1.J. Intelligent Systems and Applications, 2018, 11, 36-49
Published Online November 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.11.05

=

|
| Modern Education
| and Computer Science

| PRESS

Basis Path Based Test Suite Minimization Using
Genetic Algorithm

Anbunathan R
Test Manager and Research Scholar, Bharathiar University, Coimbatore, India
E-mail: anbunathan.r@gmail.com

Anirban Basu
Professor, Department of CSE, APS College of Engineering, Bangalore, India
E-mail: abasu@anirbanbasu.in

Received: 01 November 2017; Accepted: 09 February 2018; Published: 08 November 2018

Abstract—UML State Diagram is used to represent the
behavior of the System Under Test (SUT) when an event
occurs. The state of the system is determined by the event
that occurs randomly. The system state changes when the
transition relationship between the States is satisfied. Test
cases are generated from State Chart Diagram to test the
behavior of the system. When multiple decision nodes are
present in the same path, path explosion occurs. A
method is proposed to generate Basis Path (BP) test cases
with node coverage using Genetic Algorithm (GA) to
overcome this problem. Experiments are conducted upon
various Android applications and the efficiency of the
algorithm is evaluated through the code coverage and the
mutation analysis. Using this approach, BP test cases,
Robotium test scripts are generated for 10 Android
applications and observed an average of 70% reduction in
the test case number concerning all path test cases. The
resulted average code coverage is 74%, and Defect
Removal Efficiency (DRE) is 95%. The experimental
results show that the proposed method is effective when
compared to other methods.

Index Terms—Test automation,
Executable Test generation.

Genetic Algorithm,

I. INTRODUCTION

Software testing involves both black box testing and
white box testing. Unit test cases are derived from source
code in the case of white box testing. System and
functional test cases are derived from requirements in the
case of black box testing. Unified Modeling Language
(UML) State Chart Diagram (SCD) is used to capture
user scenarios, and test cases are generated from SCD.
Although software testing is having substantial
contributions towards test generation from State Chart
Diagrams [3], [4], [7], [9], [18], [19], test generation for
the SCD remains an open research problem. These
methods missed discussing path explosion problem when
multiple decisions are present in the same path. These
paths increase exponentially by the multiplication factor
equal to the number of branches present in the decisions.

Copyright © 2018 MECS

As path explosion problem results in a large number of
test cases, all path test cases generated from SCD are not
practically usable. The objective of this paper is to create
BP test cases using a Genetic Algorithm (GA) and reduce
the number of test cases to solve path explosion problem.
Although similar approaches are present in literature, the
effectiveness of the approach is not quantitatively
analyzed. In the proposed method, SCD is used as input,
and the diagram components such as edges, labels, nodes
are extracted from SCD, Basis Path test cases are
generated by GA, and Robotium scripts are generated by
identifying Application Programming Interfaces (APIs),
and their arguments. A menu tree database is extracted
from the target Android device, which helps to provide
the exact menu item to be used in API’s argument, even
though user input is not accurate.

The existing test generation methods [14-16] focus on
only code coverage and mutation analysis to validate
their approach. The performance improvement of the
algorithms involved in their methods is not empirically
evaluated. This work leads to the following research
questions:

1. Any significant improvement is achieved in GA
performance?

2. Any significant reduction in the number of
generated test cases is achieved in the case of path
explosion?

3. Are the generated Basis Path test cases effective?

In this paper, an empirical study is done to compare all
path and BP test cases, to prove there is a significant
reduction in the number of BP test cases compared to all
path test cases. Statistical analysis is done with these two
data, and the 2T test is performed to prove a significant
reduction in number. Also, GA performance is improved
by applying a smart mutation, and the effectiveness is
empirically evaluated. The number of generations with
and without the smart mutation is statistically analyzed,
the 2T test is performed to prove there is a significant
reduction in the number of generations in the case of
smart mutation is applied. Finally, the approach is

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

Basis Path Based Test Suite Minimization Using Genetic Algorithm 37

evaluated by executing the generated test cases on ten
different Android applications. The code coverage is
found using EMMA and JACOCO tools, and the
mutation analysis is performed using Jester tool. EMMA
is used for Eclipse based Android applications whereas
JACOCO is used for Android Studio based applications.
The study shows that the average code coverage is 74%
and defect removal efficiency is 95% for Android
applications, which is encouraging.
The primary contributions of this paper are

(1) This work presents a novel approach that generates
Basis Path based optimized executable test cases using
Genetic Algorithm with UML State Chart Diagram as
input.

(2) This work proposes a chromosome representation
of Basis Path, gene representation of edge, and smart
mutation to speed up generations in Genetic Algorithm.

(3) The proposed approach empirically validates the
effectiveness of the generated test cases by executing
generated Robotium scripts on Android mobile device to
find out code coverage and defect removal efficiency.

(4) The proposed approach empirically evaluates that
there is a significant reduction in test case number using
this approach.

(5) A new genetic operator called Genetic History (GH)
is introduced to copy genetic information so far evolved
to offspring.

(6) This work empirically evaluates that there is a
significant performance improvement in GA after using
GH.

This paper is organized as follows. Section 2
summarizes the related works. Section 3 introduces the
path explosion problem and method for generating BP
test cases. Section 4 illustrates the approach in detail,
followed by Section 5 describing the experimental setup.
Section 6 presents the results of the experiments
conducted on many real subject systems. Section 7
compares this approach with other existing approaches.
Finally, Section 8 concludes the paper and anticipates the
future work.

Il. RELATED WORK

Different test generation methods are present in the
literature [1]. Different algorithms are used for generating
tests such as Depth First Search (DFS), Breadth First
Search (BFS), Genetic Algorithm [2], recursive algorithm,
Ant Colony Optimization (ACO), Cuckoo, etc. Different
inputs are used for generating tests such as UML State
diagram, Activity diagram, Sequence diagram, source
code, etc. Different coverage criteria such as node
coverage, edge coverage, path coverage, etc. are used for
finding the effectiveness of algorithms.

A. Search Based Test Generation

In [3] and [4], Zhao et al. proposed search-based test
generation techniques. In [3], a binary tree structure is
used as input, GA is used to shape generation, and

Copyright © 2018 MECS

constraint solving technique is used to value generation.
The effectiveness of generated test is evaluated by
running tests on a C program. The study proves that the
test generation cost is cubically increasing with the
increase of the number of pointer constraints. In [4], GA
is used to generate feasible paths from Finite State
Machine (FSM) models. An empirical study is done to
find key factors which affect the test generation. The
study proves that the number of numerical equal
operators present in condition influence the number of
generations required to get a feasible path.

