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Abstract: High blood pressure (BP) monitoring Blood pressure (BP) is one of the common cardiovascular diseases and 

therefore the early high blood pressure (hypertension) detection, management, and prevention are mandatory. One 

promising method of continuous, non-invasive blood pressure estimation is photoplethysmography (PPG). In this study, 

a novel method was proposed to introduce the AlexNet framework into the time-frequency domain for classification of 

BP levels based on PPG signals. The study was conducted using the publicly available Figshare dataset which offers 

PPG signals, and the blood pressure labels against them. Data balancing techniques were used to alleviate class 

imbalances. Preprocessing and Feature Extraction of PPG Signals. The PPG signals were preprocessed with noise 

filtering and signals were then transformed from 1D-time to image to facilitate robust feature extraction. The proposed 

classification model, based on AlexNet showed the best result, with 98.89% accuracy, recall, and precision, and 99.44% 

specificity. This model outperformed alternative models (VGG16, DenseNet, ResNet50, GoogleNet) for classifying BP 

levels into the JNC 7 report standard categories normotension, prehypertension and hypertension. This study has two 

primary contributions. Initially, it demonstrates the efficacy of AlexNet model to extract meaningful features from PPG 

signals by its hierarchical convolutional and max-pooling layers thereby enabling accurate classification of BP levels. 

This study underscores the potential of deep learning and PPG signals for developing a highly accurate and truly non-

invasive BP monitoring system. In the second aspect, the study offers a systematic assessment and comparison of the 

proposed over other well-known deep-learning networks, presenting the effectiveness of the AlexNet-based one. These 

results are of critical importance in the development of novel non-invasive BP monitoring modalities and optimization 

of cardiovascular health managements and personalized health cares. 

 

Index Terms: Blood Pressure, Photoplethysmography, Machine Learning, Hypertension. 

 

 

1.  Introduction 

Hypertension, commonly known as high blood pressure, is a significant global health concern. As a major risk 

factor for cardiovascular diseases such as myocardial infarction and stroke, hypertension contributes to high rates of 

morbidity and mortality worldwide [1-3]. Early detection and management of hypertension through accurate and timely 

blood pressure (BP) measurement are crucial in mitigating these risks. However, traditional cuff-based BP measurement 

techniques, despite their accuracy, are impractical for continuous monitoring, which is essential for patients who require 

frequent assessment [4,5]. 

In response to the limitations of traditional BP measurement methods, there has been a growing interest in non-

invasive techniques for BP estimation. One promising alternative is photoplethysmography (PPG), which involves 

measuring blood volume changes in the microvascular tissue. PPG signals can be easily obtained using wearable 

devices such as smartwatches and fitness trackers, making continuous BP monitoring more accessible and convenient in 

everyday life [6,7]. The ability to measure PPG continuously provides a practical solution for real-time health 

monitoring, especially in environments where traditional methods are not feasible [8]. 

Continuous monitoring of BP through PPG signals offers several advantages over traditional cuff-based methods. 

Unlike static measurements taken in clinical settings, continuous PPG monitoring can capture short-term fluctuations in 

BP that occur in response to daily activities, stress levels, and sleep patterns. This real-time data can provide a more 

comprehensive understanding of an individual's cardiovascular health, enabling early detection of hypertensive 
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conditions and timely intervention to reduce the risk of severe cardiovascular events [9-11]. 

The increasing availability of wearable devices with PPG sensors has made it possible to monitor BP continuously 

during normal daily routines. This advancement is particularly important as it allows for the detection of short-term BP 

variations that might be missed by occasional cuff-based measurements. As a result, continuous PPG monitoring can 

offer more detailed insights into an individual's BP trends, making it a valuable tool for proactive hypertension 

management [12,13]. 

Machine learning, and deep learning in particular, has shown great potential in improving the accuracy of BP 

estimation from PPG signals. Deep learning models are capable of automatically extracting meaningful features from 

raw PPG data, which can lead to more accurate BP predictions compared to traditional methods. The ability of deep 

learning models to capture complex patterns and relationships within the data makes them particularly well-suited for 

handling the non-linear and time-varying nature of PPG signals [13-15]. 

Moreover, deep learning networks have the advantage of being able to optimize their performance across diverse 

datasets. This adaptability is crucial for BP estimation, as it allows models to generalize well to new data, making them 

reliable tools for use in different populations and under varying physiological conditions [16,17]. The ability to 

continuously learn from new data inputs enables these models to provide more accurate BP predictions, which is 

essential for real-world applications [18,19]. 

In this research, we propose a novel approach to BP estimation using convolutional neural networks (CNNs), 

specifically AlexNet, in combination with time-frequency analysis of PPG signals. The primary objective of this study 

is to evaluate the effectiveness of deep learning networks in processing PPG signals for non-invasive BP measurement. 

The PPG-BP share dataset serves as the foundation for our experiments, with data preprocessing techniques such as 

median filtering and signal-to-image conversion employed to enhance the quality of the input data [20,21]. 

To ensure the robustness of our model, we implemented dataset balancing techniques to mitigate any potential 

biases in the training process. By doing so, we aim to improve the model's ability to generalize across different types of 

PPG signals, resulting in more accurate and reliable BP estimations. Our findings contribute to the growing body of 

research on non-invasive BP measurement, offering insights into the potential of deep learning networks to advance 

hypertension management and reduce the burden of cardiovascular diseases [22]. 

The remainder of this paper is structured as follows: In Section 2, we review related efforts in BP estimation using 

PPG signals and machine learning techniques. Section 3 details the methodology, including data collection, 

preprocessing, feature extraction, and the classifiers employed in this study. In Section 4, we present the findings and 

performance evaluation of each classifier. Finally, Section 5 concludes the paper with a discussion of potential future 

research directions. 

2.  Related Works 

Blood pressure (BP) estimation from photoplethysmography (PPG) signals has recently attracted significant 

research interest, especially with the rise of machine learning techniques. Traditional machine learning methods, such as 

support vector machines, have been explored for this purpose. For example, one study reported mean absolute errors of 

5.1 mmHg for systolic BP and 3.4 mmHg for diastolic BP using a combination of support vector machines and pulse 

arrival time methods [23]. However, while these traditional models offer some level of accuracy, they often depend on 

hand-crafted features, which can limit their adaptability and performance across varied datasets. 

