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Abstract—UML State Diagram is used to represent the 

behavior of the System Under Test (SUT) when an event 

occurs. The state of the system is determined by the event 

that occurs randomly. The system state changes when the 

transition relationship between the States is satisfied. Test 

cases are generated from State Chart Diagram to test the 

behavior of the system. When multiple decision nodes are 

present in the same path, path explosion occurs. A 

method is proposed to generate Basis Path (BP) test cases 

with node coverage using Genetic Algorithm (GA) to 

overcome this problem. Experiments are conducted upon 

various Android applications and the efficiency of the 

algorithm is evaluated through the code coverage and the 

mutation analysis. Using this approach, BP test cases, 

Robotium test scripts are generated for 10 Android 

applications and observed an average of 70% reduction in 

the test case number concerning all path test cases. The 

resulted average code coverage is 74%, and Defect 

Removal Efficiency (DRE) is 95%. The experimental 

results show that the proposed method is effective when 

compared to other methods. 

 

Index Terms—Test automation, Genetic Algorithm, 

Executable Test generation. 

 

I.  INTRODUCTION 

Software testing involves both black box testing and 

white box testing. Unit test cases are derived from source 

code in the case of white box testing. System and 

functional test cases are derived from requirements in the 

case of black box testing. Unified Modeling Language 

(UML) State Chart Diagram (SCD) is used to capture 

user scenarios, and test cases are generated from SCD. 

Although software testing is having substantial 

contributions towards test generation from State Chart 

Diagrams [3], [4], [7], [9], [18], [19], test generation for 

the SCD remains an open research problem. These 

methods missed discussing path explosion problem when 

multiple decisions are present in the same path. These 

paths increase exponentially by the multiplication factor 

equal to the number of branches present in the decisions. 

As path explosion problem results in a large number of 

test cases, all path test cases generated from SCD are not 

practically usable. The objective of this paper is to create 

BP test cases using a Genetic Algorithm (GA) and reduce 

the number of test cases to solve path explosion problem. 

Although similar approaches are present in literature, the 

effectiveness of the approach is not quantitatively 

analyzed. In the proposed method, SCD is used as input, 

and the diagram components such as edges, labels, nodes 

are extracted from SCD, Basis Path test cases are 

generated by GA, and Robotium scripts are generated by 

identifying Application Programming Interfaces (APIs), 

and their arguments. A menu tree database is extracted 

from the target Android device, which helps to provide 

the exact menu item to be used in API’s argument, even 

though user input is not accurate.  

The existing test generation methods [14-16] focus on 

only code coverage and mutation analysis to validate 

their approach. The performance improvement of the 

algorithms involved in their methods is not empirically 

evaluated. This work leads to the following research 

questions: 

 

1. Any significant improvement is achieved in GA 

performance? 

2. Any significant reduction in the number of 

generated test cases is achieved in the case of path 

explosion? 

3. Are the generated Basis Path test cases effective? 

 

In this paper, an empirical study is done to compare all 

path and BP test cases, to prove there is a significant 

reduction in the number of BP test cases compared to all 

path test cases. Statistical analysis is done with these two 

data, and the 2T test is performed to prove a significant 

reduction in number. Also, GA performance is improved 

by applying a smart mutation, and the effectiveness is 

empirically evaluated. The number of generations with 

and without the smart mutation is statistically analyzed, 

the 2T test is performed to prove there is a significant 

reduction in the number of generations in the case of 

smart mutation is applied. Finally, the approach is 
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evaluated by executing the generated test cases on ten 

different Android applications. The code coverage is 

found using EMMA and JACOCO tools, and the 

mutation analysis is performed using Jester tool. EMMA 

is used for Eclipse based Android applications whereas 

JACOCO is used for Android Studio based applications. 

The study shows that the average code coverage is 74% 

and defect removal efficiency is 95% for Android 

applications, which is encouraging.  

The primary contributions of this paper are 

 

(1) This work presents a novel approach that generates 

Basis Path based optimized executable test cases using 

Genetic Algorithm with UML State Chart Diagram as 

input. 

(2) This work proposes a chromosome representation 

of Basis Path, gene representation of edge, and smart 

mutation to speed up generations in Genetic Algorithm. 

(3) The proposed approach empirically validates the 

effectiveness of the generated test cases by executing 

generated Robotium scripts on Android mobile device to 

find out code coverage and defect removal efficiency. 

(4) The proposed approach empirically evaluates that 

there is a significant reduction in test case number using 

this approach. 

(5) A new genetic operator called Genetic History (GH) 

is introduced to copy genetic information so far evolved 

to offspring. 

(6) This work empirically evaluates that there is a 

significant performance improvement in GA after using 

GH. 

 

This paper is organized as follows. Section 2 

summarizes the related works. Section 3 introduces the 

path explosion problem and method for generating BP 

test cases. Section 4 illustrates the approach in detail, 

followed by Section 5 describing the experimental setup. 

