
I.J. Intelligent Systems and Applications, 2013, 01, 69-80
Published Online December 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2013.01.07

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

Optimizing Artificial Neural Networks using Cat

Swarm Optimization Algorithm

John Paul T. Yusiong

Division of Natural Sciences and Mathematics, University of the Philippines Visayas Tacloban College, Magsaysay

Boulevard, Tacloban City, Leyte, Philippines

jpyusiong@gmail.com

Abstract— An Artificial Neural Network (ANN) is an

abstract representation of the biological nervous system

which has the ability to solve many complex problems.

The interesting attributes it exhibits makes an ANN

capable of ―learning‖. ANN learning is achieved by

training the neural network using a training algorithm.

Aside from choosing a training algorithm to train ANNs,

the ANN structure can also be optimized by applying

certain pruning techniques to reduce network

complexity. The Cat Swarm Optimization (CSO)

algorithm, a swarm intelligence-based optimization

algorithm mimics the behavior of cats, is used as the

training algorithm and the Optimal Brain Damage

(OBD) method as the pruning algorithm. This study

suggests an approach to ANN training through the

simultaneous optimization of the connection weights

and ANN structure. Experiments performed on

benchmark datasets taken from the UCI machine

learning repository show that the proposed CSONN-

OBD is an effective tool for training neural networks.

Index Terms— Artificial Neural Network, Neural

Network Training, Neural Network Pruning, Optimal

Brain Damage, Swarm Intelligence, Cat Swarm

Optimization

I. Introduction

An artificial neural network (ANN), also known as

neural network (NN), is an abstract representation of the

biological nervous system. It is composed of a

collection of neurons that communicates with each

other through the axons. An artificial neural network is

an adaptive system that has interesting attributes like

the ability to adapt, learn and generalize. An ANN is

also highly accurate in classification and prediction of

output because of its massively parallel processing,

fault tolerance, self-organization and adaptive capability

which enables it to solve many complex problems. Its

ability to solve different problems is achieved by

changing its network structure during the learning

(training) process [1-2].

But, it was also pointed out that the determination of

various ANN parameters like the number of hidden

layers, number of neurons in the hidden layer,

connection weights initialization etc. is not a

straightforward process and finding the optimal

configuration of ANNs is a very time consuming

process [3]. Thus, designing an optimal ANN structure

and choosing an effective ANN training algorithm for a

given problem is an interesting research area.

Moreover, since the determination of various ANN

parameters is not a straightforward process, various

researches have been conducted with the purpose of

finding the optimal configuration of ANNs. As a result,

several algorithms have been proposed as training

algorithms for ANNs and these include Genetic

Algorithms (GA) [2], Ant Colony Optimization (ACO)

[4], Artificial Bee Colony (ABC) [5] and Particle

Swarm Optimization (PSO) [6]. These algorithms vary

on how they can effectively optimize the artificial

neural network with respect to the problem being

solved.

Cat Swarm Optimization (CSO) is a more recent

swarm intelligence-based optimization algorithm

developed in 2006. It was developed to solve various

problems by mimicking the behavior of cats. CSO has

been proven to have a better performance in finding the

global best solutions than other existing optimization

algorithms [7-9].

In addition to choosing a training algorithm to train

ANNs to carry out a certain task, the ANN structure can

also be optimized by applying certain pruning

techniques to reduce network complexity without

drastically affecting its classification and prediction

capabilities. A pruning technique presented in this paper

is the Optimal Brain Damage (OBD) pruning algorithm

[10]. This pruning technique was found to be

computationally simpler and can produce relatively

good ANNs.

Consequently, ANN researches can be classified into

two categories: (1) training ANNs using a training

algorithm and a non-OBD pruning technique to further

improve the ANNs [11-13]; and (2) training ANNs

using a training algorithm and an OBD pruning

technique to further improve the ANNs [14-16].

In this paper, the CSO algorithm is proposed to be

used as the training algorithm to train the ANNs with

70 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

OBD as its pruning method. The objective is to develop

a CSO-based ANN optimizer that trains artificial neural

networks to learn the input-output relationships of a

given problem and then use the OBD pruning method to

generate an optimal network structure. That is, the

CSO-based ANN optimizer will generate an optimal set

of connection weights and structure for a given

problem.

The rest of the paper is organized as follows: Section

II discusses the artificial neural networks and the NN

training procedures while Section III describes the NN

pruning procedures and the Optimal Brain Damage

pruning method. In Section IV, the Cat Swarm

Optimization algorithm is presented while Section V

discusses the CSONN-OBD, which is the proposed

algorithm. Experimental results and observations are

presented in Section VI and conclusions are presented

in Section VII.

II. Artificial Neural Networks and NN Training

2.1 Artificial Neural Networks

Several researchers [3,17-18] conducted a thorough

review of the various researches involving artificial

neural networks and their work present an excellent

starting point to get acquainted with researches on

ANNs.

An Artificial Neural Network (ANN) is made up of

simple processing units, called artificial neurons or

nodes as shown in Figure 1, which mimics the

biological nervous systems. The artificial neuron

performs its task in two phases: computing for the

weighted sum and using a certain kind of non-linear

function. This approach allows the ANN to process the

input data which represents the problem to be solved

[2,5].

Fig. 1: The Artificial Neuron

In Figure 1, xj is the jth input to the neuron, wij is the

connection weight between the neuron and the input xj,

x0w0 is the threshold or bias neuron where x0=1, the

symbol, ∑, is the weighted sum of the input data usually

written as net, y is the output of the neuron and f is the

activation function which is usually a non-linear

function [19].