Srivastava et al. [6-9] proposed search-based
techniques to generate the test sequence. In [6], a Control
Flow Graph (CFG) from code is created, and different
weights are assigned to edges based on criticality. A
Genetic Algorithm traverses through this CFG, finds
more critical paths and generates test cases for only those
paths. In [7], a state-transition model of the system is
used as input, and an optimal test sequence is selected
after traversing through the directed graph using Ant
Colony Optimization (ACO) technique. This method
ensures both state and transition coverage. In [8], a firefly
algorithm is used to generate optimal paths with the
reduction in number while comparing with independent
paths. A State Transition Diagram (STD) and CFG are
used as inputs to the algorithm, and a guidance matrix is
generated from adjacency matrix which guides the
traversal. In [9], a set of critical paths is selected using
Cuckoo search algorithm, taking State diagram as input
and generates optimal test sequences as output. An
empirical study is done to find the effectiveness of this
approach and found that the state and transition coverages
are outperformed. Similarly, other approaches [5], [11-
13], [17], [26] use search-based techniques to generate
test sequences.

B. UML State Diagram Based Testing

In literature, many approaches [18-21] are available for
generating tests from UML State diagram. In [18],
Samuel et al. proposed a function minimization technique
to create optimal test sequences from UML State diagram
to achieve transition coverage. In [19], Ranjitha et al.
suggested a function minimization technique to traverse
through UML State diagram and generate optimal test
sequence to achieve state, transition, transition pair, and
full predicate coverage. In [20], Santhosh et al. proposed
an approach to traverse through combined State and
Activity diagrams called SAD to achieve state and
activity path coverage. In [21], Shirole et al. proposed
GA based technique to traverse through EFSM diagram
and generate a set of feasible path test sequences to
achieve data flow coverage. Similarly, other approaches
[22], [25] generate test cases from UML diagrams.

C. Executable Test Generation

In literature, many approaches [14-16] are available for
Android testing. In [14], Nguyen et al. proposed a method
to combine both model-based testing and combinatorial
testing techniques to generate test sequences. UML State
diagram is used as input, the classification tree is used for

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

38 Basis Path Based Test Suite Minimization Using Genetic Algorithm

designing tests, and Robotium or Selenium scripts are
created. The effectiveness of the approach is evaluated by
finding code coverage and mutation coverage. In [15],
Mahmood et al. proposed a GA based approach called
Evodroid to traverse through the code, find segments in
the code, links the segments using Call Graph Model
(CGM), and generates test sequence to achieve better
code coverage. From the test sequences, Robotium scripts
are generated, and Emma is used for finding code
coverage. In [16], Aravind et al. proposed an approach
called Dynodroid which employs Executor to produce
Android events using Monkeyrunner tool, an Observer to
find next possible events to be triggered using Hierarchy
viewer and SDK, a Selector to select appropriate next
event. The effectiveness of this approach is evaluated by
obtaining code coverage. Similarly, other approaches [23],
[24] generate executable tests from UML diagrams.

I1l. TEST GENERATION USING GA

In this section, the path explosion problem is explained
in detail. The relevant keywords and their definitions are
given. The method to generate executable test cases from
SCD is described in detail.

A. Path explosion problem

The path explosion problem is explained from SCD as
shown in Figure 2. There are three choices namely
choicel, choice 2 and choice 3. The number of branches
present in choices is two, three, and four respectively.
Since all decisions are found in the same path, the
number of test cases is the multiplication of the number
of branches which is equal to 24. The Cyclomatic
Complexity (CC) of this SCD is seven. The number of
BP test cases generated from this SCD is 7 which is equal
to CC. In this case, the number of test cases is reduced by
71%.

B. Definitions

The definitions for some relevant keywords used in
this paper are given below

All path coverage

All path coverage is a white-box testing concept that
considers the possible paths of the software under test.

Basis path

Basis path (sometimes called independent path)
through the program is any path from starting node to
terminal node that introduces at least one new set of
processing statements or a new condition.

Test coverage

Test coverage is defined as a technique which
determines whether the test cases are covering the
application code and how much code is exercised when
we run those test cases.

Code coverage

Code coverage is a measure used to describe the degree

Copyright © 2018 MECS

to which the source code of a program is executed when a
particular test suite runs.

XMI from State
Diagram

Identify States,
Transitions, Labels

l_l

Find Basis Path test cases using GA

> Parse XMI

Identify APIs from Labels |«

A4

Identify Parameters using
Menu tree DB

Generate Script (*.java) files using
String template

Fig.1. Key steps of the proposed approach for generating
executable test scripts.

C. Proposed method

The proposed framework is based on UML State Chart
Diagram (SCD) based testing. The major steps involved
in this approach are illustrated in a block diagram as
shown in Figure 1. In this approach, SCD is created to
capture input scenarios. The XML Metadata Interchange
(XMI) file obtained from this SCD is parsed to extract
model information such as States, Transitions, and their
labels. GA is used to obtain Basis Path (BP) test cases
from States and Transitions. From label names, the
Robotium APIs are identified. The parameters for these
APIs are determined from Transitions and menu tree
database. Finally, test scripts are generated using String
template tool.

Algorithm 1. Genetic Algorithm for Finding Bais Paths

Genetic Algorithm
GAis used fo generate BP test cases from States and Transitions.
Chromosome
An edge is defined as a gene.
A chromosome is defined as a set of genes.
The length of chromosome is equal to the number of edges in a graph.
Selection
The roulette wheel selection is used to select chromosomes.
Crossover
Multiple crossover is used with probability of 50%.
Fitness function
Fitness is calculated as follows:
(i). Force first gene = eo (Initial State)
(ii). If consequent edges are adjacent, then
Fitness = Filness + Tolal adjacent * Posilion of current edge
Total adjacent ++
Else Fitness = Fitness/2 (Penalty)
(iil). If (edge = ek (Final State and out-degree=0) &&
All_adjacent_edges = true) then
Objective function = 0
Else If (Al_nodes_visited = true && All_adjacent_edges = true) then
Objective function = 0
Else Objective function = constant C1
(iv). If (Objective function = 0 && Independent path = Trug) Then
Add chromosome with highest Filness value o Basis Path set
Else ignore the chromasome
Smart Mutation
Mutation value is selected as 0.01.
(i). Replace non adjacent edge in a chromosome with adjacent edge.
(ii). Check any edge is missing.
If s0, change edge in its order and position
Genetic History
(et Basis path
Find next missing edge
Find previous edge for this missing edge
Search this previous edge in existing Basis paths
If found, take history sequence of genes from start edge to this missing edge
Initialize: all chromosomes in the pool, with this history sequence of genes
GA Exit Criteria
If {number of basis paths = Cyclomatic complexity) ||
If {number of generation = maximum generation) ||
If (State_Coverage = True && Transition_Coverage = True) Then
Terminate generation

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

Basis Path Based Test Suite Minimization Using Genetic Algorithm 39

Algorithm 2. Genetic Algorithm for Identifying APIs

Genetic Algorithm
GA is used to select target AP from a set of matching candidate APIs.
Chromosome
A chromosome is represented by a character sequence.
A gene is represented by a single character from the set [A-Za-z].
Selection
The roulette wheel selection is used to select chromosomes
Crossover
Multiple crossover s used
Fitness function
Fitness is calculated as follows:
(i). Evaluate_LCSubstring
totalFitness += (matching substring length of Se and Chromasome * 500);
totalFitness = totalFitness/Levenshteindistance(Se,Chromosome);
totalFitness += {matching substring length of Se and bastcandidate * 1000);
totalFitness = totalFitness/Levenshteindistance(Se, bastcandidate);
(ii). Evaluate_LCSubsequence
totalFitness += (matching subsequence length of Se and Chromosome*100);
totalFitness = totalFitnessiLevenshteindistance(Se,Chromosame);
totalFitness += (matching subsequence length of Se and bastcandidate * 200);
totalFitness = totalFitness/Levenshteindistance(Se, bastcandidate);
(iii). Evaluate final fitness
final fitness= evaluate_LCSubstring + evaluate_LCSubsequence
Mutation
Mutation value is selected as 0.01.
Smart mutation is used to replace the genes of selected chromosome
with the genes of the best candidate. This helps to arrive at the solution faster.

