
I.J. Intelligent Systems and Applications, 2013, 11, 89-95 

Published Online October 2013 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijisa.2013.11.10 

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 11, 89-95 

High Performance Scheduling in Parallel Heterogeneous 

Multiprocessor Systems Using Evolutionary Algorithms 
 

Mohammad Sadeq Garshasbi 

Department of Computer Engineering, Germi branch, Islamic Azad University, Germi, Iran  

E-mail: ms.garshasbi@gmail.com 

 

Mehdi Effatparvar 

ECE Department, Ardabil Branch, Islamic Azad University, Ardebil, Iran  

 

Abstract— Scheduling is the process of improving the 

performance of a parallel and distributed system. 

Parallel systems are part of distributed systems. Parallel 

systems refers to the concept of run parallel jobs that 

can be run simultaneously on several processors. Load 

balancing and scheduling are very important and 

complex problems in multip rocessor systems. So that 

problems are an  NP-Complete problems. In th is paper, 

we introduce a method based on genetic algorithms for 

scheduling and laod balancing in  parallel heterogeneous 

multi-processor systems. The results of the simulations 

indicate Genetic algorithm for scheduling at in systems 

is better than LPT, SPT and FIFO. Simualat ion results 

indicate Genetic Algorithm reduce total response time 

and also it increase utilization. 

 

Index Terms—  Scheduling, Load Balancing, 

Multiprocessor Systems, Genetic Algorithm, Response 

Time, Utilization 

 

I. Introduction 

In multiple processing, mult iple processors work 

together to implement a program. The major application 

of these systems is for problem solving in modeling and 

engineering sciences (e.g. Applied Physics, Nuclear 

Physics, Geology and Seismology, Mechanical 

Engineering, Electrical Engineering, Mathematics etc.).  

Today, not only scientific problems solving requires 

parallel processing, but also some commercial 

applications require fast computers. Many of these 

applications require the processing of large volumes of 

complex information. Some of these  programs include 

huge databases, data mining operations, oil explorat ion, 

medical imaging and diagnosis etc[19 - 22]. 

In computer networking, load balancing is a 

technique to spread work between two or more 

computers, network links, CPUs, hard drives, or other 

resources, in order to get optimal resource utilization, 

throughput, or response time. Using multiple 

components with load balancing, instead of a single 

component, may increase reliability through 

redundancy. Load balancing attempts to maximize 

system utilization by keeping all processors busy[16-

20]. 

Static Load-Balancing In this method, the 

performance of the nodes is determined at the beginning 

of execution. Then depending upon their performance 

the workload is distributed in the start by the master 

node. The slave processors calculate their allocated 

work and submit their result to the master. A task is 

always executed on the node to which it is assigned that 

is static load balancing methods are non-preemptive. A 

general disadvantage of all static schemes is that the 

final selection of a host for process allocation is made 

when the process is created and cannot be changed 

during process execution to make changes in the system 

load[1]. Major load balancing algorithms are Round 

Robin[11] and Randomized Algorithms[12], Central 

Manager [13]Algorithm and Threshold[13, 14] 

Algorithm. 

Dynamic Load Balancing It differs from static 

algorithms in that the workload is distributed among the 

nodes at runtime. The master assigns new processes to 

the slaves based on the new information collected[4, 

15]. Unlike static algorithms, dynamic algorithms 

allocate processes dynamically when one of the 

processors becomes under loaded. Instead, they are 

uffered in the queue on the main host and allocated 

dynamically upon requests from remote hosts[1]. This 

method is consisted of Central Queue Algorithm and 

Local Queue Algorithm[16-18]. 

Load balancing algorithms work on the principle that 

in which situation workload is assigned, during compile 

time or at runtime. Comparison shows that static load 

balancing algorithms are more stable compare to 

dynamic. It is also ease to predict the behavior of static, 

but at the same time, dynamic distributed algorithms are 

always considered better than static algorithms[1, 16-

18]. 