Section 6 presents the results of the experiments 

conducted on many real subject systems. Section 7 

compares this approach with other existing approaches. 

Finally, Section 8 concludes the paper and anticipates the 

future work. 

 

II.  RELATED WORK 

Different test generation methods are present in the 

literature [1]. Different algorithms are used for generating 

tests such as Depth First Search (DFS), Breadth First 

Search (BFS), Genetic Algorithm [2], recursive algorithm, 

Ant Colony Optimization (ACO), Cuckoo, etc. Different 

inputs are used for generating tests such as UML State 

diagram, Activity diagram, Sequence diagram, source 

code, etc. Different coverage criteria such as node 

coverage, edge coverage, path coverage, etc. are used for 

finding the effectiveness of algorithms.  

A.  Search Based Test Generation 

In [3] and [4], Zhao et al. proposed search-based test 

generation techniques. In [3], a binary tree structure is 

used as input, GA is used to shape generation, and 

constraint solving technique is used to value generation. 

The effectiveness of generated test is evaluated by 

running tests on a C program. The study proves that the 

test generation cost is cubically increasing with the 

increase of the number of pointer constraints. In [4], GA 

is used to generate feasible paths from Finite State 

Machine (FSM) models. An empirical study is done to 

find key factors which affect the test generation. The 

study proves that the number of numerical equal 

operators present in condition influence the number of 

generations required to get a feasible path.  

Srivastava et al. [6-9] proposed search-based 

techniques to generate the test sequence. In [6], a Control 

Flow Graph (CFG) from code is created, and different 

weights are assigned to edges based on criticality. A 

Genetic Algorithm traverses through this CFG, finds 

more critical paths and generates test cases for only those 

paths. In [7], a state-transition model of the system is 

used as input, and an optimal test sequence is selected 

after traversing through the directed graph using Ant 

Colony Optimization (ACO) technique. This method 

ensures both state and transition coverage. In [8], a firefly 

algorithm is used to generate optimal paths with the 

reduction in number while comparing with independent 

paths. A State Transition Diagram (STD) and CFG are 

used as inputs to the algorithm, and a guidance matrix is 

generated from adjacency matrix which guides the 

traversal. In [9], a set of critical paths is selected using 

Cuckoo search algorithm, taking State diagram as input 

and generates optimal test sequences as output. An 

empirical study is done to find the effectiveness of this 

approach and found that the state and transition coverages 

are outperformed. Similarly, other approaches [5], [11-

13], [17], [26] use search-based techniques to generate 

test sequences. 

B.  UML State Diagram Based Testing 

In literature, many approaches [18-21] are available for 

generating tests from UML State diagram. In [18], 

Samuel et al. proposed a function minimization technique 

to create optimal test sequences from UML State diagram 

to achieve transition coverage. In [19], Ranjitha et al. 

suggested a function minimization technique to traverse 

through UML State diagram and generate optimal test 

sequence to achieve state, transition, transition pair, and 

full predicate coverage. In [20], Santhosh et al. proposed 

an approach to traverse through combined State and 

Activity diagrams called SAD to achieve state and 

activity path coverage. In [21], Shirole et al. proposed 

GA based technique to traverse through EFSM diagram 

and generate a set of feasible path test sequences to 

achieve data flow coverage. Similarly, other approaches 

[22], [25] generate test cases from UML diagrams. 

C.  Executable Test Generation 

In literature, many approaches [14-16] are available for 

Android testing. In [14], Nguyen et al. proposed a method 

to combine both model-based testing and combinatorial 

testing techniques to generate test sequences. UML State 

diagram is used as input, the classification tree is used for 
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designing tests, and Robotium or Selenium scripts are 

created. The effectiveness of the approach is evaluated by 

finding code coverage and mutation coverage. In [15], 

Mahmood et al. proposed a GA based approach called 

Evodroid to traverse through the code, find segments in 

the code, links the segments using Call Graph Model 

(CGM), and generates test sequence to achieve better 

code coverage. From the test sequences, Robotium scripts 

are generated, and Emma is used for finding code 

coverage. In [16], Aravind et al. proposed an approach 

called Dynodroid which employs Executor to produce 

Android events using Monkeyrunner tool, an Observer to 

find next possible events to be triggered using Hierarchy 

viewer and SDK, a Selector to select appropriate next 

event. The effectiveness of this approach is evaluated by 

obtaining code coverage. Similarly, other approaches [23], 

[24] generate executable tests from UML diagrams. 

 

III.  TEST GENERATION USING GA 

In this section, the path explosion problem is explained 

in detail. The relevant keywords and their definitions are 

given. The method to generate executable test cases from 

SCD is described in detail. 