Equation (1) describes the weighted sum of the input

data, where bi=x0w0 is the bias neuron, (2) describes the

logarithmic sigmoid function (logistic Function), which

is the activation function used in this paper and (3)

describes the output of the neuron.

 ∑

 (1)

 ()

 (2)

 () (3)

The most common structure of an artificial neural

network used in many researches is shown in Figure 2.

It is often referred to as Multilayer Perceptron (MLP),

which is a feed-forward neural network. It is made up of

several layers of processing units (neurons) and every

neuron in each layer is connected to all neurons in the

succeeding layers. All artificial neural networks have an

input layer, xj and an output layer, yi, but the number of

hidden layers, zk, may differ. Both yj and zk use (3) to

compute for the output of the neuron.

However, it is has been shown that a three layer feed-

forward neural network can approximate any non-linear

function with arbitrary accuracy. Nonetheless, finding

an optimal ANN structure and an optimal set of

connection weights is still a difficult problem [2,5,12].

MLPs can receive inputs, process the data, and

provide outputs. In MLPs the input data are processed

within the individual neurons of the input layer and then

the output values of these neurons are forwarded to the

neurons in the hidden layer. The same process happens

between the neurons of the hidden layer and the output

layer. In every layer, each neuron receives inputs from

the neurons in the previous layer and each of the inputs

is multiplied by a different weight value. The weighted

inputs are added as described in (1) and forwarded to an

activation function which limits the output to a fixed

range of values as shown in (2). The output of each

neuron as described in (3) is then forwarded to all of the

neurons in the next layer [19].

Fig. 2: The Multilayer Perceptron

 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm 71

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

The diagram in Figure 2 shows an artificial neural

network, which is a three layer, fully-connected, feed-

forward neural network. Fully-connected indicates that

the output from each neuron in one layer is distributed

to all of the neurons in the next layer while feed-

forward signifies that the values only move from the

input layer to the hidden layer and from the hidden

layer to the output layer, that is, no values are fed back

to the previous layers.

As mentioned in [4], artificial neural networks are

widely used because they are effective in approximating

real-valued, discrete-valued and vector-valued target

functions. ANNs also have exceptional characteristics

in machine learning and these capabilities make

artificial neural networks a powerful tool for research

problems that entail recognition, classification, and

forecasting.

2.2 Neural Network Training

The goal of the neural network training procedure is

to find the optimal set of connection weights that will

cause the output from the artificial neural network to

match the actual target values. To be able to find the set

of connections weights, an algorithm is used. This

algorithm should be able to adjust the connections

weights of the ANN in order to obtain the desired

output from the network given a specific set of inputs.

The process of adjusting the weights is called learning

or training. The primary objective of neural network

training is to find a set of connection weights that

minimizes the objective function [19]. In this paper the

objective function is the mean-squared error (MSE)

function as described in (4).

(∑ (∑

)
)

(∑ (∑

 ()

)

) (4)

In (4), N is the total number of training examples in

the training data, M is the number of output neurons in

the output layer, ek represents the network error of a

training example, tk is the desired output and yk is the

actual output of the network.

Neural network training is an important task in

supervised learning. In supervised learning the ANN is

provided with the correct output for each of the training

examples in the training data. So the aim is for the ANN

to produce an output that is near the correct output.

Figure 3 illustrates the supervised learning paradigm.

That is why during training, a training data, made up of

inputs (training examples) and their expected outputs, is

presented to the ANN which is used to adjust the set of

connection weights. The training data is fundamental

for the ANNs as it provides the information that is

essential in discovering the optimal set of connection

weights. So, in this approach, connection weights are

modified in response to the input/output patterns [20].

Fig. 3: The Supervised Learning Paradigm

During training, an input and the corresponding

desired output is presented to the artificial neural

network and the network error is computed. The

network error is the difference between the desired

output and the actual output of the network. The

training algorithm adjusts the connection weights so as

to minimize the mean-squared error function as

described in (4).

In his paper, Yao [18] explained three general

approaches to neural network training and these are the

following:

1. finding a near-optimal set of connection weights

for an NN with a fixed architecture for the task

at hand;

2. finding a near-optimal NN architecture for the

task at hand; and

3. finding both a near-optimal set of connection

weights and a neural network architecture for

the task at hand.

The first approach to neural network training is

referred to as weight training in ANN and is typically

formulated as a minimization of an error function, such

as the mean-squared error. So, in this approach, a fixed

72 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

ANN structure is provided and the objective is finding a

set of connection weights that minimizes the network’s

error on the training data. In effect, finding the set of

connection weights of a network can be seen as an

optimization process [18].

The second approach involves finding a near-optimal

NN architecture. This approach emphasizes that the

neural network’s structure greatly influences its

performance and its information processing capabilities.

In this approach, constructive and destructive

algorithms are used for automatic design of

architectures and it takes into consideration the fact that

if the network is too small it will not be able to form a

good model of the problem while network that is too

big may have very poor generalization ability [18,21].

Constructive algorithms are algorithms that start with

simple architecture and gradually add new neurons

during learning process while destructive algorithms

start with an initially redundant network and simplify it

during the learning process, and this process is often

referred to as ―pruning‖.

The third approach is a combination of the first two

approaches which attempts to simultaneously evolve the

NN structure and connection weights. It is very

important to find the appropriate NN structure and the

appropriate connection weights to ensure the best

performance of the ANN [18]. In this paper, the aim is

to obtain an optimal set of connection weights and

subsequently apply a well-known destructive algorithm,

the Optimal Brain Damage [10], to obtain an optimal

NN structure.