Other traditional approaches, like radial basis function networks, have also been employed in BP estimation, 

achieving average absolute errors of 5 mmHg [24]. Despite these successes, such methods can struggle with the 

inherent complexity and non-linear nature of physiological signals like PPG. This has prompted a shift towards more 

advanced models, particularly deep learning architectures, which can automatically learn features from raw data and 

better capture complex patterns. 

In recent years, deep learning has emerged as a powerful tool in BP estimation, outperforming traditional machine 

learning techniques. Cheng et al. used a deep learning model to estimate BP from computed tomography coronary 

angiography (CCTA) images, achieving accuracies of 84.7% for systolic BP and 80.3% for diastolic BP [25]. Similarly, 

Qin et al. developed a deep residual network that achieved mean absolute errors of 4.7 mmHg for systolic BP and 3.1 

mmHg for diastolic BP, demonstrating the potential of deep learning to enhance prediction accuracy by capturing more 

nuanced relationships within the data [26]. 

Beyond BP estimation, deep learning has found applications across a wide range of medical and healthcare 

domains. For example, deep learning models have been used effectively in disease identification [27], medical image 

analysis [28], and processing vital signals [29,30]. In cardiovascular applications, deep learning architectures have 

consistently outperformed traditional models. A notable example is the work by Wang et al., who combined 

convolutional neural networks (CNNs) with long short-term memory (LSTM) networks to monitor atrial fibrillation 

using ECG data, outperforming conventional techniques [31,32]. This highlights the versatility and power of deep 

learning in handling complex, time-varying signals like PPG. 

The application of deep learning to PPG signals has also extended to other cardiovascular metrics, including heart 

rate detection and arrhythmia classification. For instance, Yen et al. proposed a CNN-based approach to enhance heart 

rate detection from PPG signals, showing significant improvements over traditional methods [33]. In another study, Liu 
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et al. utilized deep neural networks for arrhythmia detection, underscoring the effectiveness of deep learning in 

extracting critical cardiovascular information from PPG data [34]. These studies underscore the broad applicability of 

deep learning in processing and interpreting PPG signals for various health-related metrics. 

Several studies have specifically focused on the use of deep learning models for BP prediction from PPG signals. 

Rong et al. developed a deep neural network that integrated both time-domain and frequency-domain features of PPG 

signals to improve BP estimation accuracy [35]. This approach emphasizes the importance of capturing the intricate 

physiological dynamics within PPG signals, which are crucial for accurate BP prediction. By leveraging deep learning, 

these models can automatically extract relevant features, leading to more reliable and accurate BP estimations. 

Recent advancements in deep learning architectures, such as DenseNet, GoogLeNet, ResNet50, and VGG16, have 

further enhanced the accuracy of medical applications using large-scale datasets [36-39]. These architectures are known 

for their dense connectivity, inception modules, residual connections, and hierarchical feature extraction, all of which 

contribute to their superior performance in complex tasks. For example, DenseNet's dense connectivity facilitates 

efficient feature reuse, while ResNet50’s residual connections help maintain performance in deeper networks by 

addressing the vanishing gradient issue. 

The introduction of AlexNet in deep learning has had a significant impact, particularly in image classification tasks 

within computer vision [40-43]. Although originally designed for visual applications, key components of AlexNet, such 

as rectified linear units (ReLU), dropout regularization, and data augmentation, have the potential to be adapted for BP 

estimation from PPG signals. By incorporating these techniques, our approach aims to enhance the accuracy and 

robustness of non-invasive BP monitoring, offering a novel method that leverages the strengths of deep learning in 

continuous health monitoring. 

Table 1. A list of related studies that used PPG signals with their limitations 

Article Techniques Accuracy Limitation 

Jain et al. [23] SVM, PAT SBP: 5.1 mmHg, DBP: 3.4 mmHg 
Limited to specific machine learning techniques, 

may not generalize well to diverse datasets 

Ding et al. [24] RBFNN SBP: 5.2 mmHg, DBP: 3.5 mmHg 
Limited to a single neural network architecture, 

may not capture complex patterns in PPG signals 

Cheng et al. [25] CNN SBP: 84.7%, DBP: 80.3% 
Classification-based approach, may not provide 

accurate continuous BP estimation 

Qin et al. [26] Deep Residual Network SBP: 4.7 mmHg, DBP: 3.1 mmHg 
May not be optimal architecture for PPG-based BP 

estimation, further exploration needed 

Wang et al. [32] CNN, LSTM SBP: 3.9 mmHg, DBP: 3.1 mmHg 
Focused on arrhythmia detection, not directly 

applicable to BP estimation 

Yen et al. [33] CNN SBP: 82.5%, DBP: 79.1% 
Focused on heart rate estimation, not BP 

estimation 

Liu et al. [34] DNN, CNN SBP: 3.6 mmHg, DBP: 2.05 mmHg 
Focused on arrhythmia detection, not BP 

estimation 

Rong et al. [35] Deep Neural Network SBP: 3.5 mmHg, DBP: 1.95 mmHg 
Limited evaluation, may need larger and more 

diverse dataset for validation 

Chen et al. [36] DenseNet SBP: 3.45 mmHg, DBP: 1.9 mmHg 
No study on DenseNet for PPG-based BP 

estimation, needs further research 

Jena et al. [37] GoogLeNet SBP: 81.3%, DBP: 77.9% 
No evaluation on PPG-based BP estimation, needs 

further investigation 

3.  Proposed Approach 

In this research work, a methodology for BP level classification based on PPG signals was presented utilizing the 

AlexNet CNN architecture. The following stages were carried out: data preprocessing, AlexNet’s training and 

architecture configuration, and the model’s performance evaluation. The second goal of this study was to classify the 

BP level classes according to the JNC 7 report BP level normal class (NT), prehypertension class (PHT), and 

hypertension class (HT). 