1) XMI Parser

A UML State Chart Diagram as shown in Figure 2 is
created using Papyrus tool. This SCD is represented in
the form of XMI notation and saves as *.uml file. This
XMI file is parsed using SAX parser and then different
SCD components such as States, Transitions and Labels
are extracted.

2) Basis Path Test Case Generation

When multiple decisions of an SCD present in the
same path, path explosion occurs as shown in Figure 2.
There are 24 different paths are possible to derive from
this SCD. A Genetic algorithm is developed to reduce the
number of paths to less than or equal to Cyclomatic
complexity computed from the SCD. The coverage
criteria to stop generating the paths is all States, and all
Transitions are covered. This method ensures a reduced
number of test cases are generated, even though path
explosion occurs. In the case of sample SCD, seven BP
test cases are created as shown in Figure 2. Algorithml
shows GA which is used to generate BP test cases.

(GteD GD D EGD D G G G

SRS ECD RCD RCS RCD RS

() ED ED @D @D E G @D
7o SR CH R CS R CS R CD R CDRCD

ol il ey | e Gy (e | . e
D> ED ED G (@D (> D

22 e @D @D @D @D ED @D

Fig.2. Sample State Chart Diagram and corresponding Basis Path test cases.

GA generates BP test cases from States, Transitions,
and Labels. A chromosome is defined as a set of genes.
An edge is encoded as a gene. The length of the
chromosome is equal to the number of edges in an SCD.
A population is generated with several random
chromosomes using the roulette wheel selection method.
The population evolves by applying genetic operators
such as multiple cross-over and smart mutation with a
configured value of the crossover probability and
mutation probability respectively. A smart mutation is
defined to change a gene to the adjacent edge. Also,
mutation changes a gene if any edge is missing in the
generated BP. A fitness function is defined to evaluate
the fitness value of a chromosome. The fitness value
increases if the genes are adjacent edges to form a BP and
decreases with a penalty if the genes are not adjacent. A
new genetic operator called Genetic History (GH) is
introduced to copy the best genes to offspring while

Copyright © 2018 MECS

initializing next generation chromosomes. GH acts as a
catalyst to speed up the BP test case creation. GA exits if
all edges, all nodes are included in the created BP test
cases.

3) Identify APIs

The Robotium APIs are identified by parsing
Transition in an SCD. A Transition consists of multiple
words separated by an underscore (_), for example,
click_onbutton_open. The last word is considered as the
parameter. The rest of the words constitute the String
Under Evaluation (Se). A set of string matching
algorithms such as Longest Common Substring, Longest
Common Subsequence and Levenshtein Distance
algorithm is used to process Se and identify the candidate
APIs from API database of the target language. In our
approach, Robotium is the target language. Genetic
Algorithm is used to identify the right target API from the

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

40 Basis Path Based Test Suite Minimization Using Genetic Algorithm

candidate APIs.

Robotium APIs are determined from the transition
labels. For example, from the label click_onEditText_IDO,
Robotium API driver.clickOnEditText(0) is identified.
For this purpose, Genetic Algorithm is used to compare
strings and identify matching strings intuitively. GA

employs the above string matching algorithms to identify
Robotium API. Table 1 show SCD labels and their
corresponding Robotium APIs, which are identified using
GA. Algorithm 2 shows the GA which is used to identify
Robotium APIs [24].

Table 1. SCD Labels and Their Corresponding Robotium APIs

Transition Label Robotium APL

Arpument from Menu tree Value from Transition Label

click Inlist Notel
go_Back

click onmenu_save

clickInl ist
goBack

click_longontext Notel clickL ongOnText
click_ontext_open elickOnText
click_oncheckbox_ID0 clickOnCheckBox
entertext ID Bob enter Text

press_spinneritern ID0_ 0 preszSpinnerltem

click_onbutton_Sawve clickOnButton

clear Edittext I clearEdit Text
click_onEditText IDW clickOnEditText
click_onimage TDW) clickOnlmage

set_progressbar TDW_15 setProgreszBar

clickOnhdenultem

Notel
Save
MNotel
Open -
- o
Bob
0,0
Save -
]
]
]
0,15

The SCD label consists of two parts such as APl name
and parameter. APl name is user-friendly, readable string
connected with the underscore, whereas parameter often
consists of keyword ‘ID’ and a number indicating index
value as shown in Table 1. For example, in the case of
click_oncheckbox_IDO0, “click_oncheckbox” represents
API name and IDO represents index value 0 to be passed
as an argument to the API In the case of
set_progressbar_IDO_15, a second parameter for setting
progress bar value is given as ‘15°. In the case of
click_onbutton_open, the button name to be clicked is
given as “open”. Even though user entered an inaccurate
menu name “open”, an incorrect menu name “Open” is
obtained from Menu Tree (MT) database. In the case of
go_back, there is no argument involved.

4) Identify Parameter

The parameter in SCD label represents menu item to be
handled by the phone. For example, in the case of
click_onmenu_save, the menu item to be clicked is given
as “save”. But actually, it is displayed as “Save” on the
phone. In this case capital letter “S” is missing on the
label. The parameter is compared with strings present in
Menu tree database, and the correct string is obtained to
handle this situation.

The Menu tree algorithm as shown in Algorithm 3,
identifies layouts such as linear layout, relative layout,
frame layout, etc. From these layouts, it extracts User
Interface (Ul) objects such as text, buttons, etc. When it
clicks one text item, it checks whether new page or popup
is opened. If it is a new page, it recursively calls itself to
do the learning of the new Ul objects. If the Ul object is a
popup or a button, it is handled differently. In this way,
all Ul objects are learned, and then each item is clicked
based on the type of widget. The type of widget can be
text, radio button, button with text, button with
description, system event such as back key press, and
home key press.

Copyright © 2018 MECS

Algorithm 3. Menu tree Generation

ALGORITHM :: Menu TreeGeneration (){

l. Extract widgets in current screen and add in stack
I Take one widget from stack

1. Check stack is empty

\"2 IF empty, RETURN

V. IF widget type = text, click and wait for new window

VI Store widget name, widget type, path from root into Sqlite DB
VII. IF new window = new page, CALL ‘MenuTreeGeneration’
VIII. ELSE IF new window = popup, handle popup

1X. GOTO I

}

Menu tree algorithm stores all Ul menu items along
with its path from root and type of widget in an SQLite
database, as shown in Figure 3. The type of menu item is
stored under column ‘widtype’ which can be TextView,
CheckedText, Button, CheckBox, etc. The menu item is
stored in ‘widname’ column. The path traced by the
Menu tree algorithm is stored under ‘rootpath’ column
for each menu item. The menu item that is extracted from
the SCD label is compared with each string under
‘widname’ column, and closest match is retrieved. In this
way, even though user provides an incorrect menu value
in SCD label, an accurate menu value is obtained from
MT database.