The allocation sequence of tasks in a heterogeneous 

multi-processor system has direct impact on the 

utilization and response times. Therefore, we use 

genetic algorithm to determine the task’s optimal 

sequence for allocate to processors. In this paper, we 

introduce a method based on genetic algorithms for 

scheduling and laod balancing in parallel heterogeneous 



90 High Performance Scheduling in Parallel  

Heterogeneous Multiprocessor Systems Using Evolutionary Algorithms  

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 11, 89-95 

multi-processor systems. A Genetic Algorithm (GA) 

approach is proposed to handle the problem of parallel 

system task scheduling. A GA  starts  with generation of 

an individual, which is encoded as strings known as 

chromosomes. A chromosome corresponds to a solution 

to the problem. A fitness function is used to evaluate the 

fitness of each individual. In general, GAs consist of 

selection, crossover and mutation operations based on 

some key parameters such as fitness function, crossover 

probability, and mutation probability. 

Results of the simulations indicate Genetic Algorithm 

reduce total response time in comparison with LPT, 

SPT and FIFO. In addition, the system utilization 

increase when we using Genetic Algorithm for 

Scheduling in parallel heterogeneous multiprocessor 

systems.  

This study is divided into the following sections: In 

section 2 an overview of the problem is given along 

with brief description of the solution methodology. 

Section 3 description an overview of Genetic Algorithm. 

The proposed method is described in Section 4. Results 

of the study are analyzed in Sect ion 5. Finally, Section 

6 presents the conclusions. 

 

II. Problem Definition 

Parallel multi-processor systems can be 

homogeneous or heterogeneous: Heterogeneous means 

that the processors have different computing speeds and 

capacities. Homogeneous means that all processors 

have equal computing speeds and capacity [4,5,6,13]. 

Tasks can be independent or dependent. An 

independent task means that the tasks, for running, do 

not need to run other tasks and these tasks can be 

executed at any time without knowledge of the 

information of other tasks. On the other hand, a 

dependent task means that each task may require the 

information of other tasks for execution.  For run a task 

should be executed other tasks. 

The multiprocessor computing environment consists 

of a set of m heterogeneous processor: 

P = {pi: i =1, 2, 3…m}                                            (1) 

 

 

Fig. 1: A fully connected parallel processor[4] 

They are fully connected with each other via identical 

links. Figure 1 shows a fully connected eight parallel 

system with identical link[4,11]. 

P indicates the numbers of heterogeneous processors 

that can be to m of exist heterogeneous processors. 

Processors are heterogeneous, therefore in 

heterogeneous environments, every processor works in 

different speeds and processing capabilities. Assume 

processor p1 is faster than p2, p3 and so on. Likewise, 

processor p2 is faster than p3, p4 and so on. (i.e., the 

order of speed and processing capabilities can be 

expressed as p1>p2> p3 > p4 > p5 > p6 > p7>p8) [4, 

10]. 

According to the above description, table 1 shows an 

example of this problem. For example there are five 

tasks and two heterogeneous processors, Because 

processors are heterogeneous, each task has different 

run times on different processor. 

 
Table 1: Shows a task execution matrix on different processors 

Tasks Tasks1 Tasks2 Tasks3 Tasks4 Tasks5 

P1(Run Time) 4 1 3 2 3 

P2(Run Time) 6 2 5 4 4 

 

According to the example, assume tasks T1, T2, T3, 

T4, T5 be scheduled, respectively. Hence, scheduling is 

according to Figure 2. T1 first enter to processor 1. 

According to table 1, T1 run time in  processor 1 is 

equal to 4. Then, T2 enter to processor 2. According to 

table 1, T2 run time in processor 2 is equal to 2, and on. 

 

Fig. 2:  

 

Assume tasks T3, T5, T4, T2, T1 be scheduled, 

respectively. Hence, scheduling is according  to Figure 

3. T3 first enter to processor 1. According to table 1, T1 

run time in processor 1 is equal to 3. Then, T5 enter to 

processor 2. According to table 1, T5 run time in 

processor 2 is equal to 4, and on. 

 

Fig. 3:  

 

The second scheduling is optimized, compared to the 

first scheduling the reason is that the response time in 

figure 3 is 9 and response time in figure 2 is 10, on 



 High Performance Scheduling in Parallel  91 

Heterogeneous Multiprocessor Systems Using Evolutionary Algorithms  

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 11, 89-95 

other hand, load balancing in both is same. So second 

scheduling order is optimal. 

How to respectively Entry (scheduling) of tasks to 

processors that maximum utilization and also minimizes 

the total execution time in this sytems is NP-Complete 

problem. 

