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Abstract — In this paper, we present analysis of 

different train ing types for nonlinear autoregressive 

neural network, used for simulat ion of magnetic 

levitation system. First, the model of this h ighly 

nonlinear system is described and after that the 

Nonlinear Auto Regressive eXogenous (NARX) of 

neural network model is given. Also, numerical 

optimization techniques for improved network training 

are described. It is verified  that NARX neural network 

can be successfully used to simulate real magnetic 

levitation system if suitable train ing procedure is chosen, 

and the best two training types, obtained from 

experimental results , are described in details. 

 

Index Terms — Neural Network, Magnetic Levitation 

System, Nonlinear Model, Neural Network Training  

 

I. Introduction 

Magnetic levitation in general refers to the process of 

object floating in the air under the influence of 

electromagnetic force. That force is caused by the 

current flowing through magnetic co il of levitation 

system. Levitator is used in pract ice as a device with 

one degree of freedom which is controlling vert ical 

translation of metal ball (SISO system). On the other 

hand, magnetic lev itator can be also used as mult iple-

input multip le-output (MIMO) system with two  degrees 

of freedom, vert ical translation and rotation [1]. 

Magnetic levitation is used in transport sector (high 

speed trains) where movement without friction is 

obtained, for molten metal lev itation in induction 

furnaces, as well as in metal processing industries. In 

[2], magnetic levitation is used for control of extremely 

high temperature plasmas in fusion reactor. Magnetic 

levitation usage for vibration isolating during work of 

sensitive machines is also described in this paper. 

Neural networks can be successfully applied in  

complex and nonlinear systems, systems with 

disturbances and insufficiently known parameters, 

unpredictable and uncoordinated systems [3]-[5]. In the 

case of magnetic lev itation systems, first assignment of 

neural network is on-line learning and then successful 

simulation of magnetic levitation behaviour. 

The similar approach was  given in [6], where  neural 

network with built-in nominal linear model is shown. 

Linear model is provided by setting some network 

weights to desired and in  advance defined values. Other 

weights are free at start and they are changing their 

values during learning process. Initial stability is 

provided by the linear model control at the start of the 

training process. 

The main object ive of this paper is to simulate 

working process of magnetic levitation system by 

implementing NARX model of neural network using 

MATLAB software. NARX model represents nonlinear 

autoregressive network with external inputs, and it is 

based on linear autoregressive model. NARX represents 

recurrent dynamical feedback network with pred ictive 

structure. Main goal of this predictive model is to 

predict future system behaviour for known and 

unknown input vectors. Model prediction accuracy 

directly determines quality and efficiency of the control 

law. Primary consideration of work accuracy during 

implementation process is of a great importance. 

The paper is organized  as follows. In Section II, the 

mathematical model of magnetic levitation system is 

given. The structure of neural network based on NARX 

model is presented in Section III. In next Section, 

different training types of neural network are described. 

The experimental results  are illustrated and discussed in 

Section V. It is shown that the best simulation 

performances are obtained using Basic Quasi–Newton 

and Backpropagation method. The concluding remarks 

are given in Section VI. 

 

II. Mathematical Model of Magnetic Levitation 

System 

Main parts of laboratory magnetic levitation system 

are electromagnetic coil, position sensor, steel ball and 

steel frame that can be divided into three parts. On the 

top of the frame the electromagnetic coil is installed. 
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Fig. 1: Magnetic levitation system 

 

One of its magnet poles is pointing to the middle part  

of frame. Sensor for tracking ball position is installed in 

wall o f the middle frame part. Ball holder (where the 

ball is positioned when system is inactive) is installed 

on bottom part  of the frame. There are also magnetic 

levitators with two electromagnetic coils and in that 

case, instead of ball holder, second electromagnetic co il 

is installed. In this paper we used magnetic levitation 

system [7] with one electromagnetic coil (Fig. 1), so the 

second type of levitation system will not be described 

further. 

Magnetic levitator can be d ivided into two 

subsystems, mechanical and electrical [8]-[10]. For 

electrical subsystem it is important to single out 

electromagnetic coil inductance
 L H

 and its 

resistance
 lR 

. Electrical subsystem can be described 

with the following well-known differential equation: 

l

di
U R i L

dt
 

.                                                   (1) 

In order to determine the current in coil, the resistor 

SR
 is serial connected to the coil. In that way voltage 

SU
 can be measured across resistor SR

, by using A/D 

convertor for measuring current i . Now, (1) can  be 

rewritten as: 

 l S

di
U R R i L

dt
  

.                                         (2) 

After applying Laplace transform we obtain:  

 
 
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where 
   I s i t   

, 
   U S u t   

,   is 

Laplace transform operator. 