III. Neural Network Pruning and the Optimal

Brain Damage Method

3.1 Neural Network Pruning

Designing optimal neural network architecture for a

particular classification problem is an important issue.

This is due to that fact that a network that is too big is

more likely to overfit the training examples because of

its excess information processing capability while a

network that is too small may underfit the training data

because of its limited information processing capability.

Both of these problems lead to poor generalization

capability on unseen examples, an undesirable aspect of

ANN. Thus, it is necessary to design ANNs

automatically in order to solve different problems

efficiently [13,22].

However, the optimal network size is generally

unknown and tedious experimentation is necessary to

find it. Another approach to improving the

generalization capability of ANNs is to train a network

which is considered to be larger than necessary and

prune the excess components [22].

Several approaches for optimizing neural network

architectures have been proposed which include various

pruning algorithms such as the Optimal Brain Damage

algorithm [10]. A pruning algorithm starts with a

relatively large ANN architecture, that is, an ANN with

a large number of hidden neurons. In the pruning

process, unnecessary hidden layers, neurons, and

connection weights from a relatively large ANN are

discarded. Generally, one connection weight or neuron

is removed in each step of the pruning process [13].

The pruning process is defined as a network

trimming procedure given a relatively large architecture

which is basically a model reduction method with the

goal of finding the optimal neural network architecture

[11,23]. Pruning a network is based on estimating the

sensitivity of the total error to the exclusion of each

connection weight in the network, which is in essence

estimating the importance of each connection weight or

neuron in the network. In each step of the process, the

connection weights or neurons which are insensitive to

error changes are gradually removed which will

eventually result to a network of smaller size that will

likely have a better generalization capability [11].

Basically, finding for the optimal neural network

architecture is a 4-step process and many pruning

algorithms that have been proposed differ on how the

2nd and the 4th steps are implemented, and on the

criterion being used to identify the significance of a

connection weight or neuron. The 4-step process is

presented as follows [23]:

1.Train an artificial neural network;

2. Identify the least significant connection weight or

neuron;

3. Prune the least significant connection weight or

neuron;

4. Re-train the artificial neural network and repeat

steps 2 and 3.

In addition, Yang et al. [24] presented a similar

framework for network pruning and is described as

follows:

1. Set a large enough architecture for the NNs and

train with any learning method, until the stopping

criterion is met;

2. Compute the saliency of each element and

eliminate the least important ones;

3. Retrain the pruned network. If the change of output

between the original and pruned network is small

enough, then go to step 2; otherwise stop and output the

network architecture.

3.2 Neural Network Pruning using Optimal Brain

Damage

As stated in [11], an important step for the discovery

of knowledge from data is to find a method to optimize

the structure of neural networks. A typical approach in

the NN structure design is to simply utilize a fully-

connected multilayer feed-forward neural network to

solve problems but this approach limits the performance

 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm 73

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

of the resulting neural networks. Thus, several neural

network pruning techniques as presented in [1,5,11,13-

16,22,24-25] have been proposed and developed to

optimize the neural network structures for a given

problem.

Among the different NN pruning techniques, it has

been shown that very good results are obtained using

saliency-based methods [14-15]. Saliency-based

methods are also referred to as weight pruning

algorithms, sensitivity-based approaches and destructive

algorithms. This method attempts to balance between

network complexity and training error.

The saliency-based methods analyze the sensitivity of

the objective function to deletion of individual

connection weights, that is, these methods evaluate the

influence of each connection weight on the NN

generalization error. In effect, these methods optimize

the neural network structure by finding the contribution

(saliency) of each connection weight or neuron in the

network and pruning the connection weight or neuron

which has the least effect on the objective function.

This is because the connection weights with the

smallest saliency are considered to be insignificant and

therefore these connection weights can be deleted [11].

One of the well-known saliency-based methods

whose effectiveness has been proven in different

applications [14-16] is the Optimal Brain Damage

(OBD) which was introduced by Le Cun et al. [10].

OBD is a method to establish the effect of each

connection weight on the objective function.

Le Cun et al. [10] proposed the Optimal Brain

Damage (OBD) method to approximate the measure of

―saliency‖ of a connection weight by estimating the

second derivative of the network output error with

respect to that connection weight. The network

complexity is also reduced by a large factor by

constraining certain connection weights to be equal.

The saliency of a connection weight is described as the

change in the training error when the connection weight

is removed and the remaining connection weights are

retrained. In effect, the primary goal of OBD method is

to reduce the complexity of the network by selectively

deleting the connection weights with the goal of

improving its generalization. The OBD method accepts

a relatively large network, delete at least half of the

connection weights and produce a network that

performs as good as the network that is un-pruned [10].

In OBD, pruning is carried out iteratively on a trained

network to a reasonable level, compute ―saliencies‖,

rank the connection weights according to saliency and

then delete the connection weights with the smallest

saliency, and resume training until a termination

criterion is satisfied. OBD assumes that the error

function is quadratic and that the Hessian is diagonal,

that is, the saliencies are approximated by the second

derivative of the objective function with respect to the

connection weights [11].

The algorithm of the OBD method as described in

[10,14-16] is presented as follows.

1.Choose an initial NN structure that is reasonably

large.

2. Train the neural network using a training algorithm

until a reasonable solution is obtained.

3. Compute the diagonal elements hii of the Hessian

matrix H.

4. Compute the saliency parameters Si for each of the

connection weights as shown in (9).

5. Remove connection weights with the smallest

saliency.

6. Re-train the NN with the new network structure

until the termination criterion is satisfied.