Therefore, in this paper, we use GA for load 

balancing and minimizing total execution time in 

parallel multi-processor systems. There we assume 

Static Load-Balancing in this systems. 

 

III. Genetic Algorithms 

In the computer science field of artificial intelligence, 

a genetic algorithm (GA) is a search heuristic that 

mimics the process of natural evolution. This heuristic 

is routinely used to generate useful solutions to 

optimization and search problems. Genetic algorithms 

belong to the larger class of evolutionary algorithms 

(EA), which generate solutions to optimization 

problems using techniques inspired by natural 

evolution, such as inheritance, mutation, selection, and 

crossover[14]. 

In a genetic algorithm, a population of strings (called 

chromosomes or the genotype of the genome), which 

encode candidate solutions (called individuals, 

creatures, or phenotypes) to an optimization problem, 

evolves toward better solutions. Traditionally, solutions 

are represented in binary as strings of 0s and 1s, but 

other encodings are also possible. The evolution usually 

starts from a population of randomly generated 

individuals and happens in generations. In each 

generation, the fitness of every individual in the 

population is evaluated, multiple individuals are 

stochastically selected from the current population 

(based on their fitness), and modified (recombined and 

possibly randomly mutated) to form a new population. 

The new population is then used in the next iteration of 

the algorithm. Commonly, the algorithm terminates 

when either a maximum number of generations has 

been produced, or a satisfactory fitness level has been 

reached for the population. If the algorithm has 

terminated due to a maximum number of generations, a 

satisfactory solution may or may not have been reached. 

Genetic algorithms find application in bioinformatics, 

phylogenetics, computational science, engineering, 

economics, chemistry, manufacturing, mathematics, 

physics and other fields. 

The fitness function is defined over the genetic 

representation and measures the quality of the 

represented solution. The fitness function is always 

problem dependent. For instance, in the knapsack 

problem one wants to maximize the total value of 

objects that can be put in a knapsack of some fixed 

capacity. A representation of a solution might be an 

array of bits, where each bit represents a different 

object, and the value of the bit (0 or 1) represents 

whether or not the object is in the knapsack. Not every 

such representation is valid, as the size of objects may 

exceed the capacity of the knapsack. The fitness of the 

solution is the sum of values of all objects in the 

knapsack if the representation is valid, or 0 otherwise. 

In some problems, it is hard or even impossible to 

define the fitness expression; in these cases, interactive 

genetic algorithms are used. 

Once the genetic representation and the fitness 

function are defined, a GA proceeds to initialize a 

population of solutions (usually randomly) and then to 

improve it through repetitive application of the 

mutation, crossover, inversion and selection operators. 

In genetic algorithms, crossover is a genetic operator 

used to vary the programming of a chromosome or 

chromosomes from one generation to the next. It is 

analogous to reproduction and biological crossover, 

upon which genetic algorithms are based. Cross over is 

a process of taking more than one parent solutions and 

producing a child solution from them. There are 

methods for selection of the chromosomes. 

In genetic algorithms, mutation is a genetic operator 

used to maintain  genetic diversity from one generation 

of a population of algorithm chromosomes to the next. 

It is analogous to biological mutation. Mutation alters 

one or more gene values in  a chromosome from its 

initial state. In mutation, the solution may  change 

entirely  from the prev ious solution. Hence GA can 

come to better solution by using mutation. Mutation 

occurs during evolution according to a user-definable 

mutation probability. Th is probability should be set low. 

If it is set too high, the search will turn into a primit ive 

random search[14]. GA using operator selection, 

combination and mutation provide the optimal solution 

that is not possible with other methods. Figure 4 shown 

genetic algorithm chart. 

 

Fig. 4: Genetic Algorithm chart  



92 High Performance Scheduling in Parallel   

Heterogeneous Multiprocessor Systems Using Evolutionary Algorithms  

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 11, 89-95 

IV. Scheduling and Load Balancing using Genetic 

Algorithms in Parallel Multi-Processor Systems 

4.1 Encoding 

The purpose of this study is to find a sequence of 

tasks for load balancing and min imizing total execution 

time in parallel multi-processor systems. Thus, each 

chromosome is sequence variety of tasks. Each task is 

considered as a gene. Therefore, the best way  to encode 

chromosomes is permutations encoding. To explain 

how chromosomes are encoded, consider that there are 

8 tasks, Ti represents the tasks. figure 5 shows two 

encoded chromosomes. 