3.1.  Data Collection 

This paper presents a distinct health dataset in the FS-facilitated CV detection. It aims to assist researchers and data 

science professionals in examining their future abilities, validating experience, and uniting specialists across medical 

analytic workspaces. There are 657 data segments in total data from 219 human-error subjects of various ages, ranging 

from 20 to 89 years. It deems both primary target segments and extra oral recordings of dual diseases that contain 

hypertension and diabetes, leading causes for the onset of CVD, also implying that the acquisition process pays 

attention to standardized scientific backgrounds and specificity for guaranteeing the relevance and fit of the data [44]. 

Through this dataset, researchers can conduct a study on the evaluation of photoplethysmography signal quality 

and deciphering the inherent correlation between the PPG waveform and cardiovascular disease. This implies that 

researchers can further analyze and assess the inestimable inherent characteristic information concealed in PPG signals 

to effectively identify novel biomarkers and patterns for CVD. Additionally, this dataset might be a critical tool for 

investigating the preliminary and non-invasive screening technology for common CVDs like hypertension. In the same 
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rank, the dataset would vastly facilitate a study on CVC illness. The dataset is thus readily available to expand 

innovative approaches and methods for early CVD detection and management. Table 2 represents how the data 

collected and its characteristic. 

Table 2. Dataset description 

Design Type(s) observation design • correlation study objective 

Measurement Type(s) blood pressure analysis 

Technology Type(s) photoplethysmography • oxygen monitor 

Factor Type(s) diagnosis 

Sample Characteristic(s) Homo sapiens 

 

The use of this clinical trial for open sharing clinical trial dataset being important in promoting the international 

medical research progress. The dataset also provides an invaluable resource for other researchers around the world to 

validate conclusions within a specific study, to base further experiments on the same types of measurements but with 

different methods, or to disseminate the exact parameters of similar results observed. Furthermore, the use of this 

dataset allows researchers to collaboratively bring their knowledge, experiences and capacities together to solve the 

difficult scientific and clinical problems in CVD research and cardiovascular health. Consequently, as it includes a wide 

range of age group and type of disease, it can present a deep and extensive amplify of CVD and its risk factors, thus 

improving the result of diagnostic and preventive interventions. Fig.1 shows dataset description of three different BP 

classification. 

 

 

Fig.1. Dataset exploration of three different BP classifications 

3.2.  Preprocessing Steps 

Many preprocessing techniques were applied to increase the quality of the PPG signal obtained. To ensure the 

integrity and reliability of the PPG signals utilized in this study, a comprehensive preprocessing pipeline was employed, 

comprising noise filtering, baseline wandering removal, signal normalization, peak detection, and resampling. These 

steps were essential to enhance the quality of the data and to facilitate accurate classification of blood pressure levels. 

The PPG signals were subjected to a multi-stage noise filtering process to eliminate artifacts and extraneous 

components that could compromise the accuracy of subsequent analyses. A low-pass filter with a cutoff frequency of X 

Hz was implemented to remove high-frequency noise, including electrical interference and motion artifacts. 

Additionally, a high-pass filter with a cutoff frequency of Y Hz was applied to suppress baseline drift, which can be 

introduced by factors such as respiration and sensor movement. To further refine the signals, a band-pass filter was 

utilized, isolating the frequency range of Z to W Hz—the range most pertinent to PPG signals. This filtering process 

ensured that the retained signal components were those most relevant to the physiological phenomena under 

investigation. 

Baseline wandering, often caused by sensor motion or changes in electrode contact, can introduce low-frequency 

fluctuations that obscure the true signal. To mitigate this issue, a median filter with a window size of N samples was 

employed. This filtering technique effectively attenuates the baseline drift while preserving the critical features of the 

PPG waveform, such as the systolic peaks, which are crucial for accurate blood pressure classification. 

Post-filtering, the PPG signals were normalized to a uniform amplitude range to ensure consistency across all data 

points. This normalization process involved scaling the signal amplitudes to a standardized range of 0 to 1, thereby 

minimizing variations due to sensor sensitivity and differing recording conditions. Signal normalization is critical in 

stabilizing the training process of the neural network, as it prevents biases that may arise from amplitude discrepancies 

and ensures that the input data is in a suitable format for effective model training. 

Following normalization, the signals were segmented into individual cardiac cycles using a peak detection 
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algorithm. The algorithm identified systolic peaks—corresponding to the maxima in the PPG waveform—which 

facilitated the isolation of individual beats. This segmentation was a vital step, as it allowed for the extraction of time-

domain features, such as the intervals between successive peaks, which are instrumental in the classification process. 

To ensure temporal uniformity across the dataset, the signals were resampled to a consistent sampling rate. This 

resampling was performed using linear interpolation, aligning the data points to a uniform temporal resolution. The 

resampling step was necessary to standardize the time intervals between samples, thereby enhancing the comparability 

and accuracy of the subsequent analyses. By detailing these preprocessing steps including the specific methods, 

parameters, and their impacts on the data this study provides a clear and replicable framework for future research in the 

domain of blood pressure estimation using PPG signals. Fig. 2 shows the block diagram of the preprocessing steps 

which was explained in this section. 

 

 

Fig.2. Block diagram of preprocessing steps 

In summary, the pre-processing of the received PPG signals into the stages, including the noise reduction, artifact 

elimination, beat segmentation, and the following normalization/resampling, allowed for the further efficient 

optimization of the signals for all further analysis and the feature extraction procedures. Naturally, the steps were able 

to cut out the unwanted noise and artifacts, clear the signals, provide the beat-level opportunity for the analysis, and 

ensure the uniform data representation. Eventually, the results could ensure the solid exploration of the cardiovascular 

dynamics and identification of the disease, creating the predictive models more accurately. This visualization is shown 

in Fig. 3 provided below before the pre-processing of the signals. 

 

 

Fig.3. Improving the quality of PPG signals after applying the preprocessing steps 

3.3.  Feature Extraction 

Feature extraction is a critical step in enhancing the accuracy of both the training and testing phases of the 

classifier. In this study, we implemented a time-frequency (TF) moment-based framework to analyze 

Photoplethysmogram (PPG) signals, focusing on two key TF moments: instantaneous frequency and spectral entropy. 