On the other side, modelling mechanical subsystem 

can be performed  simply  by defining force F , that 

represents result of electromagnet activity to the ball: 

2

f

i
F mg K

x

 
   

  ,                                                (4) 

where m  - is steel ball mass,
g

 - grav itation constant, 

fK
 - magnetic force constant which is valid for pair 

electromagnet - ball, i  - current which flows through 

electromagnet, x  - ball d istance from magnet. Using 

second Newton’s law, equation (4) can be rewritten as:  

22

2 f

d x i
m mg K

xdt

 
   

  .                                          (5) 

The value of electromagnetic coil current in steady 

state SSi
 can be determined by (5). That current defines 

constant of ball position SSx
 in a steady state. If we take 

into consideration that velocity and acceleration are 

equal to zero  in  steady state, i.e ., 
2 2 0dx dt d x dt 

, 

then (5) is given as: 

SS SS

f

mg
i x

K


.                                                      (6) 

Theoretically, regulat ion of the ball position can be 

performed by (6). Anyway, external d isturbances, 

uncertainty and system parameter variations affect on 

existence of high nonlinearity degree and require 

feedback controller installation which  purpose is 

advancement of mechanical subsystem performances. 

In general, adding linearity  into the system must be 

done first [11], and after that control process begins. In 

this paper NARX neural network is used for 

experimental substitution of real system of magnetic 

levitation. If training process is successfully performed, 

we are going to get values on network outputs with 

minimal errors comparing to the real lev itator output 

values. In that way authentic experimental work with 

simulator of magnetic levitation system can be provided 

only by programming in MATLAB software. Magnetic 

levitation system block diagram is shown in  [7]. 

Nonlinear mathemat ical model of Inteco magnetic 

levitation system is given by the following equations:  
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where 2x 
, 

 3 3 ,2.38MINx x
, 

 ,1MINu u
. Values 

of used parameters in (7) are given in Table I. 
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Table 1:  Parameters of nonlinear mathematical model 

Parameter Value Unit 

m  0.0571 (big ball) [kg] 

g  9.81 [m/s
2
] 

emF
  1 3,f x x

 [N] 

1emPF
 

21.7521 10  [H] 

2emPF
 

35.8231 10  [m] 

 1if x
  1f x

 [1/s] 

1iPf
 

41.4142 10  [ms] 

2iPf
 

34.5626 10  [m] 

ic
 0.0243  [A] 

ik
 2.5165  [A] 

3MINx
 0.03884  [A] 

MINu
 0.00498   

 

Variables 1emPF
 and 2emPF

 are electromagnetic force 

values, variables 1iPf
, 2iPf

, ic
and ik

 are actuator 

values, and variables 3MINx
 and MINu

 are limitations. 

III. Neural Network Based on NARX Model 

Nonlinear autoregressive network with external 

inputs is recurrent dynamical feedback network which 

connects defined network layers. NARX model is based 

on linear autoregressive model, used for modelling 

serial time sequences. Function that characterizes 

NARX model can be represented as  [12]: 

 
     
     

1 , 2, ..., ,

1 , 2 ,...,

y

u

y t y t y t n
y t f

u t u t u t n

   
 
     .            (8) 

From (8) it  can be concluded that the next  (predicted) 

output signal value 
 y t

is obtained from the previous 

output signal values  
      1 , 2 ,..., yy t y t y t n  

 

and the previous independent input signal values 

      1 , 2 ,..., uu t u t u t n  
. NARX model can be 

implemented by neural network using conventional 

feedbacks for function f approximat ion, exclusively for 

making connections between output network vector 

 y t
and inputs into layer 1. The block diagram of 

NARX neural network is shown in Fig. 2. 
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Fig. 2: NARX neural network block diagram 

 

Vector 
 u t

 is brought to the system as two-layer 

input, passing through time delay block (TDL) and in 

that way part o f function (8), 

      1 , 2 ,..., uu t u t u t n  
, is realized. Vector 

 1n t
 is obtained from defined weight 

coefficients
1,1IW , bias 

1b , and output network vector 

 y t
 which is led to time delay block and after that 

multip lied by weight coefficients 
1,3LW . Obtained 

vector 
 1n t

 is then led to the first layer activation 

function 
1f

. Output from the first layer 
 1a t

, 

representing action result of activation function 
1f

, 
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comes to the second layer where it  is being transformed 

(by weight coefficients 
2,1LW  treatment and bias

2b ) 

into vector 
 2n t

. Th is vector has been brought then on 

bias 
2f

 of input function and final neural network 

output 
 y t

 is obtained after that. Output vector 
 y t

 

represents result of neural network working process, 

and as we ment ioned before, output vector is brought to 

TDL of layer 1.  

That way the second part of depending function (8): 

      1 , 2 ,..., uu t u t u t n  
 is realized. Described 

model can be used as a predictor for the prediction of 

next input signal. It can be also used as nonlinear filter 

and in that case undesirable noises from input signals 

are removed. 

 

IV. Neural Network Training Methods 

Real data obtained from magnetic levitation system 

(explained in Section II) is used for training process. 

Current values from electromagnetic coil of magnetic 

levitator are chosen for train ing process input data, as 

well as position values (positions which steel ball have 

had at individual moments of time). Figures 4 and 5 

represent levitation characteristics during PID control of 

ball position. Position and current values are taken with 

discretizat ion period of 0.25msT  . Magnetic coil 

should be supplied with constant current (approximately 

0.78A) in ideal case of ball lev itation (levitation without 

oscillations). In Fig. 4, value 0.78A is zero  position on 

vertical axis.  