 

Fig. 5: two of chromosome encoded 

 

4.2 Generate the Initial Population 

To start, GA should generate an initial random 

population for entry into the first generation. For this, a 

random generator function of chromosomes must be 

employed[4]. In order to create an init ial population, we 

need Information on the number of processors, number 

of tasks and the size of the population. Random 

chromosomes generate the initial population. 

 

4.3 Fitness Function 

The important part of GA is the fitness function. The 

fitness function is defined over the genetic 

representation, and measures quality of the 

chromosomes. The fitness function is always dependent 

on the problem. In this paper, the fitness function 

separates evaluation into two parts: load 

balancing(system utilization) and total response time. 

The fitness function is calculated according to the (2) 

equation: 

 
 

TFT is total response time obtained from the 

chromosome. Pi is Processor i and N is complete 

number of processors. Lesser value of the above 

equation corresponds to a better fitness value for the 

chromosome. 

 

4.4 Selection Operator 

The design of the fitness function is the basic of 

selection operation, so how to design the fitness 

function will d irectly  affect  the performance of genetic 

algorithm. GAs uses selection operator to select the 

superior and eliminate the in ferior. The indiv idual are 

selected according to their fitness value. Once fitness 

values have been evaluated for all chromosomes, we 

can select good chromosomes through rotating roulette 

wheel strategy. This operator generate next 

generationby selecting best chromosomes from parents 

and offspring[4]. 

 

4.5 Crossover Operator 

Crossover operator randomly selects two parent 

chromosomes (chromosomes with higher values have 

more chance to be selected) and randomly chooses their 

crossover points, and mates them to p roduce two child 

(offspring) chromosomes[4]. We consider one point 

crossover in here, In one point crossover, the segments 

to the right of the crossover points are exchanged to 

form two offspring as shown in figure 6. 

 

Fig. 6: One point crossover 

 

4.6 Mutation Operator 

A mutation operation works by randomly selecting 

two tasks and swapping them. Firstly, it randomly 

selects a processor, and then randomly selects a task on 

that processor[4]. Th is task is the first task of the pair to 

be swapped. Secondly, it randomly selects a second 

processor (it may be the same as the first), and 

randomly  selects a task. If the two selected tasks are the 

same task the search continues on. If the two tasks are 

different then they are swapped over (provided that the 

precedence relations must satisfy). figure 7. 

 

Fig. 7: Mutation operator 

 

V. Evaluation and Simulation Results 

In this section, we present and discuss the 

experimental results of the proposed scheme. All 

simulations were performed using MATLAB software.  

We evaluated the performance of our proposed scheme 

in comparison with LPT (Largest Processing Time), 

SPT (Shortest Processing Time), and FIFO algorithms 

in a Parallel multi-processor system.  

The parameters of the considered GA are as table 2: 

 
Table 2:  

Number of generations 40 

Crossover probability 50% 

Mutation probability 20% 

Chromosomes that enter the next generation unchanged 30% 

Number of GA iterations 200 



 High Performance Scheduling in Parallel  93 

Heterogeneous Multiprocessor Systems Using Evolutionary Algorithms  

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 11, 89-95 

We abtained results from apply ing Genetic algorithm 

compare with abtained results from apply ing LPT, SPT 

and FIFO algorithms. Our experiments are in two part:  

 When the number of tasks is 50 

 When the number of tasks is 500 

When the number of tasks are 50, figure 8 and figure 

12 shows total response time by applying LPT, SPT, 

FIFO and Genetic Algorithm for tasks scheduling on 

parallel mult i-processor systems. abtained results  in 

figure 8 and 12 shown GA have total response time less 

than LPT, SPT and FIFO. Also figure 9 and figure 14 

shown system utilization in GA is better than LPT, SPT 

and FIFO when number of tasks are 50. This is mean 

the GA's system ut ilization is better, also it  has 

minimum response time. So  when number of tasks are 

50 the total response time and system utilization fo r GA 

is better at comaper with LPT, SPT and FIFO.  

 

Fig. 8: Total Response T ime (Tasks = 50) 

 

 

Fig. 9: System Utilization (Tasks = 50) 

 

The vertical axis represents the total response time 

and the horizontal axis represents the number of 

processors. 