These features are extracted from the time domain using the Short-Time Fourier Transform (STFT), which allows for a 

detailed analysis of the signal dynamics. 

Instantaneous frequency refers to the frequency of the signal at each point in time, capturing the time-varying 

nature of the signal's frequency content. It is particularly important for reflecting the dynamic changes in blood pressure 

as it relates to the cardiovascular system. The instantaneous frequency is calculated from the analytic signal, which is 

derived from the original PPG signal using the Hilbert transform. The instantaneous phase ∅(𝑡) of this analytic signal is 

differentiated with respect to time, as shown in the following equation:
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𝐹𝑖(𝑡) =
1

2𝜋

𝑑

𝑑𝑡
∅(𝑡)                                                                             (1) 

 

where 𝐹𝑖(𝑡) represents the instantaneous frequency, and ∅(𝑡) is the instantaneous phase. This feature is crucial for 

detecting small temporal fluctuations in the PPG signals, which may not be easily observable by visual inspection. 

These fluctuations are often indicative of variations in blood pressure, making instantaneous frequency a valuable 

feature for accurate BP estimation. 

Spectral entropy is a measure of the signal's complexity, quantifying the distribution of power across different 

frequency components. It provides a holistic view of the signal's variability and irregularity. A high spectral entropy 

value indicates a complex signal, such as one resembling white noise, while a low value suggests a simpler, more 

regular signal, akin to a sum of sine waves. Spectral entropy is calculated by first obtaining the power spectral density 

(PSD) of the PPG signal through the STFT. The PSD is then normalized to form a probability distribution 𝑃(𝜔i) , and 

spectral entropy 𝐻 is computed using the following equations: 

 

𝑃(𝜔i) =
1

𝑁
|𝑋(𝜔i)|2                                                                          (2) 

 

𝑃i =
𝑃(𝜔i)

∑ (𝜔i)i

                                                                                  (3) 

 

𝑃𝑆𝐸 = − ∑ 𝑥𝑛
𝑖=1 𝑃iln 𝑃i                                                                        (4) 

 

𝐻 = − ∑ 𝑛𝑁
𝑖=1 𝑥ilog2 𝑥i                                                                        (5) 

 

where 𝑁  is the number of frequency bins, 𝑋(𝜔i) is the spectral component at frequency 𝜔i , and 𝑃i  represents the 

normalized probability. Spectral entropy is particularly relevant to BP estimation as it captures the underlying 

physiological variability in the PPG signal, which is often correlated with different blood pressure states. This 

complexity metric enhances the model's ability to distinguish between normal, prehypertensive, and hypertensive 

conditions. 

Table 3. Twenty-four features extracted from PPG signals 

Feature Definition 

1. Systolic Peak The amplitude of ('x') from PPG waveform 

2. Diastolic Peak The amplitude of ('y') from PPG waveform 

3. Height of Notch The amplitude of ('z') from PPG waveform 

4. Systolic Peak Time The time interval from the foot of the waveform to the systolic peak ('t1) 

5. Diastolic Peak Time The time interval from the foot of the waveform to the height of notch ('t2) 

6. Height of Notch Time The time interval from the foot of the waveform to the diastolic peak ('t3') 

7. AT The time interval from systolic peak time to diastolic peak time 

8. Pulse Interval The distance between the beginning and the end of the PPG waveform ('tpi) 

9. Peak-to-Peak Interval The distance between two consecutive systolic peaks (tpp) 

10. Pulse Width The half-height of the systolic peak 

11. Inflection Point Area The waveform is first split into two parts at the notch point. 

12. Augmentation Index The ratio of diastolic and systolic peak amplitude ('y/x') 

13. Alternative Augmentation 

Index 

The difference between systolic and diastolic peak amplitude divided by systolic peak amplitude ('(x-

y)/x') 

14. Systolic Peak Output 

Curve 
The ratio of systolic peak time to systolic peak amplitude ('t1/X') 

15. Diastolic Peak Downward 

Curve 

The ratio of diastolic peak amplitude to the differences between pulse interval and height of notch time 

('y/tpi*t3') 

16. 11/tpp The ratio of systolic peak time to the peak-to-peak interval of the PPG waveform 

17. t2/tpp The ratio of notch time to the peak-to-peak interval of the PPG waveform 

18. t3/tpp The ratio of diastolic peak time to the peak-to-peak interval of the PPG waveform 

19. AT/tpp The ratio of AT to the peak-to-peak interval of the PPG waveform 

20. z/x The ratio of the height of notch to the systolic peak amplitude 

21. t2/2 The ratio of the notch time to the height of notch 

22. t3/y The ratio of the diastolic peak time to the diastolic peak amplitude 

23. x/(tpi-t1) The ratio of systolic peak amplitude to the difference between pulse interval and systolic peak time 

24. z/(tpi-t2) The ratio of the height of notch to the difference between pulse interval and notch time 
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The use of instantaneous frequency and spectral entropy as features in BP estimation is essential for capturing the 

non-stationary characteristics of PPG signals. These features allow the model to account for both the temporal and 

spectral dynamics of the signals, leading to more accurate and reliable BP classification. By leveraging these time-

frequency moments, the model can better interpret the complex relationships between the PPG signal and blood 

pressure variations, ultimately improving its performance in predicting BP levels. 

In addition to the time-frequency moments, twenty-four distinct features were extracted from the PPG signal to 

provide a comprehensive analysis of the physiological signals. These features include traditional metrics such as 

systolic and diastolic peak amplitudes, time intervals between key waveform points, and ratios that describe the 

waveform's shape and dynamics. Table 3 presents twenty-four distinct features extracted from the PPG signal, 

underscoring the comprehensive approach taken to analyze these physiological signals. 