A.  Path explosion problem 

The path explosion problem is explained from SCD as 

shown in Figure 2. There are three choices namely 

choice1, choice 2 and choice 3. The number of branches 

present in choices is two, three, and four respectively. 

Since all decisions are found in the same path, the 

number of test cases is the multiplication of the number 

of branches which is equal to 24. The Cyclomatic 

Complexity (CC) of this SCD is seven. The number of 

BP test cases generated from this SCD is 7 which is equal 

to CC. In this case, the number of test cases is reduced by 

71%. 

B.  Definitions 

The definitions for some relevant keywords used in 

this paper are given below 

All path coverage 

All path coverage is a white-box testing concept that 

considers the possible paths of the software under test. 

Basis path 

Basis path (sometimes called independent path) 

through the program is any path from starting node to 

terminal node that introduces at least one new set of 

processing statements or a new condition. 

Test coverage 

Test coverage is defined as a technique which 

determines whether the test cases are covering the 

application code and how much code is exercised when 

we run those test cases. 

Code coverage 

Code coverage is a measure used to describe the degree 

to which the source code of a program is executed when a 

particular test suite runs. 

 

 

Fig.1. Key steps of the proposed approach for generating 

executable test scripts. 

C.  Proposed method 

The proposed framework is based on UML State Chart 

Diagram (SCD) based testing. The major steps involved 

in this approach are illustrated in a block diagram as 

shown in Figure 1. In this approach, SCD is created to 

capture input scenarios. The XML Metadata Interchange 

(XMI) file obtained from this SCD is parsed to extract 

model information such as States, Transitions, and their 

labels. GA is used to obtain Basis Path (BP) test cases 

from States and Transitions. From label names, the 

Robotium APIs are identified. The parameters for these 

APIs are determined from Transitions and menu tree 

database. Finally, test scripts are generated using String 

template tool. 

Algorithm 1. Genetic Algorithm for Finding Bais Paths 
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Algorithm 2. Genetic Algorithm for Identifying APIs 

 
 

1)  XMI Parser 

A UML State Chart Diagram as shown in Figure 2 is 

created using Papyrus tool. This SCD is represented in 

the form of XMI notation and saves as *.uml file. This 

XMI file is parsed using SAX parser and then different 

SCD components such as States, Transitions and Labels 

are extracted. 

2)  Basis Path Test Case Generation 

When multiple decisions of an SCD present in the 

same path, path explosion occurs as shown in Figure 2. 

There are 24 different paths are possible to derive from 

this SCD. A Genetic algorithm is developed to reduce the 

number of paths to less than or equal to Cyclomatic 

complexity computed from the SCD. The coverage 

criteria to stop generating the paths is all States, and all 

Transitions are covered. This method ensures a reduced 

number of test cases are generated, even though path 

explosion occurs. In the case of sample SCD, seven BP 

test cases are created as shown in Figure 2. Algorithm1 

shows GA which is used to generate BP test cases.  

 

Fig.2. Sample State Chart Diagram and corresponding Basis Path test cases. 

GA generates BP test cases from States, Transitions, 

and Labels. A chromosome is defined as a set of genes. 

An edge is encoded as a gene. The length of the 

chromosome is equal to the number of edges in an SCD. 

A population is generated with several random 

chromosomes using the roulette wheel selection method. 

The population evolves by applying genetic operators 

such as multiple cross-over and smart mutation with a 

configured value of the crossover probability and 

mutation probability respectively. A smart mutation is 

defined to change a gene to the adjacent edge. Also, 

mutation changes a gene if any edge is missing in the 

generated BP. A fitness function is defined to evaluate 

the fitness value of a chromosome. The fitness value 

increases if the genes are adjacent edges to form a BP and 

decreases with a penalty if the genes are not adjacent. A 

new genetic operator called Genetic History (GH) is 

introduced to copy the best genes to offspring while 

initializing next generation chromosomes. GH acts as a 

catalyst to speed up the BP test case creation. GA exits if 

all edges, all nodes are included in the created BP test 

cases. 

3)  Identify APIs 

The Robotium APIs are identified by parsing 

Transition in an SCD. A Transition consists of multiple 

words separated by an underscore ( _ ), for example, 

click_onbutton_open. The last word is considered as the 

parameter. The rest of the words constitute the String 

Under Evaluation (Se). A set of string matching 

algorithms such as Longest Common Substring, Longest 

Common Subsequence and Levenshtein Distance 

algorithm is used to process Se and identify the candidate 

APIs from API database of the target language. In our 

approach, Robotium is the target language. Genetic 

Algorithm is used to identify the right target API from the 
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candidate APIs. 

Robotium APIs are determined from the transition 

labels. For example, from the label click_onEditText_ID0, 

Robotium API driver.clickOnEditText(0) is identified. 