As can be seen in the OBD algorithm, the initial steps

are to choose a reasonably large neural network

structure and train the network using a training

algorithm to minimize the objective function. The

typical objective function to minimize is the mean-

squared error function as shown in (4). The NN training

procedure attempts to minimize this function which is

defined as the mean-squared error between the NN

output and the real value (training examples) [10,14-

16].

The next step is to remove connection weights which

are considered insignificant because they have the

smallest saliency. However, since the saliency

coefficient cannot be determined directly from the

objective function, it is necessary to approximate this

function with Taylor series as presented in (5) [10,14-

16].

 ∑

∑

∑

 (5)

Where:

 (6)

 (7)

The OBD method takes into account three

approximations in order to determine the saliency of

each connection weight [10,16]:

1. The neural network converged to a minimum of

the error function, so g = 0 and the first term in (5) can

be eliminated.

2. The objective function is quadratic so all terms of

order greater than 2 can be neglected in (5).

3.The Hessian matrix H is diagonal, so all terms Hij =

0 (with i≠j).

74 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

With the given approximations, (5) is reduced to (8):

∑

 (8)

So, (9) is the equation that defines the saliency of

each connection weight in the neural network, where Si

is the saliency of wi and Hii is the ith diagonal entry of

the Hessian matrix.

 (9)

The next step is to compute for the saliency of each

connection weight, remove the connection weight with

the smallest saliency while the final step is to re-train

the network after the removal of this connection weight,

and recalculate the saliency coefficients of each

connection weights in the network.

Thus, the Optimal Brain Damage (OBD) method

removes connection weights based on the second order

derivatives of the objective function. The matrix of the

second order derivatives is called Hessian. The full

Hessian matrix can be computed using (10), and for a

network with a single connection weight or for the

diagonal entries of the Hessian matrix, (11) is used,

where (

) is the first derivative of the objective

function with respect to weight wi, N is the number of

examples, M is the number of outputs, and H0 is the

identity matrix multiplied by a random number in the

range of 10-8 ≤ α ≤ 10-4 as shown in (12). H0 is

important to avoid any singularities especially in OBD

[26,27].

∑ (

) (

)

(10)

∑
 (

)

 (11)

 (12)

IV. Cat Swarm Optimization Algorithm: A Swarm

Intelligence-based Algorithm

Swarm Intelligence (SI) is a novel artificial

intelligence approach inspired by the swarming

behaviors of groups of organisms such as ants, termites,

bees, birds, fishes in foraging and sharing the

information with each other. SI focuses on the

collective intelligence of a decentralized system

consisting of a group of organisms interacting with each

other and their environment. So, by means of their

collective intelligence swarms are able to effectively

use their environment and resources. SI is also a

mechanism that enables individuals to overcome their

cognitive limitations and solve problems which are

difficult for individuals to resolve alone. Swarm

intelligence algorithms are essentially stochastic search

and optimization techniques and were developed by

simulating the intelligent behavior of these organisms.

These algorithms are known to be efficient, adaptive,

robust, and produce near optimal solutions and utilize

implicit parallelism approaches [28].

One of the more recent optimization algorithm based

on swarm intelligence is the Cat Swarm Optimization

(CSO) algorithm. The CSO algorithm was developed

based on the common behavior of cats. It has been

found that cats spend most of their time resting and

observing their environment rather that running after

things as this leads to excessive use of energy resources.

To reflect these two important behavioral characteristics

of the cats, the algorithm is divided into two sub-modes

and CSO refers to these behavioral characteristics as

―seeking mode‖ and ―tracing mode‖, which represent

two different procedures in the algorithm. Tracing mode

models the behavior of the cats when running after a

target while the seeking mode models the behavior of

the cats when resting and observing their environment

[7-8].

Furthermore, previous researches have shown that the

CSO algorithm has a better performance in function

minimization problems compared to the other similar

optimization algorithms like Particle Swarm

Optimization (PSO) and weighted-PSO [7-9].

4.1 Seeking Mode:Resting and Observing

The seeking mode of the CSO algorithm models the

behavior of the cats during a period of resting but

staying alert-observing its environment for its next

move. The Seeking mode procedure has four essential

factors and these are: Seeking Memory Pool (SMP);

Seeking Range of the selected Dimension (SRD);

Counts of Dimension to Change (CDC); and Self

Position Consideration (SPC) as described by Chu et al.

[7-8]. The seeking mode of the CSO algorithm can be

described as follows:

Step 1: Make j copies of the present position of catk,

where j = SMP. If the value of SPC is true, let j = (SMP

− 1), then retain the present position as one of the

candidates.

Step 2: For each copy, according to CDC, randomly

add or subtract SRD percentage to the present values

and replace the old ones.

Step 3: Calculate the fitness values (FS) of all candidate

points.

Step 4: If all FS are not exactly equal, calculate the

selecting probability of each candidate point by (13),

otherwise set all the selecting probability of each

candidate point to 1.

Step 5: Randomly pick the point to move to from the

candidate points, and replace the position of catk.

| |

 (13)

 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm 75

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

If the goal of the fitness function is to find the

minimum solution, FSb = FSmax, otherwise FSb = FSmin.

4.2 Tracing Mode: Running After a Target

The tracing mode of the CSO algorithm models the

behavior of the cats when running after a target. Once a

cat goes into tracing mode, it moves according to its

own velocities for each dimension. The action of tracing

mode according to Chu et al. [7-8] can be described as

follows:

Step 1: Update the velocities for every dimension (vk,d)

according to (14).

Step 2: Check if the velocities are in the range of

maximum velocity. In case the new velocity is over-

range, it is set equal to the limit.

