third

International Conference on Software Testing, Verification

and Validation, 2010.

[5] Zheng Li, Mark Harman, and Robert M. Hierons. Search

Algorithms for Regression Test Case Prioritization, IEEE

Transactions On Software Engineering, vol. 33, no. 4,

April 2007.

[6] P.R., Srivastava and Tai-hoon Kim, “Application of

genetic algorithm in software testing” International

Journal of Software Engineering and its Applications, vol.

3, no. 4, pp.87-96, 2009.

[7] P.R., Srivastava and Baby, “Automatic test sequence

generation for state transition testing via ant colony

optimization”, in: M. Chis, (Ed.), Evolutionary

Computation and Optimization Algorithms in Software

Engineering: Applications and Techniques, pp. 161–183,

2010.

[8] P.R., Srivastava, B. Mallikarjun, Xin-She Yang. “Optimal

test sequence generation using firefly algorithm”, Elsevier,

Swarm and Evolutionary Computation vol.8, pp44–53,

2013.

[9] P.R., Srivastava, Ashish Kumar Singh, Hemraj Kumhar,

Mohit Jain. “Optimal Test Sequence Generation in State

Based Testing Using Cuckoo Search”, International

Journal of Applied Evolutionary Computation, 3(3), 17-32,

July-September 2012.

[10] Pei Gong, Ruilian Zhao, Zheng Li. “Faster Mutation-

based Fault Localization With A Novel Mutation

Execution Strategy”, in the proceedings of IEEE Eighth

International Conference on Software Testing, Verification

and Validation Workshops (ICSTW), pp 1-10, 2015.

[11] R. Lefticaru and F. Ipate. “Automatic State-Based Test

Generation Using Genetic Algorithm”, in Ninth

International Symposium on Symbolic and Numeric

Algorithm for Scientific Computing, pp 188–195, 2008.

[12] Ernesto C. B. de Matos, Anamaria M. Moreira and João B.

de Souza Neto, “An empirical study of test generation

with BETA”, in Springer Journal of the Brazilian

Computer Society, vol. 22, no. 8, 2016.

[13] Premal B. Nirpal and K. V. Kale. Using Genetic

Algorithm for Automated Efficient Software Test Case

Generation for Path Testing, in International Journal of

Advanced Networking and Applications Vol. 02, No. 06,

pp. 911-915, 2011.

[14] C. D. Nguyen, A. Marchetto, and P. Tonella. "Combining

model-based and combinatorial testing for effective test

case generation", in Proceedings of the 2012 International

Symposium on Software Testing and Analysis (ISSTA),

pp. 100-110, 2012.

[15] R. Mahmood, N. Mirzaei, and S. Malek. "EvoDroid:

segmented evolutionary testing of Android apps", In

Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering

(FSE), pp. 599-609, 2014.

[16] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An

input generation system for android apps. In Proceedings

of the 2013 9th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2013, pages 224–234, 2013.

[17] Dan Liu, Xuejun Wang, Jianmin Wang, Automatic Test

Case Generation Based On Genetic Algorithm, Journal of

Theoretical and Applied Information Technology, Vol. 48

No.1 , 2013.

[18] P. Samuel R. Mall A.K. Bothra, "Automatic test case

generation using unified modeling language (UML) state

diagrams", The Institution of Engineering and Technology,

2008.

[19] Ranjita Swain, Vikas Panthi and Durga Prasad Mohapatra,

"Automatic Test case Generation From UML State Chart

Diagram", International Journal of Computer Applications,

vol. 42, no. 7, March 2012.

[20] Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib

Mall, “Test Case Generation Based on State and Activity

Models”, In Journal of Object Technology, vol. 9, no. 5,

pp. 1-27, 2010.

[21] M. Shirole, A. Suthar, and R. Kumar, "Generation of

Improved Test Cases from UML State Diagram Using

Genetic Algorithm," in Proceedings of the 4th India

Software Engineering Conference, pp. 125-134, 2011.

[22] Anbunathan R and Anirban Basu. "Auto Test Generation

from UML Use Case State Chart Diagrams", International

Journal of Advanced Research in Computer Science and

Software Engineering, Vol. 6, No.1, pp. 169-190, January

2016.

[23] Anbunathan R and Anirban Basu. "Automatic Test

Generation from UML Sequence Diagrams for Android

Mobiles", International Journal of Applied Engineering

Research, Vol. 11, No.7, pp. 4961-4979, 2016.

[24] Anbunathan R and Anirban Basu. "Executable Test

Generation from UML Activity Diagram Using Genetic

Algorithm", International Journal of Computer Science

and Information Technology & Security, Vol.7, No.3,

May-June 2017.

[25] Anbunathan R and Anirban Basu. "Dataflow test case

generation from UML Class Diagrams", IEEE

International Conference on Computational Intelligence

and Computing Research (ICCIC), pp 134-142, 2013.

[26] Rajesh Ku. Sahoo, Santosh Kumar Nanda, Durga Prasad

Mohapatra, Manas Ranjan Patra,"Model Driven Test Case

Optimization of UML Combinational Diagrams Using

Hybrid Bee Colony Algorithm", International Journal of

Intelligent Systems and Applications(IJISA), Vol.9, No.6,

pp.43-54, 2017.

 Basis Path Based Test Suite Minimization Using Genetic Algorithm 49

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 36-49

Authors’ Profiles

Dr Anbunathan R (www.anbunathan.xyz)

is an AMIE in Electronics and

Communication and MS in Embedded

System Design and received Masters from

Manipal University. He has pursued his

Ph.D. in Computer Science from Bharathiar

University. He has more than 20 years'

experience in Software development, Software testing and

Software Quality Engineering. His areas of expertise include

Automotive and Mobile software.

Dr Anirban Basu (www.anirbanbasu.in) is

a BE and MTech in Electronics and received

a Masters in Computer Science from

Carleton University, Canada and a PhD in

Computer Science for his work on High

Performance Computing. He has more than

35 years’ experience in Academia, advanced

Research &Development, commercial

Software Industry, Consultancy and Corporate Training.

How to cite this paper: Anbunathan R, Anirban Basu, "Basis

Path Based Test Suite Minimization Using Genetic Algorithm",

International Journal of Intelligent Systems and

Applications(IJISA), Vol.10, No.11, pp.36-49, 2018. DOI:

10.5815/ijisa.2018.11.05

http://www.anirbanbasu.in/