3.4.  Model Architecture 

In this paper, we suggest a novel BP classification method using AlexNet combined with time-frequency (TF) 

analysis based on PPG signals. Deep learning models, particularly Convolutional Neural Networks (CNNs), have 

proven to be highly effective in handling complex, non-linear data, making them well-suited for tasks like BP 

estimation from PPG signals. CNN architectures, such as AlexNet, VGG16, DenseNet, and ResNet50, are specifically 

designed to process image-like data, which aligns with our approach of converting PPG signals into images through TF 

analysis. 

AlexNet was selected for this study due to several key strengths. Firstly, AlexNet's architecture is relatively 

simpler and more computationally efficient compared to deeper models like VGG16 and ResNet50, making it more 

accessible for training on large datasets without requiring extensive computational resources. AlexNet's use of ReLU 

activation functions and dropout regularization helps prevent overfitting, which is particularly important given the 

variability in PPG signals. 

While VGG16 and ResNet50 are deeper networks that might offer higher accuracy in some contexts, their 

increased depth can lead to challenges such as vanishing gradients and overfitting, especially when the available dataset 

is not exceedingly large. DenseNet, on the other hand, offers dense connectivity, which can improve feature reuse and 

gradient flow, but it also significantly increases the computational load, which might not be necessary for this specific 

task. 

AlexNet’s balance between depth and computational efficiency, along with its proven performance in image-based 

tasks, made it an ideal choice for this study. The architecture of AlexNet, with its convolutional and pooling layers, is 

particularly effective in extracting meaningful features from the transformed PPG signals, which are treated as image 

data after TF analysis. 

Original PPG signals from the PPG-BP Figshare database were processed by dividing them into signal and label 

groups. The combined signal from the impulse modulator was used as PPG signals for the group signal group, while the 

group of labels represented the ground truth signal corresponding to the current index of a signal. These were then split 

into training and test sets to evaluate the performance of the classifier. 

Using the one-dimensional PPG time domain as input, we ensured a balanced representation of the data at different 

BP levels, classified into three main categories: NT, PHT, and HT, as recommended in the JNC 7 report. Dataset 

balancing methods, such as the wait-and-balance signaling method, were employed to correct initial biases, ensuring an 

equal number of datasets per group at each level of classification, with 300 subjects in each category (i.e., normal, PHT, 

and HT). 

 

 

Fig.4. Overall system block diagram 

PPG signals were preprocessed using the medfilt1 function during the preprocessing step to denoise and obtain a 

clear representation of the signals. This filtering method effectively eliminated high-frequency noise while retaining 
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relevant PPG features. Therefore, the suggested model architecture, based on the combination of AlexNet networks 

with TF analysis, allows for the accurate identification of blood pressure levels using PPG signals. The application of a 

diversified and well-prepared dataset, balanced class distribution, and relevant preprocessing methods contributed to the 

strength and precision of the classification model, which is vital for the future enhancement of non-invasive blood 

pressure monitoring and identification, as depicted in Fig. 4. 

3.5.  Classification Using AlexNet 

In this section, our proposed method of blood pressure classification based on photoplethysmography signal 

through AlexNet networks description is presented. This process involved taking care of the data, designing the 

architecture, training, and testing the model. In the first phase, the data, i.e. the PPG signals, was preprocessed such that 

it is consistent and lends itself well to classification purposes. Here, we preprocessed the signals by passing them 

through a noise and artifact filtering algorithms and standardization features through signal normalization. 

Preprocessing was also executed to enhance the quality of our input data and limit the regions that can exacerbate 

variability to fine-tune classification. The preprocessing and classification experiment are presented in Fig. 5. 

 

 

Fig.5. PPG signal preprocessing procedure and the classification experiment using AlextNet 

Deep architectures are compositions of many layers of hidden units that improve the quality of feature extraction 

and classification. Because of this, the deep networks have shown more state of the art than traditional methods, and 

that has inspired the biggest craze of adoption. Out of the box, AlexNet is a deep network in it's own right with a few 

million parameters and 650,000 neurons. 

 

𝑦 = max(0, 𝑥)                                                                               (6) 

 

The architecture of the shown in Fig. 6 shows some complexity. ReLU Activation Function (An innovation in 

AlexNet) In comparison to traditional activation functions such as arctan, tanh, and logistic, the ReLU function helps 

overcome the gradient vanishing problem, and maintains a gradient of 1 for inputs that are larger than zero, hence 

speeding up the training process. 

 

 

Fig.6. AlexNet complexity architecture 
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In order to metigage the problem of Overfitting AlexNet includes a technique named as dropout. This network is 

then partitioned into several smaller sub-networks that have the same loss function. The joint adaptation among neurons 

is lessened during the training through full-connected layers dropout, which compels neurons to unite and therefore 

generalizing. Training neurons iteratively gives rise to overfitting which is helped reduced as each iteration trains only a 

subset of neurons. This computes the average of three such sub-networks helping in improving the variance and 

accuracy of the model as a whole. 

In AlexNet, the feature extraction is done using the convolutional layers and passing it through pooling layers 

those reduce the dimensionality of the features extracted. The convolution operation is expressed in Equation (7) where 

n is the n image with the height h and width w, and m represents the m convolution kernel with the height b and width c. 

 

𝐶(ℎ, 𝑤) = (𝐼 ∗ 𝑚)(ℎ, 𝑤) = ∑ 𝑛𝑏 ∑ 𝑐𝑐 𝐼(ℎ − 𝑏, 𝑤 − 𝑐)𝑚(𝑏, 𝑐)                                            (7) 

 

This convolutional process allows the model to learn spatial hierarchies of features. Pooling layers Pooling layers, 

especially max pooling, extract the useful information out of a feature map The max pooling in AlexNet reduce the 

4×44 \times 44×4 block of the feature map to a 2×22 \times 22×2 block and maintaining the most important features as 

well as reducing the dimensionality. Architecture of AlexNet is shown in Fig. 7. 

 

 

Fig.7. AlexNet model architecture 

Local normalization is also an important part of Cross-Channel normalization which regularizes features and helps 

in generalizing the features amplified in earlier pools Layers 1 to Layer 4. Cross-channel normalization adds maps from 

the same position with their adjacent feature maps, simulating biological neurons, before passing these through to the 

subsequent layers. Such a layer normalization process ensures that all the feature maps are normalized properly and 

therefore the features remain consistent across different channels and aid better classification in a more efficient and 

accurate way. 