Step 3: Update the position of catk according to (15).

 ()

(14)

where xbest,d is the position of the cat, who has the best

fitness value; xk,d is the position of catk; c1 is a constant

and r1 is a random value in the range of [0,1].

 (15)

4.3 CSO Movement = Seeking Mode + Tracing

Mode

When applying the CSO algorithm to solve

optimization problems, the initial step is to make a

decision on the number of individuals or cats to use.

Each cat in the population has the following attributes:

a) a position made up of M dimensions;

b) velocities for each dimension in the position;

c) a fitness value of the cat according to the fitness

function; and

d) a flag to indicate whether the cat is in seeking

mode or tracing mode.

The CSO algorithm keeps the best solution after each

cycle and when the termination condition is satisfied,

the final solution is the best position of one of the cats

in the population. CSO has two sub-modes, namely

seeking mode and tracing mode and the mixture ratio

MR dictates the joining of seeking mode with tracing

mode. To ensure that the cats spend most of their time

resting and observing their environment, the MR is

initialized with a small value.

The CSO algorithm can be described in 6 steps as

presented in [7-8].

Step 1: Create N cats in the process.

Step 2: Randomly sprinkle the cats into the M-

dimensional solution space and randomly give values,

which are in-range of the maximum velocity, to the

velocities of every cat. Then haphazardly pick number

of cats and set them into tracing mode according to MR,

and the others set into seeking mode.

Step 3: Evaluate the fitness value of each cat by

applying the positions of cats into the fitness function,

which represents the criteria of our goal, and keep the

best cat into memory. Note that we only need to

remember the position of the best cat (xbest) because it

represents the best solution so far.

Step 4: Move the cats according to their flags, if catk is

in seeking mode, apply the cat to the seeking mode

process, otherwise apply it to the tracing mode process.

Step 5: Re-pick number of cats and set them into

tracing mode according to MR, then set the other cats

into seeking mode.

Step 6: Check the termination condition, if satisfied,

terminate the program, and otherwise repeat Step 3 to

Step 5.

V. CSONN-OBD: A CSO-based ANN Optimizer

with OBD Pruning Method

The proposed algorithm called CSONN-OBD is a

swarm intelligence-based ANN optimizer to neural

network training with the Cat Swarm Optimization

algorithm [7-8] as the training algorithm and the

Optimal Brain Damage technique [10] as the pruning

method used to reduce network complexity. Also, the

proposed algorithm employs the supervised learning

approach in training neural networks. The training

involves fully connected feed-forward neural networks

where each neuron uses the logistic function as the

activation function as described in (2). The CSONN-

OBD will simultaneously determine the optimal set of

connection weights and its corresponding network

structure.

The CSO algorithm represents a cat as a vector and a

population contains several cats. In this study, a cat

represents a one-hidden layer fully-connected feed-

forward neural network and the cat population consists

of several one-hidden layer fully-connected feed-

forward neural networks. Each cat is evaluated using

the mean-squared error function as described in (4). The

general framework of the CSONN-OBD is as follows:

Step 1: Build a one-hidden layer fully-connected feed-

forward neural network.

Step 2: Train NNs using CSO and evaluate each NN

(cat) using MSE until stopping criterion is satisfied

Step 3: Apply OBD on the best cat

Step 4: Re-train pruned NN

Step 5: If stopping criterion is not satisfied then go to

Step 3, else go to Step 6.

Step 6: Output the best pruned NN

76 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

In CSO, a cat represents an artificial neural network

as illustrated in Figure 4. The ANN is represented as a

vector with dimension D containing the connection

weights as depicted in Figure 5. As presented in [29],

the dimension of the vector representation of a single

hidden layer fully-connected feed-forward neural

network is determined using (16), where I is the number

of input neurons, H is the number of hidden neurons,

and O is the number of output neurons.

 () () (16)

For the connection weights, these are initialized by

assigning random values from a uniform distribution in

the range of [

√

√
], where the value of fan-

in is the number incoming connection weights of a

given neuron [29].

The number of neurons in the input and output layers

in a neural network are problem-specific whereas a

trial-and-error approach is commonly used to decide on

the number of neurons in the hidden layer, but a number

of rules-of-thumb to obtain this value is presented in

[25].

Fig. 4: A One-Hidden Layer Fully-Connected Feed-forward Neural Network

Fig. 5: A One-Hidden Layer Fully-Connected Feed-forward Neural Network Representation

In this study, the number of neurons in the hidden

layer is set to 10 which would be sufficient for the

datasets selected in [30] and these will be used as

benchmark datasets in the experiments.

The six datasets that will be used in the experiments

are shown in Table 1. Each dataset is divided into two

subsets, a training set and a test set. A training set is

used during the training phase while the test set is used

to evaluate the effectiveness the neural network on

unseen examples.

Table 1: Description of the Datasets used as Benchmarks

Domain Train Test Class
ATTRIBUTES

Continuous Discrete

Monks-1 124 432 2 0 6

Vote 300 135 2 0 16

Iris 100 50 3 4 0

Breast Cancer 457 226 2 9 0

Heart 180 90 2 6 7

Thyroid 3772 3428 3 6 15

 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm 77

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

The CSONN-OBD initializes the cat population with

single hidden layer fully-connected feed-forward neural

networks where each cat is represented as a vector of D

dimension as described in (16).