For this purpose, Genetic Algorithm is used to compare 

strings and identify matching strings intuitively. GA 

employs the above string matching algorithms to identify 

Robotium API. Table 1 show SCD labels and their 

corresponding Robotium APIs, which are identified using 

GA. Algorithm 2 shows the GA which is used to identify 

Robotium APIs [24]. 

Table 1. SCD Labels and Their Corresponding Robotium APIs 

 
 

The SCD label consists of two parts such as API name 

and parameter. API name is user-friendly, readable string 

connected with the underscore, whereas parameter often 

consists of keyword ‘ID’ and a number indicating index 

value as shown in Table 1. For example, in the case of 

click_oncheckbox_ID0, “click_oncheckbox” represents 

API name and ID0 represents index value 0 to be passed 

as an argument to the API. In the case of 

set_progressbar_ID0_15, a second parameter for setting 

progress bar value is given as ‘15’. In the case of 

click_onbutton_open, the button name to be clicked is 

given as “open”. Even though user entered an inaccurate 

menu name “open”, an incorrect menu name “Open” is 

obtained from Menu Tree (MT) database. In the case of 

go_back, there is no argument involved. 

4)  Identify Parameter  

The parameter in SCD label represents menu item to be 

handled by the phone. For example, in the case of 

click_onmenu_save, the menu item to be clicked is given 

as “save”. But actually, it is displayed as “Save” on the 

phone. In this case capital letter “S” is missing on the 

label. The parameter is compared with strings present in 

Menu tree database, and the correct string is obtained to 

handle this situation.  

The Menu tree algorithm as shown in Algorithm 3, 

identifies layouts such as linear layout, relative layout, 

frame layout, etc. From these layouts, it extracts User 

Interface (UI) objects such as text, buttons, etc. When it 

clicks one text item, it checks whether new page or popup 

is opened. If it is a new page, it recursively calls itself to 

do the learning of the new UI objects. If the UI object is a 

popup or a button, it is handled differently. In this way, 

all UI objects are learned, and then each item is clicked 

based on the type of widget. The type of widget can be 

text, radio button, button with text, button with 

description, system event such as back key press, and 

home key press. 

Algorithm 3. Menu tree Generation 

ALGORITHM :: Menu TreeGeneration (){ 
I. Extract widgets in current screen and add in stack
II. Take one widget from stack
III. Check stack is empty
IV. IF empty, RETURN
V. IF widget type = text, click and wait for new window
VI. Store widget name, widget type, path from root into Sqlite DB
VII. IF new window = new page, CALL ‘MenuTreeGeneration’
VIII. ELSE IF new window = popup, handle popup
IX. GOTO II
}

 
 

Menu tree algorithm stores all UI menu items along 

with its path from root and type of widget in an SQLite 

database, as shown in Figure 3. The type of menu item is 

stored under column ‘widtype’ which can be TextView, 

CheckedText, Button, CheckBox, etc. The menu item is 

stored in ‘widname’ column. The path traced by the 

Menu tree algorithm is stored under ‘rootpath’ column 

for each menu item. The menu item that is extracted from 

the SCD label is compared with each string under 

‘widname’ column, and closest match is retrieved. In this 

way, even though user provides an incorrect menu value 

in SCD label, an accurate menu value is obtained from 

MT database. 

 

 

Fig.3. Menu tree database. 
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5)  Generate Robotium Scripts 

String Template tool is used to generate Java source 

code after identifying Robotium APIs from Basis Path 

test cases. These Java files are executed from Eclipse 

environment with Android JUnit plug-in on the target 

which is either Emulator or Android mobile device. The 

result of the test case is displayed as Pass if every API in 

the test case is executed successfully. 

 

IV.  ILLUSTRATION 

The proposed method is illustrated with the SCD of 

Body Mass Index (BMI) calculator application as shown 

in Figure 4. BMI SCD is created using Papyrus tool. It 

consists of 13 nodes, 14 edges and its CC is 3. The test 

scenario is captured in this SCD. The transition label is 

carrying API name and its argument.  

From the SCD, BP test cases are generated by GA, and 

then Robotium scripts are generated. Figure 4 shows the 

generated Robotium scripts. There are two choices in 

BMI SCD with each having two branches. So, it is 

possible to derive four test cases from this SCD. But only 

three BP test cases are generated by GA and number of 

test cases reduced by 25%. The code coverage achieved 

by these test cases is 89%, and the defect removal 

efficiency is 100%. This result shows this approach is 

effective and satisfactory. 

 

V.  EXPERIMENTAL SETUP 

The experimental approach is simple and 

straightforward. Papyrus tool is used to make the SCD. A 

tool called Virtual Test Engineer (VTE) is developed to 

parse the XMI file from the SCD and extract nodes, edges, 

and labels. There are 10 Android applications taken for 

evaluation. The number of all paths from the SCDs is 

varying from 4 to 2048 for the Applications Under 

Evaluation (AUE). These paths are optimized by the GA 

which generates the BP test cases. The Robotium scripts 

that are generated from the BP test cases are executed on 

the corresponding AUE. Finally, code coverage analysis 

and mutation analysis are performed to find out the 

effectiveness of this approach. 