When the number of tasks are 500, figure 10 and 

figure 13 shows total response time by applying LPT, 

SPT, FIFO and Genetic Algorithm for tasks scheduling 

on parallel multi-processor systems. 

Genetic A lgorithm in  addition to reducing the total 

response time, p rovides good utilization compared to 

the LPT, SPT and FIFO.  

Abtained results  in figure 10 and figure 13 shown GA 

have total response time less than LPT, SPT and FIFO 

when the number of tasks are 500. A lso figure 11 and 

figure 15 shown system utilization when number of 

tasks are 500. GA's system utilization is better, also it 

has minimum response time compare with LPT, SPT 

and FIFO. So when number of tasks are 500 the total 

response time and system utilizat ion for GA is better 

than LPT, SPT and FIFO. 

 

Fig. 10: Total Response T ime (Tasks = 500) 

 

 

Fig. 11: System Utilization (Tasks = 500) 

 

Genetic A lgorithm in  addition to reducing the total 

response time, p rovides good utilization compared to 

the LPT, SPT and FIFO in both state.  



94 High Performance Scheduling in Parallel   

Heterogeneous Multiprocessor Systems Using Evolutionary Algorithms  

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 11, 89-95 

Obtained results in large and small scales indicate 

that Genetic A lgorithm for scheduling and laod 

balancing can provide similar results in different scales, 

and proves therobustness of the Genetic algorithm in 

different scales. 

 

Fig. 12: Total Response T ime (Tasks = 50) 

 

 

Fig. 13: Total Response T ime (Tasks = 500) 

 

 

Fig. 14: System Utilization (Tasks = 50) 

 

Fig. 15: System Utilization (Tasks = 500) 

 

VI. Conclusion 

In this study, we proposed the Genetic Algorithm 

(GA) for tasks scheduling and load balancing in 

heterogeneous parallel multiprocessor systems that 

reduce total response time and increase system 

utilization. The proposed method found a better solution 

for assigning tasks to the heterogeneous parallel 

multiprocessor system. The method proposed in this 

article was compared with LPT, SPT and FIFO 

algorithms. The results of simulations indicate that our 

method is better at compared with the other method. In 

addition, the obtained results are based on a limited 

number of reproduction and genetic simple operators. 

Certainly, gain the better results using of efficiently 

operators. 

 

References 

[1] G. O. Young, ―Synthetic structure of industrial 

plastics (Book style with paper t itle and editor),‖ in 

Plastics, 2nd ed. vol. 3, J. Peters, Ed.  New York: 

McGraw-Hill, 1964, pp. 15–64. 

[2] W.-K. Chen, Linear Networks and Systems (Book 

style). Belmont, CA: Wadsworth, 1993, pp. 123–

135. 

[3] H. Poor, An Introduction to Signal Detection and 

Estimation. New York: Springer-Verlag, 1985, 

ch.4. 

[4] B. Smith, ―An approach to graphs of linear forms 

(Unpublished work style),‖ unpublished. 

[5] E. H. Miller, ―A note on reflector arrays 

(Periodical style—Accepted for publicat ion),‖ 

IEEE Trans. Antennas Propagat., to be published. 

[6] J. Wang, ―Fundamentals of erbium-doped fiber 

amplifiers arrays (Periodical style—Submitted for 



 High Performance Scheduling in Parallel  95 

Heterogeneous Multiprocessor Systems Using Evolutionary Algorithms  

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 11, 89-95 

publication),‖ IEEE J. Quantum Electron., 

submitted for publication. 

[7] C. J. Kaufman, Rocky Mountain Research Lab., 

Boulder, CO, private communication, May 1995. 

[8] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, 

―Electron spectroscopy studies on magneto-optical 

media and plastic substrate interfaces(Translation 

Journals style),‖ IEEE Transl. J . Magn.Jpn., vol. 2, 

Aug. 1987, pp. 740–741 [Dig. 9
th

 Annu. Conf. 

Magnetics Japan, 1982, p. 301]. 

[9] M. Young, The Techincal Writers Handbook.  Mill 

Valley, CA: University Science, 1989. 