At each iteration, each cat in the population is

evaluated using the Mean-squared error function and

after the maximum cycle is reached, the CSONN-OBD

outputs the best cat representing the best neural network

obtained by the CSO. The best NN found by the CSO is

pruned using the Optimal Brain Damage technique to

reduce its network complexity without affecting its

classification and prediction capabilities. The best NN

is retrained until a termination condition is satisfied. A

detailed pseudo-code shows how the CSONN-OBD

works and Figure 6 illustrates this procedure.

Read dataset

Determine the Number of Hidden Neurons and

Maximum Cycles

Determine the Dimension of the Cat

 Initialize the Cats (ANNs)

While Maximum Cycle is not reached

Train ANNs

Evaluate each ANN using MSE

Output the Best Cat

Prune the Best Cat using OBD

Retrain the Best Cat and prune using OBD until the

termination condition is satisfied.

Output the Pruned ANN

After the maximum cycle is reached the best cat is

produced and this is the artificial neural network with

the lowest MSE. The best cat is the best non-pruned

artificial neural network. To produce a pruned ANN the

best cat is subjected to the pruning process using the

OBD pruning method. The termination condition for the

pruning process is when the classification accuracy

decreases. This means that as long as the classification

accuracy of the pruned neural network is the same as

the non-pruned neural network, the pruning procedure

will be performed repeatedly.

Fig. 6: The procedure for training neural networks with CSONN-OBD

The evaluation function used by CSONN-OBD to

evaluate each cat is the Mean-squared error (MSE)

function as described in (4). The MSE evaluates the

neural network’s performance by calculating the neural

network’s error on the training dataset. The lesser the

error the better is the performance of the neural

network. In effect, training neural network is a

minimization problem since the objective is to reduce

the network error given a dataset.

VI. Experiment Results and Discussions

The aim of this research is to use the Cat Swarm

Optimization algorithm with Optimal Brain Damage

pruning technique to simultaneously optimize the

connection weights and structure of artificial neural

networks. The experiments were carried out with

CSONN-OBD as the training algorithm.

To test the effectiveness of CSONN-OBD, six

datasets as shown in Table 1 were used as benchmarks.

For each dataset the experiments were repeated thirty

(30) times to minimize the influence of random effects

and to ensure that the results are statistically acceptable.

Each experiment uses a different randomly generated

initial population. The result from each of the 30

independent runs of the CSONN-OBD algorithm were

recorded and analyzed. Table 2 shows the parameters

and their corresponding values.

78 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

Table 2: CSONN-OBD Parameters and their corresponding values

Parameters CSONN-OBD

Optimization Type Minimization

Population Size 100

Objective Function 1

Constraints 0

Dimension of a Cat (I + 1) * H + (H + 1) * O

Seeking Memory Pool (SMP) 5

Counts of Dimension to Change

(CDC)
0.8

Seeking Range of the selected

Dimension (SRD)
0.2

Mixture Ratio (MR) 0.02

Self Position Consideration

(SPC)
True

Table 3 shows the dimension of a cat and the

maximum cycle used in the training based on the

dataset used.

Table 3: Dimension of a Cat and the Maximum Cycle for each dataset

used

Dataset Dimension Maximum Generation

Monks-1 81 500

Vote 181 300

Iris 83 500

Breast Cancer 111 300

Heart 151 500

Thyroid 253 500

The performance of a neural network is measured by

how effective the neural network is in minimizing the

mean-squared error (MSE) or the misclassification rate.

Table 4 and Table 5 show a comparison on the average

performance of the CSONN-OBD without pruning and

CSONN-OBD with pruning, respectively while Table 6

shows a comparison on the average number of

connections that were used. In the CSONN-OBD

without pruning, the NN training was performed using

CSONN but the neural networks were not pruned while

in the CSONN-OBD with pruning, the NN training was

performed using CSONN and then applied OBD to

prune the neural networks.

Table 4: Average Mean-squared error on the training and test set

Datasets

Training Set Test Set

Without

Pruning
OBD

Without

Pruning
OBD

Monks-1 2.48% 2.47% 3.68% 3.62%

Vote 1.64% 1.65% 1.77% 1.80%

Iris 0.91% 0.90% 1.72% 1.71%

Breast Cancer 0.86% 0.87% 1.61% 1.61%

Heart 7.33% 7.40% 6.44% 6.52%

Thyroid 0.52% 0.51% 0.56% 0.55%

Table 5: Average percentage of misclassification on the training and

test sets

Datasets

Training Sets Test Sets

Without

Pruning
OBD

Without

Pruning
OBD

Monks-1 6.13% 5.73% 9.52% 9.32%

Vote 3.62% 3.51% 4.30% 4.40%

Iris 3.60% 3.57% 6.20% 6.27%

Breast Cancer 1.95% 1.87% 3.79% 3.83%

Heart 18.87% 18.61% 15.96% 15.85%

Thyroid 3.80% 3.77% 4.23% 4.18%

Table 6: Average number of connection used

Datasets

Pruning Method

Without

Pruning

OBD

Used

Connections
Percentage

Monks-1 81 42.7 52.72%

Vote 181 86 47.51%

Iris 83 52.8 63.61%

Breast Cancer 111 44.67 40.24%

Heart 151 62.53 41.41%

Thyroid 253 168.87 66.75%

Table 4 and Table 5 show a comparison between

pruned networks and non-pruned networks with respect

to their average MSE and average misclassification rate.