A.  Subjects for experiments 

There are ten different Android applications are 

downloaded from F-Droid application portal with varying 

size from 243 to 11442 Lines Of Codes (LOC) as shown 

in Table 3. These applications are built with either 

Eclipse or Android Studio platform. The corresponding 

SCDs are constructed using Papyrus tool with varying 

nodes from 13 to 73 and edges from 14 to 88. The CC of 

these SCDs is ranging from 3 to 20 as shown in Table 3. 

The all path test cases from these SCDs are varying from 

4 to 2048. 

Table 2. Time Taken for the Generation With/Without Genetic History 

 
 

 

Fig.4. BMI SCD and Robotium scripts. 
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B.  Test generation 

A Genetic Algorithm is developed to generate BP test 

cases from SCD as shown in Algorithm 1. Initially, the 

smart mutation was not applied, and GA took more time 

to find BP test case. Sometimes, it was not converging to 

locate the solution till it reaches maximum generations. 

The maximum generation is defined as 100000 

generations with multiple crossovers. An edge is defined 

as a gene, a chromosome is a set of genes, and the length 

of the chromosome is equal to the number of edges. The 

encoding of an edge is done with the number equal to the 

order it appears in the XMI file. The fitness function is 

defined as shown in Algorithm 1. Whenever adjacent 

edges are found on a chromosome, the fitness value 

increases. When there is no adjacent edge found, a 

penalty is given. When the adjacent edge has the final 

node as the target node, the objective function score is 

made 0. This is considered to be a successful generation 

of a BP test case. A smart mutation is applied to speed up 

the generation, to replace a nonadjacent edge with an 

adjacent edge. Also, smart mutation periodically checks 

any edge is missing, if so, replaces that edge in its order 

and position. After applying smart mutation, GA 

converges and finds the solution quickly as the time taken 

for the generation is reduced as shown in Table 2. To 

further optimize GA performance, a new genetic operator 

known as Genetic History (GH) is applied. The following 

steps are followed to apply GH: 

 

1. Get Basis path 

2. Find next missing edge 

3. Find the previous edge for this missing edge 

4. Search this previous edge in existing Basis paths 

5. If found, take history sequence of genes from start 

edge to this missing edge 

6. Initialize all chromosomes in the pool, with this 

history sequence of genes 

7. Now GA evolves and solves with reduced number 

of generations and time 

 

GA ensures the node coverage, and the number of 

generated BP test cases is less than or equal to CC. The 

following configurations are used for GA: 

 

Population size = 200 

Maximum generations = 100000 

Cross over probability = 0.5 

Mutation probability = 0.15 

Tournament selection size = 10 

Basic metrics 

Table 3. Basic Metrics 

 
 

The basic metrics are as shown in Table 3. The 

definition of key metrics are given below: 

Number of Nodes (NON): The number of nodes that are 

present in the SCD 

Number of Edges (NOE): The number of edges that are 

present in the SCD 

Cyclomatic Complexity (CC): It is calculated as 

CC=NOE-NON+2 

Number of BP test cases (NOBP): The number of BP 

test cases that are generated by GA 

Number of All Path test cases (NOAP): the number of 

all path cases resulted from the path explosion 

Percentage reduction in number (PRIN): It is calculated 

as the ratio of NOBP and NOAP 

Executable Lines Of Codes (ELOC): The executable 

lines of code that are present in an application 

Percentage code coverage (PCC): It is calculated as the 

ratio of LOC covered and ELOC 

Number of Menu Items Found (NOMIF): The total menu 

items including the missed menu items 

Number of Menu Items Missed (NOMIM): The menu 

items that are missed to capture by MT algorithm 

Efficiency of MT Algorithm (EOMTA): The ratio of MT 

captured (NOMIF-NOMIM) and NOMIF 

Number of Mutations (NOM): The number of mutants 

that are generated by the Jester tool 

Number of Not Killed Mutations (NONKM): The 

number of mutants that are not killed by the Jester tool 
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Defect Removal Efficiency (DRE): The ratio of mutants 

killed (NOM-NONKM) and NOM 

Similarly, GA metrics are shown in Table 2 and defined 

as follows: 

Time Taken With Genetic History (TTWGH): The time 

taken by the GA to generate the BP test cases with 

Genetic History 

Time Taken WithOut Genetic History (TTWOGH): The 

time taken by the GA to generate the BP test cases 

without Genetic History 

Generations With Genetic History (GWGH): The 

number of GA generations required to generate the BP 

test cases with Genetic History 

Generations WithOut Genetic History (GWOGH): The 

number of GA generations required to generate the BP 

test cases without Genetic History 

C.  Data collection 

Time taken by GA to generate BP test cases for the 

SCD is captured with and without mutation as TTWM 

and TTWOM. For every application, the corresponding 

test scenarios are captured in the SCD. An MT database 

is generated from this application using the MT tool. 