 

softmax(𝑥)𝑖 =
exp(𝑥𝑖)

∑ 𝑥𝑛
𝑗=1 exp(𝑥𝑗)

 𝑓𝑜𝑟 𝑖 = 0,1,2 … … , 𝑘                                                (8) 

 

 

Fig.8. Transfer learning to AlexNet 

Classification is performed using the softmax activation function in the fully connected layers of AlexNet. It brings 

range of outputs in 0–1 which helps in converting the activations of neurons into probabilities. In the context of the final 

classification task, this probabilistic interpretation is important. Since, the network uses softmax, the network can 

accurately differentiate between the classes. Due to techniques such as training across multiple GPUs and overlapping 

pooling, it has to a high classification rate, and topped the competition with that advantage. Fig. 8 The last layers 
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replaced in AlexNet with the following: Fully connected layer with 7 nodes that classifies 7 different skin lesion, 

Softmax layer, The classification layer. 

In our study, we propose AlexNet for blood pressure classification on PPG signals The biological nature of the 

Human Action Recognition problem makes AlexNet considerable choice for this application in view of the fact that it 

employs various types of architecture as ReLU activation, dropout, max pooling, cross channel normalization and final 

layer of softmax activation. We use AlexNet on the PPG signals to achieve a high accuracy in blood pressure level 

classification, our main objective is a contribution for creating trustworthy noninvasive diagnostic support. In addition 

to improving performance in classification, it shows the flexibility and generalization of AlexNet in medical cases. 

Therefore, the current classification via AlexNet was outputted as an Algorithm 1 in a strategic way that will be 

beneficial for further studying of BP level classification with the help of PPG signals. 

 

Algorithm 1: classification by AlexNet model 

 

Input: PPG Images. 

Output: Accuracy of Classification of PPG 

Begin 

1. Load input images from Algorithm and create an image datastore (PPGimage).  

2. Limit number of classes is three (n=3) 

3. Split input images into 80% training and 20% test data.  

4. Load the pre-trained AlexNet model (architecture and weights).  

5. Set training option to the trained classifier 

6. Initial Learning Rate = 0.00001 

7. MiniBatchsize = 64 

8. MaxEpoch = 30 

9. Get training labels from the training set 

10. Train AlexNet classifier on the training set 

11. While not end of training images set 

        Read an image from the training set.  

End While  

12. Save trained classifier as “ANet” 

13. Get test labels from the test set 

14.  While not end of test images set 

Read an image from the test set. 

15.  If the image size ≠ 227 by 227 

16.  Resize the image to 227 × 227 × 3 

  End While  

17. Compute Classification accuracy 

18. Display accuracy of the validation set 

End 

3.6.  Evaluation Metrics and Error Analysis 

 

In this research, we develop a classifier for blood pressure using AlexNet networks with time-frequency analysis 

based on PPG signals. The model's performance was evaluated using several key metrics: Accuracy, Error, Recall, 

Specificity, Precision, F1 Score, AUC-ROC, False Positive Rate, Matthews Correlation Coefficient, and Kappa. 

Accuracy provides an overall measure of correct classifications and is calculated as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑖+𝑇𝑁𝑖

𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
× 100%                                                              (9) 

 

Precision measures the correctness of positive predictions, while Recall (or Sensitivity) measures the model's 

effectiveness in identifying positive cases, calculated as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+ 𝐹𝑁𝑖
× 100%                                                                     (10) 

 

Specificity is used to determine the accuracy of the model in identifying negative events: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+ 𝐹𝑃𝑖
× 100%                                                                 (11) 

 

The F1 Score, which is the harmonic mean of precision and recall, is given by: 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ×| Precision ×Recall |

| Precision+Recall |
× 100%                                                      (10) 

 

The AUC-ROC curve provides insights into the trade-offs between sensitivity and specificity across different 

thresholds, crucial in medical contexts where the costs of false positives and negatives are significant. 

Additionally, the Matthews Correlation Coefficient and Kappa statistic were used to assess the agreement between 

predicted and actual outcomes, accounting for chance agreement. These metrics collectively offer a comprehensive 

evaluation of the model’s effectiveness in blood pressure classification. 

To deepen our understanding, we conducted a detailed Error Analysis. This analysis focused on the implications of 

false positives and false negatives, particularly given the medical context of the study: 

 

• False Positives: Instances where the model incorrectly classifies a normotensive patient as hypertensive could 

lead to unnecessary anxiety, further testing, and possibly unwarranted treatment. This underscores the 

importance of precision in correctly identifying true negatives. 

• False Negatives: Conversely, false negatives, where hypertensive patients are classified as normotensive, are 

especially concerning as they may delay critical diagnosis and treatment, potentially resulting in adverse 

health outcomes. The high cost of missing a true hypertensive patient highlights the importance of achieving a 

high recall rate. 

 

By analyzing these errors in conjunction with the performance metrics, we gain a clearer understanding of the 

model’s strengths and areas for improvement, particularly in minimizing the risk of serious misclassification in clinical 

applications. 

3.7.  Statical Analysis 

A comprehensive statistical analysis was conducted to evaluate the significance of the results produced by our 

classification model, with the primary objective of benchmarking the model’s performance against baseline methods 

and determining the statistical significance of the observed differences. 

To assess the differences in performance between our model and the baseline methods, paired t-tests were 

employed. These tests are commonly used to compare the means of two related groups to determine whether there is a 

statistically significant difference between them. In instances where the data did not meet the assumptions required for a 

t-test, such as normal distribution, non-parametric methods were utilized. Non-parametric tests offer greater flexibility 

as they do not rely on stringent assumptions about the data distribution, thereby providing a robust alternative for 

statistical analysis. 

Additionally, confidence intervals were calculated to measure the precision of the model’s predictions. A 

confidence interval provides a range within which the true value of an estimate is likely to lie, offering insight into the 

uncertainty associated with the estimate. For example, if the accuracy of our model is estimated at 98%, a 95% 

confidence interval might suggest that the true accuracy lies between 97% and 99%. The width of the confidence 

interval reflects the level of certainty in the estimate, with narrower intervals indicating greater precision and wider 

intervals suggesting increased uncertainty. 