In Table 4, it shows that the average MSE can be

slightly higher for artificial neural networks that are

pruned than the artificial neural networks that are not

pruned. This is because with pruned artificial neural

networks, fewer connections are used compared to

artificial neural networks that are not pruned as shown

in Table 6 and this can lead to a slight increase in the

network error. The difference between the average MSE

and average misclassification rate of pruned ANNs and

non-pruned ANNs may be insignificant but pruned

ANNs use lesser number of connections to achieve the

same level of classification accuracy with non-pruned

ANNs. The results show that the CSONN-OBD with

pruning produces artificial neural networks that use less

number of connections but are as effective as the

artificial neural networks produced by CSONN-OBD

without pruning.

The performance of the CSO-based ANN optimizer

with OBD pruning method is compared to that of the

existing algorithms which also optimize connections

weights and NN structures concurrently. When

presented with a completely new set of data, the

capability to generalize is one of the most significant

criteria to determine the effectiveness of artificial neural

network learning. Table 7 compares the results obtained

with that of MGNN [31] and NN-MOPSOCD [29] in

terms of the error on the test set and the number of

 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm 79

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

connections used. Table 7 shows that the CSONN-OBD

is very effective in generating simple and accurate

artificial neural networks with good generalization

capability.

Table 7: Performance comparison between MGNN, NN-MOPSOCD

and CSONN-OBD

Algorithms
MSE on Test Set

Number of

Connections

Breast Iris Breast Iris

MGNN-ep 3.28% 6.17% 80.87 56.38

MGNN-rank 3.33% 7.28% 68.46 47.06

MGNN-roul 3.05% 8.43% 76.40 55.13

NN-MOPSOCD 1.68% 4.58% 48.13 66.02

CSONN-OBD

without pruning
1.61% 1.72% 111.00 83.00

CSONN-OBD

with pruning
1.61% 1.71% 44.67 52.80

VII. Conclusion

The CSONN-OBD algorithm, a CSO-based ANN

optimizer with OBD pruning algorithm, was able to

generate artificial neural networks with low training

error and high classification accuracy given that it has a

low misclassification rate. Thus, the cat swarm

optimization algorithm is an effective training algorithm

for artificial neural networks. As a training algorithm,

the CSO was able to produce artificial neural networks

that perform well using different datasets.

Using the Optimal Brain Damage pruning method,

the CSO-based ANN optimizer was able to obtain

artificial neural networks that are as effective as the

artificial neural networks that were not pruned but

pruned ANNs used fewer connections to achieve the

same performance. With OBD, the CSONN-OBD

algorithm was able to generate simpler neural networks

but still with good generalization capability. As a result,

the CSONN-OBD was able to generate an optimal set

of connection weights and ANN structure for each of

the dataset that was used in the experiments.

Thus, the CSO algorithm can be considered as an

effective training algorithm for artificial neural

networks. With a pruning method like the Optimal

Brain Damage, the CSO-based ANN optimizer can

produce artificial neural networks that use fewer

connections but are still as effective as the artificial

neural networks that are not pruned, that is, it is able to

produce accurate and simple artificial neural network

models. Also, the CSONN-OBD produced artificial

neural networks with high classification accuracy.

Acknowledgments

The author would like to thank the reviewers for their

careful reading of this paper and for their helpful

comments and suggestions. This work was supported by

the University of the Philippines Visayas In-House

Research Program under grant no. SP10-06.

References

[1] Z. Huanping, L. Congying, Y. Xinfeng.

Optimization research on Artificial Neural

Network Model. Proceedings of the 2011

International Conference on Computer Science and

Network Technology, (2011), pp. 1724-1727.

[2] H. Shi. Evolving Artificial Neural Networks Using

GA and Momentum. Proceedings of the 2009

Second International Symposium on Electronic

Commerce and Security, ISECS '09, (2009), (1):

pp. 475-478.

[3] M. Paliwal. and U. Kumar. A. Neural Networks

and Statistical Techniques: A Review of

Applications. Expert Systems with Applications,

(2009), 36(1), pp. 2-17.

[4] H. Shi and W. Li. Artificial Neural Networks with

Ant Colony Optimization for Assessing

Performance of Residential Buildings. Proceedings

of the International Conference on Future

BioMedical Information Engineering, FBIE 2009,

(2009), pp. 379-382.

[5] B. A. Garro, H. Sossa and R. A. Vázquez.

Artificial Neural Network Synthesis by means of

Artificial Bee Colony (ABC) Algorithm.

Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2011, (2011), pp. 331-338.

[6] Y. Wang, Z. Xia and Y. Huo. Neural Network

Research Using Particle Swarm Optimization.

Proceedings of the 2011 International Conference

on Internet Computing and Information Services,

ICICIS '11, (2011), pp. 407-410.

[7] S-C. Chu and P-W. Tsai. Computational

Intelligence based on the Behavior of Cats.

International Journal of Innovative Computing,

Information and Control, (2007), 3(1), pp. 163-

173.

[8] S-C Chu, P-W Tsai and J-S. Pan. Cat Swarm

Optimization. Proceedings of the 9th Pacific Rim

International Conference on Artificial Intelligence,

LNAI 4099, Guilin, (2006), pp. 854-858.

[9] J.-C. Hwang, J.-C. Chen and J.-S. Pan. CSO and

PSO to Solve Optimal Contract Capacity for High

Tension Customers. Proceedings of 8th

International Conference on Power Electronics and

Drive Systems, PEDS-2009, (2009), pp. 76-81.

[10] Y. Le Cun, J. S. Denker and S. A. Solla. Optimal

Brain Damage. Advances in Neural Information

Processing Systems, Touretzky, DS (ed), Morgan

Kaufmann, San Mateo, (1990), (2): pp. 598–605.

[11] M. Gethsiyal Augasta and T. Kathirvalavakumar.