[10] J. U. Duncombe, ―Infrared navigation—Part I: An 

assessment of feasibility (Periodical style),‖ IEEE 

Trans. Electron Devices, vol. ED-11, pp. 34–39, 

Jan. 1959. 

[11] S. Chen, B. Mulgrew, and P. M. Grant, ―A 

clustering technique for digital communications 

channel equalization using radial basis function 

networks,‖ IEEE Trans. Neural Networks, vol. 4, 

pp. 570–578, July 1993. 

[12] R. W. Lucky, ―Automatic equalization for digital 

communicat ion,‖ Bell Syst. Tech. J., vol. 44, no. 4, 

pp. 547–588, Apr. 1965. 

[13] S. P. Bingulac, ―On the compatibility of adaptive 

controllers (Published Conference Proceedings 

style),‖ in Proc. 4th Annu. Allerton Conf. Circuits 

and Systems Theory, New York, 1994, pp. 8–16. 

[14] G. R. Fau lhaber, ―Design of service systems with 

priority reservation,‖ in Conf. Rec. 1995 IEEE Int. 

Conf. Communications, pp. 3–8. 

[15] W. D. Doyle, ―Magnetization reversal in films 

with b iaxial anisotropy,‖ in 1987 Proc. 

INTERMAG Conf., pp. 2.2-1–2.2-6. 

[16] Ali M. Alakeel, "Load Balancing in Distributed 

Computer Systems", International Journal of 

Computer Science and Information Security, Vol. 

8, No. 4, 2010. 

[17] Md. Firoj Ali1 and Rafiqul Zaman Khan2, "The 

Study on Load Balancing Strategies in distributed 

system", International Journal of Computer Science 

& Engineering Survey, Vol.3, No.2, April 2012. 

[18] Ali M. Alakeel, "A Guide to Dynamic Load 

Balancing in Distributed Computer Systems", 

International Journal of Computer Science and 

Network Security, VOL.10 No.6, June 2010. 

[19] Abbas Karimi, Faraneh Zarafshan, Adznan b. 

Jantan, A.R. Ramli, M. Iqbal and b.Saripan, "A 

New Fuzzy Approach for Dynamic Load Balancing 

Algorithm", International Journal of Computer 

Science and In formation Security, Vol. 6, No. 1, 

2009. 

[20] Sandeep Sharma, Sarabjit Singh, and Meenakshi 

Sharma, "Performance Analysis of Load Balancing 

Algorithms", World Academy of Science, 

Engineering and Technology 38, 2008. 

[21] D. Grosu and A. T. Chronopoulos, 

"Noncooperative Load Balancing in Distributed 

Systems," Journal of Parallel and Distributed 

Computing, vol. 65, no. 9, pp. 1022-1034, Sept. 

2005. 

[22] Z. Khan, R. Singh, J. Alam, and R. Kumar, 

"Perforamnce Analysis of Dynamic Load 

Balancing Techniques for Parallel and Distributed 

Systems" International Journal of Computer and 

Netwrok Security, vol. 2, no. 2, February 2010. 

 

Authors’ Profiles 

Mohammad Sadeq Garshasbi, 

born in 1989, He is MSc student in 

Islamic Azad University of Germi, 

Iran. He received his B.S. degree in 

computer software engineering from 

Sabalan College, Ardabil, Iran, in 

2011. He is teacher in  Sama 

technical and professionals college 

of Khalkhal. He teaches on computer networks and 

operating systems. His research interests include 

computer networks, operating systems, and 

evolutionary algorithms. 

 

Mehdi  Effatparvar is facu lty member of computer 

engineering department in Islamic Azad  University of 

Ardabil, Iran. He is PhD in Islamic Azad University of 

Science and Research. He received his BSc in 

Computer engineering and MSc in Information 

Technology from Islamic Azad University of Qazvin, 

Iran. His research interests include wireless sensor 

networks, ad-hoc networks, distributed systems and 

operating systems. 

 
 

 

How to cite this paper: Mohammad Sadeq Garshasbi, Mehdi 

Effatparvar,"High Performance Scheduling in Parallel 

Heterogeneous Multiprocessor Systems Using Evolutionary 
Algorithms", International Journal of Intelligent Systems and 

Applications(IJISA), vol.5, no.11, pp.89-95, 2013. DOI: 

10.5815/ijisa.2013.11.10 