NOMIF, NOMIM are captured, and then EOMTA is 

calculated. The XMI file from SCD and MT database are 

given as inputs to VTE. VTE generates BP test cases and 

Robotium scripts. NOBP and NOAP are captured, and 

then PRIN is calculated. These scripts are executed on 

corresponding Android application to find code coverage. 

EMMA and JACOCO tools are used to capture code 

coverage. These tools provide ELOC and LOC covered 

information. PCC is calculated from this information. The 

Jester tool is used to generate the mutants and execute the 

mutant programs; as a result, NOM and NONKM are 

captured. Finally, DRE is calculated from NOM and 

NONKM. 

 

VI.  EXPERIMENTAL RESULTS 

In this section, the performance of GA is examined 

through statistical analysis and effectiveness of this 

approach is validated through the code coverage and the 

DRE metrics. TTWM and TTWOM are analyzed 

statistically to find out that the time taken by the GA to 

generate the BP test cases is reduced significantly. Chi-

squared test, Box plot, 2T test and Lavene test are 

performed to conclude. Similarly, NOBP and NOAP are 

statistically analyzed to find out that the number of test 

cases is reduced significantly.  

A.  Analysis and Discussion 

Research Question 1 (Performance): Any significant 

improvement is achieved in GA performance? 

1)  Analysis of Time Taken by GA 

The values of TTWGH and TTWOGH and the 

corresponding mean values are plotted in Figure 5. The 

values of TTWOGH are fluctuating, whereas values of 

TTWGH are almost stable. The mean values show there 

is a substantial reduction in time taken for generation of 

Basis Paths. 

 

    

Fig.5. TTWGH Vs. TTWOGH Mean Values 

 

Fig.6. GA time taken analysis (a). Box plot (b). Levene’s test (c). 2T test (d). Wilcox test. 
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TTWGH and TTWOGH are analyzed using R Studio 

as shown in Figure 6. Box plot and Levene’s test are 

performed to check whether the variants of TTWGH and 

TTWOGH are equal. The 2T test is carried out to check 

TTWGH and TTWOGH are from two independent 

groups. 

The statistical results are analyzed, and the following 

conclusions are drawn: 

 

1. Box plot shows the variances of TTWGH and 

TTWOGH are not equal 

2. Levene’s test shows p-value is lesser than 0.05. So, 

the null hypothesis is rejected. It is concluded that 

two variances are not equal 

3. 2T test shows the mean values of TTWGH and 

TTWOGH are 0.43 and 18.2 respectively. It is 

concluded that TTWGH and TTWOGH are two 

different groups 

4. Wilcox test shows that p-value is lesser than 0.05. 

So null hypothesis is rejected, and it is concluded 

that TTWGH and TTWOGH are independent 

groups. 

 

The conclusion is TTWGH and TTWOGH are having 

two different mean values like 0.43 and 18.2 respectively. 

There is a significant reduction in time taken for the 

generation. 

2)  Analysis of Number of Generations 

The values of GWGH and GWOGH and the 

corresponding mean values are plotted in Figure 7. The 

values of GWOGH are fluctuating, whereas values of 

GWGH are almost stable. The mean values show there is 

a substantial reduction in the number of GA generations 

to derive the Basis Paths. 

GWGH and GWOGH are analyzed using R Studio as 

shown in Figure 8. Box plot and Levene’s test are 

performed to check whether the variants of GWGH and 

GWOGH are equal. The 2T test is carried out to check 

GWGH and GWOGH are from two independent groups. 

 

    

Fig.7. GWGH Vs GWOGH Mean Values. 

 

Fig.8. Number of GA generations analysis (a). Box plot (b). Levene’s test (c). 2T test (d). Wilcox test. 

The statistical results are analyzed, and the following 

conclusions are drawn: 

 

1. Box plot shows the variances of GWGH and 

GWOGH are not equal 

2. Levene’s test shows p-value is lesser than 0.05. So, 

the null hypothesis is rejected. It is concluded that 

two variances are not equal 

3. 2T test shows the mean values of GWGH and 

GWOGH are 77.1 and 19956 respectively. It is 

concluded that GWGH and GWOGH are two 

different groups 

4. Wilcox test shows that p-value is lesser than 0.05. 

So, the null hypothesis is rejected, and it is 

concluded that GWGH and GWOGH are two 

distinct groups. 

 

The conclusion is GWGH and GWOGH are having 

two different mean values as 77.1 and 19956 respectively. 

There is a significant reduction in time taken for the 

generation. 