Fig.3. Menu tree database.

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

Basis Path Based Test Suite Minimization Using Genetic Algorithm 41

5) Generate Robotium Scripts

String Template tool is used to generate Java source
code after identifying Robotium APIs from Basis Path
test cases. These Java files are executed from Eclipse
environment with Android JUnit plug-in on the target
which is either Emulator or Android mobile device. The
result of the test case is displayed as Pass if every API in
the test case is executed successfully.

IV. ILLUSTRATION

The proposed method is illustrated with the SCD of
Body Mass Index (BMI) calculator application as shown
in Figure 4. BMI SCD is created using Papyrus tool. It
consists of 13 nodes, 14 edges and its CC is 3. The test
scenario is captured in this SCD. The transition label is
carrying APl name and its argument.

From the SCD, BP test cases are generated by GA, and
then Robotium scripts are generated. Figure 4 shows the
generated Robotium scripts. There are two choices in
BMI SCD with each having two branches. So, it is
possible to derive four test cases from this SCD. But only
three BP test cases are generated by GA and number of
test cases reduced by 25%. The code coverage achieved
by these test cases is 89%, and the defect removal
efficiency is 100%. This result shows this approach is
effective and satisfactory.

V. EXPERIMENTAL SETUP

The experimental approach is simple and
straightforward. Papyrus tool is used to make the SCD. A
tool called Virtual Test Engineer (VTE) is developed to
parse the XMl file from the SCD and extract nodes, edges,
and labels. There are 10 Android applications taken for
evaluation. The number of all paths from the SCDs is
varying from 4 to 2048 for the Applications Under
Evaluation (AUE). These paths are optimized by the GA
which generates the BP test cases. The Robotium scripts
that are generated from the BP test cases are executed on
the corresponding AUE. Finally, code coverage analysis
and mutation analysis are performed to find out the
effectiveness of this approach.

A. Subjects for experiments

There are ten different Android applications are
downloaded from F-Droid application portal with varying
size from 243 to 11442 Lines Of Codes (LOC) as shown
in Table 3. These applications are built with either
Eclipse or Android Studio platform. The corresponding
SCDs are constructed using Papyrus tool with varying
nodes from 13 to 73 and edges from 14 to 88. The CC of
these SCDs is ranging from 3 to 20 as shown in Table 3.
The all path test cases from these SCDs are varying from
4 10 2048.

Table 2. Time Taken for the Generation With/Without Genetic History

With out Genetic History

‘With Genetic History

Number of generations Time in seconds Number of generations Time in milliseconds
16703 16 72 409
23245 21 77 432
10959 9 80 455
30596 30 79 443
40975 37 72 410
14373 12 8 443
14532 14 78 439
14455 14 80 468
26500 23 T4 413
7222 6 81 462

f ?nmij

r

prm_lpimeritan_ll!o_n| ‘L'm”pi nneritem_1D0_1
ograms

Pounds 1 (il 1

T
(Weight)

entertext_ID0_85

(" Weightvalue 1

entertext_ID1_100

press_spinneritem_ID1_0 ‘l‘

~
s a
Inch 1 cms |

click_onbutten_CalculateBMI J

I A\
Result_AssertT Underweight |f Result_AssertT_Obese \I

press_spinneritem_ID1_1

click_onbutton_CalculateBMI

Noo

@ FinalStateq

} cateh(Ex
e.printstackTrace() ;
}
]

Fig.4. BMI SCD and Robotium scripts.

Copyright © 2018 MECS

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

42 Basis Path Based Test Suite Minimization Using Genetic Algorithm

B. Test generation

A Genetic Algorithm is developed to generate BP test
cases from SCD as shown in Algorithm 1. Initially, the
smart mutation was not applied, and GA took more time
to find BP test case. Sometimes, it was not converging to
locate the solution till it reaches maximum generations.
The maximum generation is defined as 2100000
generations with multiple crossovers. An edge is defined
as a gene, a chromosome is a set of genes, and the length
of the chromosome is equal to the number of edges. The
encoding of an edge is done with the number equal to the
order it appears in the XMI file. The fitness function is
defined as shown in Algorithm 1. Whenever adjacent
edges are found on a chromosome, the fitness value
increases. When there is no adjacent edge found, a
penalty is given. When the adjacent edge has the final
node as the target node, the objective function score is
made 0. This is considered to be a successful generation
of a BP test case. A smart mutation is applied to speed up
the generation, to replace a nonadjacent edge with an
adjacent edge. Also, smart mutation periodically checks
any edge is missing, if so, replaces that edge in its order
and position. After applying smart mutation, GA
converges and finds the solution quickly as the time taken
for the generation is reduced as shown in Table 2. To

further optimize GA performance, a new genetic operator
known as Genetic History (GH) is applied. The following
steps are followed to apply GH:

Get Basis path

Find next missing edge

Find the previous edge for this missing edge

Search this previous edge in existing Basis paths

If found, take history sequence of genes from start

edge to this missing edge

6. Initialize all chromosomes in the pool, with this
history sequence of genes

7. Now GA evolves and solves with reduced number

of generations and time

apwNE

GA ensures the node coverage, and the number of
generated BP test cases is less than or equal to CC. The
following configurations are used for GA:

Population size = 200

Maximum generations = 100000
Cross over probability = 0.5
Mutation probability = 0.15
Tournament selection size = 10
Basic metrics

Table 3. Basic Metrics

g = e £ g

o = 3 g Z = o

Subjects = = 5 g = > E g e =

s E = oy E g e = = =

= E & Z 2 = it

= = :Z E

Notepad 17 23 10 10 14 1832 37 3 23 3

Calculator 73 28 17 17 60 3232 43 0 17 2

TippyTipperActivitie 43 43 4 4 6 374 190 3 13 0

DrynamicnightLight 23 37 14 14 43 1252 30 1 3 0

MultipleShS 37 41 6 6 26 306 14 3 17 2

Fr=eOTP 27 335 10 9 192 4063 26 4 13 0

BMICaleulator 13 14 3 3 4 243 18 0 6 0

CIDR.calculator 33 33 20 16 2048 4708 39 9 42 1

Token 33 43 12 11 324 11442 72 3 33 3

Counter 31 61 12 10 1536 2147 78 b] 22 0
The basic metrics are as shown in Table 3. The Executable Lines Of Codes (ELOC): The executable

definition of key metrics are given below:

Number of Nodes (NON): The number of nodes that are
present in the SCD

Number of Edges (NOE): The number of edges that are
present in the SCD

Cyclomatic Complexity (CC): It
CC=NOE-NON+2

Number of BP test cases (NOBP): The number of BP
test cases that are generated by GA