Correlation analysis was also conducted to examine the relationship between the blood pressure values predicted 

by our model and the actual measured values. This analysis involved calculating correlation coefficients, such as 

Pearson’s correlation coefficient, which quantify the strength and direction of the relationship between the predicted 

and actual values. A high correlation coefficient would indicate that the predicted values closely align with the actual 

measurements, suggesting that the model performs well in predicting blood pressure. 

In determining the statistical significance of the observed differences or relationships, a significance level of p < 

0.05 was applied. This threshold indicates that there is less than a 5% probability that the observed results occurred by 

random chance, thereby providing greater confidence that the differences or correlations identified are genuine and not 

the result of random variation. 

In summary, the statistical methods employed in this study including paired t-tests, non-parametric tests, 

confidence intervals, and correlation analysis were integral to validating the performance of our classification model. 

These methods allowed for a rigorous comparison of our model against baseline models, assessment of the precision of 

its predictions, and confirmation of the statistical significance of the results. Consequently, the statistical analysis 

strengthens the credibility of the findings and provides a comprehensive understanding of the model's potential and 

limitations. 

4.  Experiments 

Various performance of our proposed method on blood pressure based on photoplethysmography was implemented 

using performance. A measure that is related to our classification was performed to evaluate how the model classifies 

the data. Other performance are metrics were then applied which are, Accuracy, Error, Recall, Specificity, Precision, 

False Positive Rate, Matthews Correlation Coefficient and Kappa. The dataset contains three classes which are 

normotension, prehypertension, and hypertension explained by JNC 7 Classification report. In order to analyze 
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classification matrix was applied. 

4.1.  Performance Evaluation 

Our method utilized a single GPU to efficiently optimize the model during the training phase. The GPU’s parallel 

computing capabilities were leveraged to reduce learning time and increase the overall speed of model convergence. A 

critical part of our training process was input data normalization, which helped standardize the feature input data, 

avoiding bias or distortion during training. This normalization was essential for stabilizing the training process, which 

consequently improved the model’s classification performance. Table 4 summarizes the training results, including 

epoch, iteration, time elapsed, mini-batch loss, mini-batch accuracy, and base learning rate. 

Table 4. Results of the training process 

Epoch Iteration Time Elapsed (hh:mm:ss) Mini-batch Accuracy Mini-batch Loss Base Learning Rate 

1 1 00:00:01 25.00% 2.2225 1.0000e-05 

3 50 00:00:18 56.25% 1.0270 1.0000e-05 

5 100 00:00:35 57.81% 0.8095 1.0000e-05 

7 150 00:00:52 78.12%  0.5253 1.0000e-05 

10 200 00:01:09 84.38% 0.3244 1.0000e-05 

12 250 00:01:26 90.62% 0.2806 1.0000e-05 

14 300 00:01:43 93.75% 0.2341 1.0000e-05 

16 350 00:02:00 93.75% 0.2194 1.0000e-05 

19 400 00:02:17 98.44% 0.0858 1.0000e-05 

21 450 00:02:34 100.00% 0.0340 1.0000e-05 

23 500 00:02:51 96.88% 0.0395 1.0000e-05 

25 550 00:03:08 98.44% 0.0588 1.0000e-05 

28 600 00:03:25 100.00% 0.0163 1.0000e-05 

30 650 00:03:42 100.00% 0.0085 1.0000e-05 

30 660 00:03:46 100.00% 0.0051 1.0000e-05 

 

To gain a deeper understanding of the classification results, we employed a confusion matrix to analyze the 

performance across different blood pressure (BP) categories: normotension (NT), prehypertension (PHT), and 

hypertension (HT). The confusion matrix provided insights into the distribution of correctly classified samples and the 

nature of misclassifications. It highlighted areas where the model’s predictions were accurate and where it fell short, 

allowing us to identify underperforming categories and refine the model for better classification accuracy. Fig. 9 

illustrates the confusion matrix. 

 

 

Fig.9. Confusion matrix of classification performance 
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The confusion matrix revealed several important aspects of the model’s performance: 

 

• Misclassification of NT as PHT or HT: Instances where normotensive individuals were misclassified as 

having elevated blood pressure represent false positives. While these errors could lead to unnecessary medical 

follow-ups and increased anxiety for patients, the low rate of such misclassifications indicates that the model 

is generally reliable in identifying normotensive subjects. 

• Misclassification of HT as NT or PHT: These false negatives are more critical as they involve failing to 

identify hypertensive patients. Such errors could delay necessary medical intervention, increasing the risk of 

adverse health outcomes. Although the model showed high recall, minimizing these misclassifications is 

crucial for improving its clinical reliability. 

• Misclassification within PHT: The overlap in classifying prehypertensive patients as either NT or HT is 

significant, as this category represents an early stage of hypertension. Accurate identification is essential for 

timely intervention, and while the model performs well, further refinement is needed to reduce these errors. 

 

The detailed analysis of these misclassifications provides a clearer understanding of the model’s strengths and 

weaknesses, particularly in minimizing critical errors that could impact patient results.The model’s progress during the 

training process was monitored by examining the accuracy and loss graphs presented over iterations. The accuracy 

graph, for example, showed the classification accuracy gains as the model progressively learned from the training data. 

From the accuracy curve, we could understand to some extent how the model was slowly learning and correctly classify 

the BP levels using the PPG signals. The loss graph, on the other side, presented the decrease of the model’s loss over 

iterations. In this case, a decreasing loss showed the extent to which the model was optimizing its parameters to attain a 

precise classification. Most importantly, training progress graphs revealed critical insights into the model learning 

performances and how the model would converge or underperform. The performance of validation accuracy 

corresponding to each Iteration training cycle is shown in Fig. 10. 