3)  Analysis of Number of BP Test cases 

Research Question 2 (Efficiency): Any significant 

reduction in the number of generated test cases is 

obtained in the case of path explosion? 
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The values of NOAP and NOBP and their 

corresponding mean values are plotted as shown in 

Figure 9. Path explosion is visible in NOAP whereas 

NOBP is stable. It is evident from mean values that a 

substantial reduction results in the case NOBP. 

NOBP and NOAP are analyzed statistically using R 

Studio as shown in Figure 10. Box plot and Levene’s test 

are performed to check whether the variants of NOBP 

and NOAP are equal. Wilcox test and Chi-squared test 

are carried out to check NOBP and NOAP are from two 

independent groups. 

 

    

Fig.9. NOAP Vs. NOBP Mean Values. 

 

Fig.10. Test case reduction analysis (a). Box plot (b). Levene’s test (c). Wilcox test (d). Chi-squared test. 

The statistical results are analyzed and following 

conclusions are drawn: 

 

1. Box plot shows the variants of NOBP and NOAP 

are equal if two outbound values are removed 

2. Levene’s test shows p-value is greater than 0.05. 

So, the null hypothesis is not rejected. It is 

concluded that two variants are equal if outbound 

values are removed 

3. Wilcox test shows that the mean values of NOAP 

and NOBP are 425.8 and 10.0 respectively. The P-

value is less than 0.5. The conclusion is NOBP 

and NOAP are two different groups. 

4. The chi-squared test shows that p-value is greater 

than 0.05. So, the null hypothesis is not rejected, 

and it is concluded that NOBP and NOAP are 

independent groups. 

 

The conclusion is NOBP and NOAP are having two 

different mean values as 10 and 425.8 respectively. There 

is a significant reduction in the number of test cases. 

4)  Effectiveness of BP Test cases 

Research Question 3 (Effectiveness): Are the generated 

Basis Path test cases effective? 

Figure 11 shows code coverage achieved by generated 

BP test cases varies from 64% to 89% and the average is 

74%. The ELOC is ranging from 243 to 11442. The DRE 

is ranging from 88% to 100%, and the average is 95%. 

The Fault/Test varies from 0.4 to 3.3. The efficiency of 

generated tests is measured by Fault/Test. For example, 

in the case of Fault/Test is 3.3, it means that 3.3 mutants 

are killed by 1 test case. 

The code coverage achieved by the proposed approach 

is benchmarked with the other methods available in the 

literature as shown in Figure 12 (a). It is greater than that 

of Android monkey, Dynodroid [16] and Magic [14]. The 

values of Monkey, Dynodroid, and Magic are 33.8%, 

53.3%, and 58.8% respectively. The code coverage 

achieved by Monkey is low because it generates random 

events to simulate user actions such as touch events. 

Dynodroid also uses Monkey tool to generate random 

events and selects appropriate events required for SUT. 
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Both the tools are not generating effective test cases. 

Magic is generating test cases systematically. In [14], the 

constraints are added manually. In the proposed approach, 

decisions are used in State diagram to add constraints. 

This approach helps to improve the code coverage. 

Figure 12 (b) benchmarks Fault/Test factor of the 

proposed approach with that of Magic [14]. It is found 

that the proposed approach is capable of finding more 

defects per test case. Fault/Test factor of the proposed 

approach is 2.01 whereas that of Magic is 0.31. From 

these results, it is concluded that the proposed method is 

effective and the results are satisfactory. 

 

    

Fig.11. Code coverage and DRE. 

    
(a)                                                                                           (b) 

Fig.12. (a). Code coverage bench marked (b).Fault/Test bench marked. 

B.  Threats to validity 

The different subject program may lead to different 

experimental results. The proposed approach is expected 

to work with any native, non-native applications and 

application with 3
rd

 party libraries. Sometimes menu 

items are not captured by the MT algorithm. In this case, 

manually menu item needs to be added to MT database 

for adding the right argument to the API. The subject may 

crash in a particular scenario. The generated test case 

may not handle this situation and may lead to stopping 

the execution. In this case, it may not allow performing 

both the code coverage analysis and the mutation analysis. 

The Jester tool is running only if all the test cases are 

passing. If subject under evaluation has inherent hang or 

crash, it may affect the validation of this approach. The 

next biggest threat is Papyrus tool. It frequently crashes 

while saving the SCD. This leads to unwanted transitions 

added in XMI file. Because of this, the test case 

generation logic may not work properly. It is better to 

remove these unwanted transitions to have better and 

faster generations. Another issue is the Jester 

configuration. The mutant operators are selected based on 

the Intent payload, Intent target, on click events, button 

widget, edit text widget, etc. If the mutant operator is not 

properly selected, the mutant may not be killed which 

may affect the DRE. 