Number of All Path test cases (NOAP): the number of
all path cases resulted from the path explosion

Percentage reduction in number (PRIN): It is calculated

as the ratio of NOBP and NOAP

is calculated as

Copyright © 2018 MECS

lines of code that are present in an application

Percentage code coverage (PCC): It is calculated as the
ratio of LOC covered and ELOC

Number of Menu Items Found (NOMIF): The total menu
items including the missed menu items

Number of Menu Items Missed (NOMIM): The menu
items that are missed to capture by MT algorithm

Efficiency of MT Algorithm (EOMTA): The ratio of MT
captured (NOMIF-NOMIM) and NOMIF

Number of Mutations (NOM): The number of mutants
that are generated by the Jester tool

Number of Not Killed Mutations (NONKM): The
number of mutants that are not killed by the Jester tool

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

Basis Path Based Test Suite Minimization Using Genetic Algorithm 43

Defect Removal Efficiency (DRE): The ratio of mutants
killed (NOM-NONKM) and NOM

Similarly, GA metrics are shown in Table 2 and defined
as follows:

Time Taken With Genetic History (TTWGH): The time
taken by the GA to generate the BP test cases with
Genetic History

Time Taken WithOut Genetic History (TTWOGH): The
time taken by the GA to generate the BP test cases
without Genetic History

Generations With Genetic History (GWGH): The
number of GA generations required to generate the BP
test cases with Genetic History

Generations WithOut Genetic History (GWOGH): The
number of GA generations required to generate the BP
test cases without Genetic History

C. Data collection

Time taken by GA to generate BP test cases for the
SCD is captured with and without mutation as TTWM
and TTWOM. For every application, the corresponding
test scenarios are captured in the SCD. An MT database
is generated from this application using the MT tool.
NOMIF, NOMIM are captured, and then EOMTA is
calculated. The XMI file from SCD and MT database are
given as inputs to VTE. VTE generates BP test cases and
Robotium scripts. NOBP and NOAP are captured, and
then PRIN is calculated. These scripts are executed on
corresponding Android application to find code coverage.
EMMA and JACOCO tools are used to capture code
coverage. These tools provide ELOC and LOC covered

Time Taken fc;; Generation
a0

5 o—TTWGH —&—TTWOGHA
30

&

n secnds

5 21
'y

3
2

20
15 & 12
1

Time taken

A

s 0.409 0432 0455 0443 041 0443 0439 0468 0413 0462

0 L] * * L] L] * . * * *
1 2 3 4 5 6 7 3 9 10

Experiments

information. PCC is calculated from this information. The
Jester tool is used to generate the mutants and execute the
mutant programs; as a result, NOM and NONKM are
captured. Finally, DRE is calculated from NOM and
NONKM.

VI. EXPERIMENTAL RESULTS

In this section, the performance of GA is examined
through statistical analysis and effectiveness of this
approach is validated through the code coverage and the
DRE metrics. TTWM and TTWOM are analyzed
statistically to find out that the time taken by the GA to
generate the BP test cases is reduced significantly. Chi-
squared test, Box plot, 2T test and Lavene test are
performed to conclude. Similarly, NOBP and NOAP are
statistically analyzed to find out that the number of test
cases is reduced significantly.

A. Analysis and Discussion

Research Question 1 (Performance): Any significant
improvement is achieved in GA performance?

1) Analysis of Time Taken by GA

The values of TTWGH and TTWOGH and the
corresponding mean values are plotted in Figure 5. The
values of TTWOGH are fluctuating, whereas values of
TTWGH are almost stable. The mean values show there
is a substantial reduction in time taken for generation of
Basis Paths.

Mean Values of TTWGH Vs TTWOGH

20 182

Time Taken in seconds

04374

TTWGH TTWOGH
GA methods

Fig.5. TTWGH Vs. TTWOGH Mean Values

ia)

welch Two Sasple T-test

ars s not equal to O

sean of x mean of y
18, 2000 0.4374

]

Levene's Test Tor Homogeneity of wariance (center = median)

group 1 11.067 0.003753 #*
18

Sigrif. codes: O ‘== 0,001 '**' 0.00L **' Q.05 '." 0.1 " "1

of F value Pri>F)

b}

wilcoxon rark sum test with contimuity correction
data: TimSTTWOGH and TimSTTWGH

W= 100, p-value = 0. 0001506
alternative mypothesis: true location shift 15 not equal vo 0

()

Fig.6. GA time taken analysis (a). Box plot (b). Levene’s test (c). 2T test (d). Wilcox test.

Copyright © 2018 MECS

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

44

TTWGH and TTWOGH are analyzed using R Studio
as shown in Figure 6. Box plot and Levene’s test are
performed to check whether the variants of TTWGH and
TTWOGH are equal. The 2T test is carried out to check
TTWGH and TTWOGH are from two independent
groups.

The statistical results are analyzed, and the following
conclusions are drawn:

1. Box plot shows the variances of TTWGH and
TTWOGH are not equal
Levene’s test shows p-value is lesser than 0.05. So
the null hypothesis is rejected. It is concluded that
two variances are not equal
2T test shows the mean values of TTWGH and
TTWOGH are 0.43 and 18.2 respectively. It is
concluded that TTWGH and TTWOGH are two
different groups
Wilcox test shows that p-value is lesser than 0.05.
So null hypothesis is rejected, and it is concluded
that TTWGH and TTWOGH are independent

2.

4,

Number of GA Generations
45000 40975

40000
£ 35000

®—GWOGH —a—GWGH &
30585

% 30000 & 26500
g 25000 23245
5 20000 16703

g 15000 10955

2 10000

14373 14532 14455
* .

n222
5000 81
[
10

Basis Path Based Test Suite Minimization Using Genetic Algorithm

groups.

The conclusion is TTWGH and TTWOGH are having
two different mean values like 0.43 and 18.2 respectively.
There is a significant reduction in time taken for the
generation.

2) Analysis of Number of Generations

The values of GWGH and GWOGH and the
corresponding mean values are plotted in Figure 7. The
values of GWOGH are fluctuating, whereas values of

, GWGH are almost stable. The mean values show there is

a substantial reduction in the number of GA generations
to derive the Basis Paths.

GWGH and GWOGH are analyzed using R Studio as
shown in Figure 8. Box plot and Levene’s test are
performed to check whether the variants of GWGH and
GWOGH are equal. The 2T test is carried out to check
GWGH and GWOGH are from two independent groups.

Mean Values of GWGH Vs GWOGH
25000
19956
20000
15000

10000

Number of GA Generations
w
&
8
8

e

GWOGH
GA methods

Fig.7. GWGH Vs GWOGH Mean Values.

(a)

welch Two Sample t-test

data: gen$GeOGH and gendGeGH
t = 61084, df = 9, p-value = 00001774
alternative hypothesis:
95 percent confidence interval:
12517.0 2740, 8
sample estimates.
mean of x mean of y

15956.0 1

i)

true difference in means is not equal to 0

Levene"s Test for Homogemeity of variance (cemter = median)
of £ value Pr=F)

group 1 9.4526 0.006533 #*=
18

signif. codes: 0

{b)

wilcoxon rank sum test with continuity correction
data: genSGanGh and gentGeGH

W =100, p-value = 0.00017%6
alternative hypothesis: true location shift is not equal to 0

{d)

Fig.8. Number of GA generations analysis (a). Box plot (b). Levene’s test (c). 2T test (d). Wilcox test.