A Novel Pruning Algorithm for Optimizing

80 Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm

Copyright © 2013 MECS I.J. Intelligent Systems and Applications, 2013, 01, 69-80

Feedforward Neural Network of Classification

Problems. Neural Processing Letters, (2011),

34(3), pp. 241-258.

[12] L. Li and B. Niu. Designing Artificial Neural

Networks Using MCPSO and BPSO, Proceedings

of the 2008 International Conference on

Computational Intelligence and Security, CIS

2008, (2008), pp. 176-179.

[13] J. Tu, Y. Zhan and F. Han. A Neural Network

Pruning Method Optimized with PSO Algorithm.

In Proceedings of the 2010 Second International

Conference on Computer Modeling and

Simulation, ICCMS '10, (2010), (3), pp. 257-259.

[14] T. Orlowska-Kowalska and M. Kaminski.

Effectiveness of Saliency-Based Methods in

Optimization of Neural State Estimators of the

Drive System with Elastic Couplings. IEEE

Transactions on Industrial Electronics, (2009),

56(10), pp. 4043-4051.

[15] T. Orlowska-Kowalska and M. Kaminski.

Optimization of Neural State Estimators of the

Two-mass System using OBD method.

Proceedings of the IEE International Symposium

on Industrial Electronics, ISIE 2008, (2008), pp.

461-466.

[16] I. Sansa, N. B, Mrabet and M. Bouzid Ben Khader.

Effectiveness of the Saliency-Based Methods in

Optimization of NN Structure for Induction Motor

Fault Diagnosis. Proceedings of the 8th

International Multi-Conference on Systems,

Signals & Devices, (2011), pp.1-7.

[17] I. A. Basheer and M. Hajmeer. Artificial Neural

Networks: Fundamentals, Computing, Design, and

Application, Journal of Microbiological Methods,

(2000), 43, pp. 3-31.

[18] X. Yao. Evolving Artificial Neural Networks.

Proceedings of the IEEE, (1999), (87): 1423-1447.

[19] C. Ozturk and D. Karaboga. Hybrid Artificial Bee

Colony Algorithm for Neural Network Training.

Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2011, (2011), pp. 84-88.

[20] E. Alba and J. Chicano. Training Neural Networks

with GA Hybrid Algorithms, K. Deb (ed.).

Proceedings of GECCO ’04, Seattle, Washington,

LNCS 3102, (2004), pp. 852-863.

[21] Y. Liu and X. Yao. A Population-Based Learning

Algorithm Which Learns Both Architectures and

Weights of Neural Networks. Chinese J. Advanced

Software Res., (1996), 3(1), pp. 54-65.

[22] E. Cantu -́Paz. Pruning Neural Networks with

Distribution Estimation Algorithms. Proceedings

of the 2003 International Conference on Genetic

and Evolutionary computation, GECCO'03,

(2003), 1: pp. 790-800.

[23] J. Sum and C-s. Leung. On the Error Sensitivity

Measure for Pruning RBF networks. In

Proceedings of the Second International

Conference on Machine Learning and Cybernetics,

(2003), pp. 1162-1167.

[24] J. Yang, A. Bouzerdoum and S. Phung. A Neural

Network Pruning Approach based on Compressive

Sampling. Proceedings of International Joint

Conference on Neural Networks 2009, (2009), pp.

3428-3435.

[25] M. Shahin, M. Jaksa and H. Maier. Application of

Neural Networks in Foundation Engineering.

Theme paper to the International e-Conference on

Modern Trends in Foundation Engineering:

Geotechnical Challenges and Solutions, Theme

No. 5: Numerical Modelling and Analysis,

Chennai, India, (2004).

[26] B. Hassibi and D. G. Stork. Second Order

Derivatives for Network Pruning: Optimal Brain

Surgeon. Advances in Neural Information

Processing Systems 5, [NIPS Conference], Stephen

Jose Hanson, Jack D. Cowan, and C. Lee Giles

(Eds.). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, (1992), pp. 164-171.

[27] S. Samarasinghe. Neural Networks for Applied

Sciences and Engineering, Auerbach Publications,

Boston, MA, (2006).

[28] J. Ding, J. Shao, Y. Huang, L. Sheng, W. Fu and

Y. Li. Swarm Intelligence Based Algorithms for

Data Clustering. Proceedings of the 2011

International Conference on Computer Science and

Network Technology, (2011), pp. 577-581.

[29] J. P. T. Yusiong and P. C. Naval, Jr. Training

Neural Networks Using Multiobjective Particle

Swarm Optimization, Lecture Notes in Computer

Science, ICNC 2006, (2006), (1): pp. 879-888.

[30] D. Newman, S. Hettich, C. Blake and C. Merz.

UCI Repository of machine learning databases.

Irvine, CA: University of California, Department

of Information and Computer Science, (1998).

[31] P. Palmes, T. Hayasaka and S. Usui. Mutation-

based Genetic Neural Network. IEEE Transactions

on Neural Networks, (2005), 16(3), pp. 587-600.

Author’s Profile

John Paul T. YUSIONG received his B.S. degree in

Computer Science (cum laude) from the University of

the Philippines Visayas Tacloban College (UPVTC),

Tacloban City, Leyte, Philippines in 2002 and his M.S.

degree in Computer Science from the University of the

Philippines Diliman (UPD), Diliman, Quezon City,

Philippines in 2006. He has been teaching for ten years

and he is currently an Assistant Professor in Computer

Science at the University of the Philippines Visayas

Tacloban College, Tacloban City, Leyte, Philippines.

His research interests include Artificial Intelligence,

Neural Networks and Optimization algorithms.

