IJISA Vol. 5, No. 10, 8 Sep. 2013
Cover page and Table of Contents: PDF (size: 574KB)
Full Text (PDF, 574KB), PP.59-67
Views: 0 Downloads: 0
LINC Technique, Mismatch Calibration, Correction Method, Modified Gradient Algorithm
One of the power amplifiers linearization technique is linear amplification with nonlinear components (LINC).The effects of phase and gain imbalances between two signal branches in LINC transmitters have been analyzed in this paper. Then a feedback path has been added to compensate this mismatches, using two complex gain in each path.This complex gains are controlled in a way to calibrate any gain and phase mismatches between two path using Modified Gradient Algorithm (MGA) adaptively. The main advantages of this algorithm over other algorithms are zero residual error and fast convergence time. In the proposedarchitecture power amplifiers in each path are modeled as a complex gain which its phase and amplitude depend on input signal level. Many simulations have been performed to validate the proposed self calibrating LINC transmitter. Simulation results have confirmed the analyticalpredictions. According to simulation results the proposed structure has around 40 dB/Hz improvement in the first adjacent channel of the output signal spectrum.
Hosein Miar-Naimi, Hamid Rahimpour, "Mismatch Calibration in LINC Power Amplifiers Using Modified Gradient Algorithm", International Journal of Intelligent Systems and Applications(IJISA), vol.5, no.10, pp.59-67, 2013. DOI:10.5815/ijisa.2013.10.08
[1]S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Norwood, MA: Artech House, 2006.
[2]M. Younes, F. M. Ghannouchi, ”An Accurate Predistorter Based on a Feedforward Hammerstein Structure,” IEEE Trans. on Broadcasting., vol. 58, no. 3, pp. 454-461, Sept. 2012.
[3]A. Ghadam, S. Burglechner, A. H. Gokceoglu, M. Valkama, A. Springer, ”Implementation and Performance of DSP-Oriented Feedforward Power Amplifier Linearizer,” IEEE Trans. on Circuits and Systems., vol. 59, no. 2, pp. 409-425,Feb. 2012.
[4]M. Vasic, O. Garcia, J. A. Oliver, P. Alou, D. Diaz, J. A. Cobos, A. Gimeno, J. M. Pardo, C. Benavente, F. J. Ortega, ” Efficient and Linear Power Amplifier Based on Envelope Elimination and Restoration,” IEEE Trans. on Power Electronics., vol. 27, no. 1, pp. 5-9, Jan. 2012.
[5]M. Hoyerby, N. L. Hansen, ”Band-Split Forward-Path Cartesian Feedback for Multicarrier TETRA RF Power Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 945-953, April. 2011.
[6]D. C. Cox, “Linear amplification with nonlinear components,” IEEE Trans. Commun., vol. COM-22, pp. 1942–1945, Dec. 1974.
[7]A. Birafane, M. El-Asmar, A. B. Kouki, M. Helaoui, and F. M. Ghannouchi, “Analyzing LINC Systems,” IEEE Microwave Magazine, vol. 11, no. 5, pp. 59–71, August 2010.
[8]S. Tomisato, K. Chiba, and K. Murota, “Phase error free LINC modulator,” Electron. Lett., vol. 25, no. 9, pp. 576–577, Apr. 27, 1989.
[9]L. Sundstrom, “Automatic adjustment of gain and phase imbalances in LINC transmitters,” Electron. Lett., vol. 31, no. 3, pp. 155–156, Feb. 2, 1995.
[10]A. S. Olson and R. E. Stengel, “LINC imbalance correction using base- band preconditioning,” IEEE Radio and Wireless Conf. (RAWCON 99), Aug. 1999, pp. 179–182.
[11]Garcia, P.; de Mingo, J.; Valdovinos, A.; Ortega, A.; , "An adaptive digital method of imbalances cancellation in LINC transmitters," Vehicular Technology, IEEE Transactions on , vol.54, no.3, pp. 879- 888, May 2005.
[12]G. T. Zhou and S. Kenney, “Predicting spectral regrowth of nonlinear power amplifiers,” IEEE Trans. Commun., vol. 50, pp. 718–722, May 2002
[13]A. S. Wright and W. G. Durtler, “Experimental performance of an adap- tive digital linearized power amplifier,” IEEE Trans. Veh. Technol., vol. 43, pp. 323–332, May 1994.
[14]M. Faulkner and M. Johansson, “Adaptive linearization using predis- tortion. Experimental results,” IEEE Trans. Veh. Technol., vol. 43, pp. 323–332, May 1994.
[15]A. Cauchy, Méthodes générales pour la résolution des systèmes déquations simultanées , C.R. Acad. Sci. Par. 25 (1847), pp. 536–538.
[16]H. Akaike, On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method , Ann. Inst. Statist. Math. Tokyo 11 (1959), pp. 1–17.
[17]G. E. Forsythe, On the asymptotic directions of the s-dimensional optimum gradient method, Numer.Math.11(1968), pp. 57–76.
[18]J. Barzilai and J.M. Borwein, Two-point stepsize gradient methods , IMA J. Numer.Anal. 8(1) (1988), pp. 141–148.
[19]W. Sun andY.Yuan, Optimization Theory and Methods: Nonlinear Prog ramming, Springer, NewYork, 2006.
[20]F. Casadevall and J. J. Olmos, “On the behavior of the LINC trans-mitter,” in Proc. 40th IEEE Veh. Technol. Conf., Orlando, FL, May 6–9, 1990, pp. 29–34..
[21]F. J. Casadevall and A. Valdovinos, “Performance analysis of QAM modulations applied to the LINC transmitter,” IEEE Trans. Veh. Technol., vol. 42, pp. 399–406, Nov. 1993.
[22]A. C hoffrut, B. D. Van Veen, and J. H. Booske, “Minimizing spectral leakage of nonideal LINC transmitters by analysis of component impairments,” IEEE Trans. Veh. Technol. , vol. 56, no. 2, pp. 445–458, Mar. 2007.
[23]L. Sündstrom, “Effects of reconstruction filters and sampling rate for a digital signal component separator on LINC transmitter performance “Electron. Lett., vol. 31, no. 14, pp. 1124–1125, Jul. 1995.