The statistical results are analyzed, and the following
conclusions are drawn:

1. Box plot shows the variances of GWGH and
GWOGH are not equal
Levene’s test shows p-value is lesser than 0.05. So
the null hypothesis is rejected. It is concluded that
two variances are not equal
2T test shows the mean values of GWGH and
GWOGH are 77.1 and 19956 respectively. It is
concluded that GWGH and GWOGH are two
different groups
Wilcox test shows that p-value is lesser than 0.05.

2.

4,

Copyright © 2018 MECS

So, the null hypothesis is rejected, and it is
concluded that GWGH and GWOGH are two
distinct groups.

The conclusion is GWGH and GWOGH are having

, two different mean values as 77.1 and 19956 respectively.

There is a significant reduction in time taken for the
generation.

3) Analysis of Number of BP Test cases

Research Question 2 (Efficiency): Any significant
reduction in the number of generated test cases is
obtained in the case of path explosion?

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

Basis Path Based Test Suite Minimization Using Genetic Algorithm 45

The values of NOAP and NOBP and their
corresponding mean values are plotted as shown in
Figure 9. Path explosion is visible in NOAP whereas
NOBP is stable. It is evident from mean values that a
substantial reduction results in the case NOBP.

NOBP and NOAP are analyzed statistically using R

NOAP vs NOBP

®=NOAP ~a— NDBP

. 2500 . 18
£ 2000 2048 -4 16
8 A14 1536 ; 1
& 11 . 12
= 1300 A 10 i { 10
£ 1000 v 10 8
& o & 6
<

500 a4 4
% a3 48 .
S 4 [14 26 50 - 1920 324 2
2 0 - - + o]
E 4 ;. P . 4 o 1 s

) & 2 ot o <3 3 & d
E & yﬁ \ﬁ@ ¥ @ P «§b &
G & @ Y @ g

& P & o

F R o)

& B

Android Applications

Number of Basis Path Test Cases

Studio as shown in Figure 10. Box plot and Levene’s test
are performed to check whether the variants of NOBP
and NOAP are equal. Wilcox test and Chi-squared test
are carried out to check NOBP and NOAP are from two
independent groups.

NOAP Vs NOBP Mean Values

as0 4158
a0

D 350

8

S 300

8 250

G 200

4 150

E

3100
50 10

NOAP
Approach

Fig.9. NOAP Vs. NOBP Mean Values.

1500

0 500

(a)
wilcoxon rank sum test with continuity correction
data: tcSNOBP and TCSNOAP

W = 18.5, p-value = 0.01893
alternative hypothesis: true location shift is not equal to 0

(c)

Levene's Test for Homogeneity of variance (center = median)
of F value Ppr(=F)

group 1 3.1564 0.09253 .
18

signif. codes: 0 ‘¥#*’ 0.001 ***' 0,01 **' 0.05 ‘.7 0.1 ° "1

(b)

Pearson’'s cChi-squared test

data: tabl

X-squared = 80, df = 72, p-value = 0.2424

(d)

Fig.10. Test case reduction analysis (a). Box plot (b). Levene’s test (c). Wilcox test (d). Chi-squared test.

The statistical results are analyzed and following
conclusions are drawn:

1. Box plot shows the variants of NOBP and NOAP
are equal if two outbound values are removed

2. Levene’s test shows p-value is greater than 0.05.
So, the null hypothesis is not rejected. It is
concluded that two variants are equal if outbound
values are removed

3. Wilcox test shows that the mean values of NOAP
and NOBP are 425.8 and 10.0 respectively. The P-
value is less than 0.5. The conclusion is NOBP
and NOAP are two different groups.

4. The chi-squared test shows that p-value is greater
than 0.05. So, the null hypothesis is not rejected,
and it is concluded that NOBP and NOAP are
independent groups.

The conclusion is NOBP and NOAP are having two
different mean values as 10 and 425.8 respectively. There
is a significant reduction in the number of test cases.

Copyright © 2018 MECS

4) Effectiveness of BP Test cases

Research Question 3 (Effectiveness): Are the generated
Basis Path test cases effective?

Figure 11 shows code coverage achieved by generated
BP test cases varies from 64% to 89% and the average is
74%. The ELOC is ranging from 243 to 11442. The DRE
is ranging from 88% to 100%, and the average is 95%.
The Fault/Test varies from 0.4 to 3.3. The efficiency of
generated tests is measured by Fault/Test. For example,
in the case of Fault/Test is 3.3, it means that 3.3 mutants
are killed by 1 test case.

The code coverage achieved by the proposed approach
is benchmarked with the other methods available in the
literature as shown in Figure 12 (a). It is greater than that
of Android monkey, Dynodroid [16] and Magic [14]. The
values of Monkey, Dynodroid, and Magic are 33.8%,
53.3%, and 58.8% respectively. The code coverage
achieved by Monkey is low because it generates random
events to simulate user actions such as touch events.
Dynodroid also uses Monkey tool to generate random
events and selects appropriate events required for SUT.

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

46 Basis Path Based Test Suite Minimization Using Genetic Algorithm

Both the tools are not generating effective test cases.
Magic is generating test cases systematically. In [14], the
constraints are added manually. In the proposed approach,
decisions are used in State diagram to add constraints.
This approach helps to improve the code coverage.

Figure 12 (b) benchmarks Fault/Test factor of the

ELOC Vs PCC
cc
, Moo ¥ ELOC —apeC . ey 0%
'y 83% 90% o
E 12000 s . - 725 Sl
= 10000 u " o &
5] A L L]
o 75% u g
& 8000 68% 69% 64% s Joox 60% 9
5 4798 508 =
y 6000 085 0% g
g 4000 2147 P2 b E
2 2000 74 805 1252 1892 TO @ 0% §
H 243 i 0% 8
i o e 0% w
$ o o & -3 3 5 o Q
& & 35\ o8 & & &z@ EQ'« &,bo & 8
PO Y & L A
\b\(} QR\‘?‘ ‘F} & o o
& 4R & I
Y
& o
A Android Applications

proposed approach with that of Magic [14]. It is found
that the proposed approach is capable of finding more
defects per test case. Fault/Test factor of the proposed
approach is 2.01 whereas that of Magic is 0.31. From
these results, it is concluded that the proposed method is
effective and the results are satisfactory.

DRE Vs Fault/Test

1070 —®—DRE —& Fault/Test 100% 35

100%
o oo 100% FT Yaow AO% 9;% N *3_3 30
2 0% 20 \ 22 & 27 25
g o T RN faeN\ 20 &
§o92% 23 g
T 0% a14 . 15 3
o B8% 8% # ¥ ¥ 1% 10 &
Z go% 408 88% 8%

B% 404 05

82% 0.0

Es g & &
&F o L ¢ & FoF F
RS <& 2 & o & &
e & [&; o5 s
o &P b &
o @\\ wa Q‘v QZ,
2 @ & 4R

Android Applications “'\\’Q‘

Fig.11. Code coverage and DRE.