 

 

Fig.10. The accuracy and loss graph of classification performance 

In conclusion, our proposed technique for BP classification using PPG signals, integrated through AlexNet-based 

neural networks with time-frequency (TF) analysis, was evaluated using metrics such as Accuracy, Error, Recall, 

Specificity, Precision, False Positive Rate, Matthews Correlation Coefficient, and Kappa. The classification was based 

on NT, PHT, and HT categories as per the JNC 7 report. The evaluation approach included a confusion matrix to 

visualize and analyze classification results. Additionally, the use of single GPU training and data input normalization 

facilitated stable training and enhanced the model’s performance, as confirmed by the accuracy and loss graphs. 

4.2.  Comparative Analysis 

In performance evaluation, we conducted a comprehensive comparative analysis against several state-of-the-art 

deep learning architectures, including DenseNet, GoogLeNet, ResNet50, and VGG16. This analysis was designed to 

explore the reasons behind the high accuracy and overall performance of our method in classifying blood pressure 

levels based on PPG signals.
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The results clearly demonstrate that our AlexNet-based model outperforms the other methods across a range of 

metrics. Specifically, our model achieved an accuracy rate of 98.89%, which is notably higher than the accuracies of 

VGG16 (96.67%), DenseNet (96.11%), ResNet50 (95.83%), and GoogLeNet (94.44%). The error rate for our model 

was just 1.11%, significantly lower than those observed in the other models, indicating a reduced rate of 

misclassification. 

In terms of Recall, Specificity, and Precision, our model also excelled, achieving values of 98.89%, 99.44%, and 

98.89% respectively. These metrics highlight the model's robust performance in correctly identifying both true positive 

and true negative cases, which is critical in the medical context. The False Positive Rate (FPR) was minimal at 0.56%, 

further underscoring the model’s reliability in avoiding misclassification of normotensive patients as hypertensive. 

Moreover, the F1-Score of 98.89% and the Matthews Correlation Coefficient (MCC) of 98.33% indicate a strong 

correlation between the predicted and actual outcomes, reinforcing the model's predictive accuracy. The Kappa statistic 

of 97.5% confirms a high level of agreement beyond chance, validating the effectiveness of our approach. 

To further substantiate the claim of our model’s superiority, additional experiments were conducted across 

different datasets and conditions. These experiments consistently showed that our model not only maintained its high 

accuracy but also demonstrated significant improvements in precision and recall, particularly in distinguishing between 

hypertensive and normotensive cases. This comprehensive analysis is visually represented in Table 5, Fig. 11, and Fig. 

12, where the comparative metrics are clearly outlined. 

Table 5. Comparison of evaluation metrices with different methods in classifying BP classification 

Method Accuracy Recall Specificity Precision Fl score MCC Kappa Error FPR 

AlexNet 0.9889 0.9889 0.9944 0.9889 0.9889 0.9833 0.975 0.0111 0.0056 

VGG16 0.9667 0.9667 0.9833 0.9668 0.9667 0.9501 0.925 0.0333 0.0167 

DenseNet 0.9611 0.9611 0.9806 0.9614 0.9612 0.9418 0.9125 0.0389 0.0194 

Resnet 50 0.9583 0.9583 0.9792 0.9592 0.9581 0.9381 0.9062 0.0417 0.0208 

GooglNet 0.9444 0.9444 0.9722 0.9467 0.9448 0.9178 0.875 0.0556 0.0278 

 

 

Fig.11. Graphical representation of comparison results in the task of classifying BP levels 

 

Fig.12. The rate of the error in the performance of the classification methods 
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In conclusion, the enhanced comparative analysis, supported by additional experiments, provides strong empirical 

evidence of the superior performance of our proposed method. This validated approach represents a significant 

advancement in non-invasive cardiovascular monitoring, offering reliable and accurate blood pressure classification 

using PPG signals. 

5.  Conclusions 

In this study, we presented a novel method for blood pressure classification using PPG signals, leveraging the 

AlexNet network with time-frequency analysis. The classification performance was rigorously evaluated using metrics 

such as Accuracy, Error, Recall, Specificity, Precision, False-Positive Rate, Matthewes Correlation Coefficient, and 

Kappa. Our results demonstrated that the proposed method achieved high accuracy and provided reliable classification 

of blood pressure levels across NT, PHT, and HT categories, based on the JNC report. 

The proposed method has significant potential for integration into wearable devices for continuous blood pressure 

monitoring. For instance, it could be embedded into smartwatches or fitness trackers, enabling real-time monitoring of 

blood pressure in a non-invasive manner. Such technology could revolutionize everyday healthcare settings, offering 

remote monitoring of patients and allowing healthcare providers to track blood pressure trends outside of clinical 

environments. This integration would be particularly valuable for patients with hypertension, allowing for early 

detection of blood pressure anomalies and timely intervention. 

The primary advantage of our model lies in its capacity to facilitate real-time health monitoring, which could 

significantly improve patient outcomes. Continuous data collection through wearable devices can provide a 

comprehensive picture of an individual's cardiovascular health, enabling the early detection of hypertension and 

reducing the risk of severe cardiovascular events. Additionally, by automating the monitoring process, healthcare 

providers can focus on patient care while relying on accurate, real-time data from these devices. 

However, the implementation of this method in practical healthcare settings is not without challenges. One of the 

primary limitations is the cost associated with developing and deploying wearable devices equipped with advanced 

machine learning models like AlexNet. Additionally, ease of use must be considered; these devices need to be user-

friendly to ensure widespread adoption among patients. Compatibility with existing healthcare infrastructure also poses 

a challenge, as the integration of new technologies requires alignment with current systems and practices. Moreover, 

extensive clinical validation is necessary to confirm the method's reliability and accuracy in diverse patient populations 

before it can be widely adopted in clinical practice. 

In conclusion, while our study's results are promising, addressing the aforementioned limitations could further 

enhance the practical applicability of our research. Future work should focus on expanding the dataset to improve 

model generalizability, exploring alternative deep learning architectures, and conducting clinical validation studies to 

ensure the method's effectiveness in real-world healthcare settings. By overcoming these challenges, the proposed 

method could play a crucial role in advancing non-invasive blood pressure monitoring and improving cardiovascular 

health management. 
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