Current is changing in interval [-1, 1] during 

oscillations, which corresponds to the real values given 

in [A] in interval [0.77, 0.79]. That means that notch 

between 0 and 1 is making current changes up to 0.01A 

maximum. In Fig. 5, zero  position on vertical axis 

represents ideal ball position if there are no oscillations. 

 

Fig. 4: Current changes with discretization period of  0.25msT   

 

 

Fig. 5: Ball position changes with discretization period of  

0.25msT   
 

Ball positions during work of levitation system are 

maximally changing 2.25mm comparing to ideal (zero) 

positions. That means that notch between 0 and 1 on 

vertical axis represents position change, which in 

maximal case (when position 1 is achieved) is 2.55mm.  

After current and position data transformations into 

input and output vectors respectively, important 

parameters of future neural network are going to be 

defined. NARX neural network presented in previous 

section is chosen for modelling neural network. Eleven 

different train ing types [13]-[16] were applied on this 

neural network during realisation of experiments, and 

next  three types of numerical optimization techniques 

were chosen: 

 Conjugate gradient algorithms (Backpropagation 

method with Fletcher – Reevs type of parameters 

update, Backpropagation method with Polak –  

Ribieres updating type, Backpropagation method 

with Powel – Beales type of data reinitialisation, and 

scaled conjugate gradient method) [17], 

 Quasi – Newton method (one-step interception 

method and basic Quasi – Newton type of updating 

parameters) [18], 

 Levenberg – Marquardt method (method of Bayesian 

regularizat ion, and basic form of Levenberg – 

Marquardt method) [19]. 

In addition of optimization techniques, basic methods 

of descending gradient are applied, as well as flexib le 

backpropagation learning algorithm. Every ment ioned 

type of train ing was tuned during experiment: neuron 

number modificat ions in hidden layers were done, as 

well as iteration number modifications during training 

process.  

After completing dozens of experiments it is shown 

that best experimental results are obtained from two 

methods: basic Quasi – Newton type of parameters 

updating and Backpropagation method with Polak – 

Ribiere type of updating parameters. It is verified that 

those two train ing procedures can be used for 
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simulating highly nonlinear systems and in next section 

obtained experimental results  will be shown. 

 

V. Experimental Results 

Basic Quasi –  Newton method gives best results with 

10 neurons in hidden layer. Training process achieved 

best performances after 2963 iterations. With further 

increase of number of neurons in the hidden layer, 

network performances are improving slowly and it is 

estimated that optimal solution (if estimation 

parameters are number of neurons, training iterations 

and output values) is one with 10 neurons in hidden 

layer. Obtained results from this type of neural network, 

compared with results from real lev itation system, are 

shown in Fig. 6. 
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Fig. 6: Response of real (1) and simulated (2) system 

 

Train ing type which obtained the best results from all 

experiments we have done is Backpropagation training 

method with Polak – Ribieres way of updating data. It is 

shown that for realization of this NARX network 20 

neurons are optimal for implementation of hidden layer. 

This network is achieving maximal performances after 

only 243 training  process iterations, what is 12 times 

less comparing to  Basic Quasi – Newton method. 

Obtained results from th is type of neural network and 

results from real levitation system are shown in Fig. 7. 
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Fig. 7: Response of real (1) and simulated (2) system 

 

Deviation graphs of two represented learning 

algorithms are shown in Figs. 8 and 9. It is considered 

that zero positions (on vertical axes) are values obtained 

from real magnetic levitation system. Results are 

showing that errors which occur are less than 1mm 

during whole simulation process which can be 

considered as good experimental results.  
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Fig. 8: Network deviations for Quasi – Newton training method 

 

 

Fig. 9: Network deviations for Backpropagation training method 

 

Based on experimental results , we can conclude that 

NARX neural network (with appropriate training 

process and optimal number of neurons in the hidden 

layer) can simulate real magnetic levitator adequately 

enough. In this specific case, system response is shown 

as the change of the ball position regarding to the 

current which  is powering electromagnetic coil. 

Voltages on coil and ball velocity during levitation 

process could be also used as experimental parameters. 

 

VI. Conclusion 

Neural network has a great potential for doing many 

simulation tasks, when right physical structure is 

selected and training process performed successfully. In 

this paper neural network which can simulate h ighly 

nonlinear magnetic levitation system is described. 

Because of that, there is no need for having expensive 

magnetic lev itation system and neural network is good 

enough for simulation purposes. Network training 

process is of a great importance, because if good 

training method is chosen then there will be high 

possibility for good optimizat ion and faster learning 

procedures. Two training procedures which are 

obtaining better results comparing to other training 

types mentioned in this paper are also represented. 

Nonlinear autoregressive network can be successfully 

used in complex systems, high nonlinear systems, 

systems where pred ictive neural network performances 

can be expressed. 
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