 

VII.  COMPARISON WITH OTHER METHODS 

The proposed approach is compared with other 

methods. Table 4 shows the comparison of the proposed 

approach with other methods concerning different 

parameters. The input UML diagram, test case generation, 

test script generation, code coverage, mutation analysis, 

test case optimization, menu tree usage, Evolutionary 

algorithm usage are the parameters that are compared. 

In [14], the State diagram is used for test generation 

and script generation. The test cases are optimized using 

the combinatorial technique, both the code coverage and 

the mutation analysis are performed to evaluate the 

effectiveness of the generated test cases. The proposed 

approach exhibits better results compared with [14]. The 

main drawback of [14] is menu tree is not used for the 

menu item identification. Also, API identification needs a 

manually created XML mapping file. 

In [15], the source code is directly used to generate test 

sequences. Test cases are generated by GA, and 

Robotium scripts are generated. Code coverage is 

excellent, but mutation analysis is not done. The main 

drawback of this method is that it is not generating test 
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cases for Android applications that are having native code 

and libraries. 

In [16], a method called “observe-select-execute” is 

used to find test sequences. But there is no concrete test 

case or test script. The code coverage is not good, and 

mutation analysis is not performed.  

Table 4. Comparison with Other Methods 

 
 

Android monkey randomly generates events and try to 

do monkey test. It may not traverse through all menu 

trees. The number of events required to traverse a path is 

not predictable. Test coverage is not guaranteed and the 

code coverage is very low. 

In [4], GA is used to find test sequence, but scripts are 

not generated. Statistical analysis is performed to prove 

that number of numerical equal operators in conditions 

plays a very important role in test generation efficiency. 

The code coverage and the mutation analysis are not 

carried out to find the effectiveness of the generated test 

cases. 

In [7], Ant Colony Optimization is used to generate 

test sequences. An optimal test sequence is generated 

with transition coverage. But test scripts are not generated. 

Test coverage is not ensured.  

In [21], the State diagram is used as input to generate 

test cases using a GA. JUnit based test scripts are 

generated from these test sequences. Only feasible path 

test cases are generated by eliminating infeasible paths. 

But the code coverage and the mutation analysis are not 

performed to find the effectiveness of the generated test 

cases. 

The previous works [23] and [24] are not considering 

any algorithm performance improvement and the test case 

optimization. A Sequence diagram is used as input in [23], 

and Activity diagram is used in [24]. In [23], XML based 

test cases are generated and wrapped in Android APK. 

The proposed approach and [23] are using library 

functions, but [24] is not using the library function. In 

[24], a recursive algorithm is used to generate test cases 

whereas in proposed approach GA is used to generate test 

cases. 

 

VIII.  CONCLUSIONS 

In this paper, the path explosion problem that occurs 

when multiple decisions are present in the same path of 

the SCD and the proposed solution are discussed. When 

path explosion happens, the number of all path test cases 

is large, and it is not practical to use these test cases. In 

this paper, a method is discussed generating Basis Path 

(BP) test cases from SCD which are reduced in number, 

still retaining the test coverage. An SCD is created to 

represent test scenarios, and the XMI file from this SCD 

is parsed to extract edges, nodes, and labels. Using this 

information, BP test cases are generated using a Genetic 

Algorithm (GA) with node coverage as the coverage 

criteria which is the main contribution of this work. 

Another contribution is finding a smart mutation to 

improve the efficiency of the GA to reduce the time taken 

for each generation. From these BP test cases, 

corresponding Robotium scripts are generated by 

identifying the right API names from the user inputs 

provided in SCD. A Menu Tree (MT) database is 

generated from target Android device which helps to 

identify the right menu items from the user inputs, even 

though the user inputs are not accurate concerning menu 

items. These menu items are used as arguments to the 

APIs. 

After introducing the smart mutation, the time taken by 

each generation of GA is reduced to an average of 430 

milliseconds with the Genetic History (GH) compared to 

an average of 18 seconds without GH. The generated 

scripts are evaluated by executing the scripts on the target 

Android mobile phone. There are 10 Android 

applications identified for experimentation with varying 

number of Lines Of Code (LOC) from 243 to 11442. The 

corresponding all path test cases for these applications 

vary from 4 to 2048 whereas the reduced BP test cases 

vary from 3 to 17. There is a significant reduction in the 

test case number by an average of 70%. The GA 

performance is measured which is varying from 6 to 37 

seconds to find a BP test case. The MT efficiency is 
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varying from 64% to 100% with an average of 91%. The 

experimental results show that the average code coverage 

is 74% and the average Defect Removal Efficiency (DRE) 

is 95%. This result shows the proposed approach is 

effective and satisfactory.  

In future, this work will be extended to explore more 

Artificial Intelligence (AI) methods to generate test data. 

This approach will ensure more test coverage with 

improved DRE in a cost-effective manner. 
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