Code coverage in percentage

80 74

58.8

Monkey Dynodroid [16]

(@)

Magic [14] Proposed approach

Fault/Test

201

0.5 0.31

o .

Magic [14] Proposed approach

(b)

Fig.12. (a). Code coverage bench marked (b).Fault/Test bench marked.

B. Threats to validity

The different subject program may lead to different
experimental results. The proposed approach is expected
to work with any native, non-native applications and
application with 3™ party libraries. Sometimes menu
items are not captured by the MT algorithm. In this case,
manually menu item needs to be added to MT database
for adding the right argument to the API. The subject may
crash in a particular scenario. The generated test case
may not handle this situation and may lead to stopping
the execution. In this case, it may not allow performing
both the code coverage analysis and the mutation analysis.
The Jester tool is running only if all the test cases are
passing. If subject under evaluation has inherent hang or
crash, it may affect the validation of this approach. The
next biggest threat is Papyrus tool. It frequently crashes
while saving the SCD. This leads to unwanted transitions
added in XMI file. Because of this, the test case
generation logic may not work properly. It is better to
remove these unwanted transitions to have better and
faster generations. Another issue is the Jester
configuration. The mutant operators are selected based on
the Intent payload, Intent target, on click events, button
widget, edit text widget, etc. If the mutant operator is not
properly selected, the mutant may not be killed which

Copyright © 2018 MECS

may affect the DRE.

VIl. COMPARISON WITH OTHER METHODS

The proposed approach is compared with other
methods. Table 4 shows the comparison of the proposed
approach with other methods concerning different
parameters. The input UML diagram, test case generation,
test script generation, code coverage, mutation analysis,
test case optimization, menu tree usage, Evolutionary
algorithm usage are the parameters that are compared.

In [14], the State diagram is used for test generation
and script generation. The test cases are optimized using
the combinatorial technique, both the code coverage and
the mutation analysis are performed to evaluate the
effectiveness of the generated test cases. The proposed
approach exhibits better results compared with [14]. The
main drawback of [14] is menu tree is not used for the
menu item identification. Also, API identification needs a
manually created XML mapping file.

In [15], the source code is directly used to generate test
sequences. Test cases are generated by GA, and
Robotium scripts are generated. Code coverage is
excellent, but mutation analysis is not done. The main
drawback of this method is that it is not generating test

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

Basis Path Based Test Suite Minimization Using Genetic Algorithm 47

cases for Android applications that are having native code
and libraries.
In [16], a method called “observe-select-execute” is

used to find test sequences. But there is no concrete test
case or test script. The code coverage is not good, and
mutation analysis is not performed.

Table 4. Comparison with Other Methods

Magic EvoDroid Dwvnodroid Seach Based Test ACO based test GA based test VTE
Related works
Parameters [14] [15] [16] [4] [71 [21] Current work
UML diagram State X X State State State State
Test case generation | 3| X “ | 3 “
Test script generation Robotium/Java Robotium/Java X X X L Robotium/JTava
Combinatorial Segm.e-ntad Observe-Select- GA based test ACO based test GA based test Evolutionary
Adopted method . Evolutionary i ; . ; -
testing method Testing Execute Event generation sequence gemeration generation Method
Type of testing Black box white box Blackbox Blackbox Blackbox Blackbox Blackbox
EA Usage v L X W v L W
GA Optimization X X X 4 X 8, 4
Menu tree Usage X X X X X X 4
Code Coverage Technique 4 EMMA EMMA X X X EMMA/JACOCO
Average Code Coverage 58% 80% 35% X X X 4%
Mutation Analysis v X X X X X W
Fault/Test \ X X X X X “
Test case Optimization . X X X . X .

Android monkey randomly generates events and try to
do monkey test. It may not traverse through all menu
trees. The number of events required to traverse a path is
not predictable. Test coverage is not guaranteed and the
code coverage is very low.

In [4], GA is used to find test sequence, but scripts are
not generated. Statistical analysis is performed to prove
that number of numerical equal operators in conditions
plays a very important role in test generation efficiency.
The code coverage and the mutation analysis are not
carried out to find the effectiveness of the generated test
cases.

In [7], Ant Colony Optimization is used to generate
test sequences. An optimal test sequence is generated
with transition coverage. But test scripts are not generated.
Test coverage is not ensured.

In [21], the State diagram is used as input to generate
test cases using a GA. JUnit based test scripts are
generated from these test sequences. Only feasible path
test cases are generated by eliminating infeasible paths.
But the code coverage and the mutation analysis are not
performed to find the effectiveness of the generated test
cases.

The previous works [23] and [24] are not considering
any algorithm performance improvement and the test case
optimization. A Sequence diagram is used as input in [23],
and Activity diagram is used in [24]. In [23], XML based
test cases are generated and wrapped in Android APK.
The proposed approach and [23] are using library
functions, but [24] is not using the library function. In
[24], a recursive algorithm is used to generate test cases
whereas in proposed approach GA is used to generate test
cases.

VIII. CONCLUSIONS

In this paper, the path explosion problem that occurs

Copyright © 2018 MECS

when multiple decisions are present in the same path of
the SCD and the proposed solution are discussed. When
path explosion happens, the number of all path test cases
is large, and it is not practical to use these test cases. In
this paper, a method is discussed generating Basis Path
(BP) test cases from SCD which are reduced in number,
still retaining the test coverage. An SCD is created to
represent test scenarios, and the XMl file from this SCD
is parsed to extract edges, nodes, and labels. Using this
information, BP test cases are generated using a Genetic
Algorithm (GA) with node coverage as the coverage
criteria which is the main contribution of this work.
Another contribution is finding a smart mutation to
improve the efficiency of the GA to reduce the time taken
for each generation. From these BP test cases,
corresponding Robotium scripts are generated by
identifying the right APl names from the user inputs
provided in SCD. A Menu Tree (MT) database is
generated from target Android device which helps to
identify the right menu items from the user inputs, even
though the user inputs are not accurate concerning menu
items. These menu items are used as arguments to the
APIs.

After introducing the smart mutation, the time taken by
each generation of GA is reduced to an average of 430
milliseconds with the Genetic History (GH) compared to
an average of 18 seconds without GH. The generated
scripts are evaluated by executing the scripts on the target
Android mobile phone. There are 10 Android
applications identified for experimentation with varying
number of Lines Of Code (LOC) from 243 to 11442. The
corresponding all path test cases for these applications
vary from 4 to 2048 whereas the reduced BP test cases
vary from 3 to 17. There is a significant reduction in the
test case number by an average of 70%. The GA
performance is measured which is varying from 6 to 37
seconds to find a BP test case. The MT efficiency is

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

48

Basis Path Based Test Suite Minimization Using Genetic Algorithm

varying from 64% to 100% with an average of 91%. The
experimental results show that the average code coverage

is 74% and the average Defect Removal Efficiency (DRE)

is 95%. This result shows the proposed approach is
effective and satisfactory.

In future, this work will be extended to explore more
Artificial Intelligence (Al) methods to generate test data.
This approach will ensure more test coverage with
improved DRE in a cost-effective manner.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

REFERENCES

Anirban Basu, Software Quality Assurance, Testing and
Metrics, PHI Learning, 2015.

Goldberg, D.E, Genetic Algorithms: in search,
optimization and machine learning, Addison Wesley, M.A,
1989.

Ruilian Zhao, Zheng Li, and Qian Wang. “Test Generation
for Programs with Binary Tree Structure as Input”,
International Journal of Software Engineering and
Knowledge Engineering, vol. 25, no. 07, pp. 1129-1151,
2015.

Ruilian Zhao, Mark Harman and Zheng Li. Empirical
Study on the Efficiency of Search Based Test Generation
for EFSM Models, in the proceedings of Third
International Conference on Software Testing, Verification
and Validation, 2010.

Zheng Li, Mark Harman, and Robert M. Hierons. Search
Algorithms for Regression Test Case Prioritization, IEEE
Transactions On Software Engineering, vol. 33, no. 4,
April 2007.

P.R., Srivastava and Tai-hoon Kim, “Application of
genetic algorithm in software testing” International
Journal of Software Engineering and its Applications, vol.
3, no. 4, pp.87-96, 2009.

PR., Srivastava and Baby, “Automatic test sequence
generation for state transition testing via ant colony
optimization”, in: M. Chis, (Ed.), Evolutionary
Computation and Optimization Algorithms in Software
Engineering: Applications and Techniques, pp. 161-183,
2010.

P.R., Srivastava, B. Mallikarjun, Xin-She Yang. “Optimal
test sequence generation using firefly algorithm”, Elsevier,
Swarm and Evolutionary Computation vol.8, pp44-53,
2013.

P.R., Srivastava, Ashish Kumar Singh, Hemraj Kumhar,
Mohit Jain. “Optimal Test Sequence Generation in State
Based Testing Using Cuckoo Search”, International
Journal of Applied Evolutionary Computation, 3(3), 17-32,
July-September 2012.

Pei Gong, Ruilian Zhao, Zheng Li. “Faster Mutation-
based Fault Localization With A Novel Mutation
Execution Strategy”, in the proceedings of IEEE Eighth
International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pp 1-10, 2015.

R. Lefticaru and F. Ipate. “Automatic State-Based Test
Generation Using Genetic Algorithm”, in Ninth
International Symposium on Symbolic and Numeric
Algorithm for Scientific Computing, pp 188-195, 2008.
Ernesto C. B. de Matos, Anamaria M. Moreira and Jo& B.
de Souza Neto, “An empirical study of test generation
with BETA”, in Springer Journal of the Brazilian
Computer Society, vol. 22, no. 8, 2016.

Copyright © 2018 MECS

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Premal B. Nirpal and K. V. Kale. Using Genetic
Algorithm for Automated Efficient Software Test Case
Generation for Path Testing, in International Journal of
Advanced Networking and Applications Vol. 02, No. 06,
pp. 911-915, 2011.

C. D. Nguyen, A. Marchetto, and P. Tonella. "Combining
model-based and combinatorial testing for effective test
case generation”, in Proceedings of the 2012 International
Symposium on Software Testing and Analysis (ISSTA),
pp. 100-110, 2012.

R. Mahmood, N. Mirzaei, and S. Malek. "EvoDroid:
segmented evolutionary testing of Android apps”, In
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(FSE), pp. 599-609, 2014.

A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An
input generation system for android apps. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 224-234, 2013.

Dan Liu, Xuejun Wang, Jianmin Wang, Automatic Test
Case Generation Based On Genetic Algorithm, Journal of
Theoretical and Applied Information Technology, Vol. 48
No.1, 2013.

P. Samuel R. Mall A.K. Bothra, "Automatic test case
generation using unified modeling language (UML) state
diagrams”, The Institution of Engineering and Technology,
2008.

Ranjita Swain, Vikas Panthi and Durga Prasad Mohapatra,
"Automatic Test case Generation From UML State Chart
Diagram", International Journal of Computer Applications,
vol. 42, no. 7, March 2012.

Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib
Mall, “Test Case Generation Based on State and Activity
Models”, In Journal of Object Technology, vol. 9, no. 5,
pp. 1-27, 2010.

M. Shirole, A. Suthar, and R. Kumar, "Generation of
Improved Test Cases from UML State Diagram Using
Genetic Algorithm," in Proceedings of the 4th India
Software Engineering Conference, pp. 125-134, 2011.
Anbunathan R and Anirban Basu. "Auto Test Generation
from UML Use Case State Chart Diagrams", International
Journal of Advanced Research in Computer Science and
Software Engineering, Vol. 6, No.1, pp. 169-190, January
2016.

Anbunathan R and Anirban Basu. "Automatic Test
Generation from UML Sequence Diagrams for Android
Mobiles", International Journal of Applied Engineering
Research, Vol. 11, No.7, pp. 4961-4979, 2016.
Anbunathan R and Anirban Basu. "Executable Test
Generation from UML Activity Diagram Using Genetic
Algorithm", International Journal of Computer Science
and Information Technology & Security, Vol.7, No.3,
May-June 2017.

Anbunathan R and Anirban Basu. "Dataflow test case
generation from UML Class Diagrams", IEEE
International Conference on Computational Intelligence
and Computing Research (ICCIC), pp 134-142, 2013.
Rajesh Ku. Sahoo, Santosh Kumar Nanda, Durga Prasad
Mohapatra, Manas Ranjan Patra,"Model Driven Test Case
Optimization of UML Combinational Diagrams Using
Hybrid Bee Colony Algorithm", International Journal of
Intelligent Systems and Applications(1JISA), Vol.9, No.6,
pp.43-54, 2017.

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

Basis Path Based Test Suite Minimization Using Genetic Algorithm 49

Authors’ Profiles

Dr Anbunathan R (www.anbunathan.xyz)
is an AMIE in Electronics and
Communication and MS in Embedded
System Design and received Masters from
Manipal University. He has pursued his
Ph.D. in Computer Science from Bharathiar
University. He has more than 20 years'
experience in Software development, Software testing and
Software Quality Engineering. His areas of expertise include
Automotive and Mobile software.

Dr Anirban Basu (www.anirbanbasu.in) is

a BE and MTech in Electronics and received

& 43 a Masters in Computer Science from

: Carleton University, Canada and a PhD in

Computer Science for his work on High

Performance Computing. He has more than

35 years’ experience in Academia, advanced

Research &Development, commercial
Software Industry, Consultancy and Corporate Training.

How to cite this paper: Anbunathan R, Anirban Basu, "Basis
Path Based Test Suite Minimization Using Genetic Algorithm",
International ~ Journal ~ of Intelligent Systems and
Applications(lJISA), Vol.10, No.11, pp.36-49, 2018. DOI:
10.5815/ijisa.2018.11.05

Copyright © 2018 MECS

1.J. Intelligent Systems and Applications, 2018, 11, 36-49

http://www.anirbanbasu.in/

