IJISA Vol. 5, No. 7, 8 Jun. 2013
Cover page and Table of Contents: PDF (size: 527KB)
Full Text (PDF, 527KB), PP.50-56
Views: 0 Downloads: 0
Uncertain Nonlinear Systems, Evolutionary Algorithm, Classical Control, Sliding Mode Controller, Robot Manipulator, Colonial Competitive Algorithm, Optimization
One of the best nonlinear robust controllers which can be used in uncertain nonlinear systems is sliding mode controller (SMC), but pure SMC results in chattering in a noisy environment. This effect can be eliminated by optimizing the sliding surface slope. This paper investigates a novel methodology in designing a SMC by a new heuristic search, so called "colonial competitive algorithm "in order to tune the sliding surface slope and the switching gain of the discontinuous part in SMC structure. This process decreases the integral of absolute errors which results in tracking the desired inputs by the outputs in designing a controller for robot manipulator. Simulation results prove that the optimized performance obtained through CCA significantly reduces the chattering phenomena and results in better trajectory tracking compared to typical trial and error methods.
Amin Jalali, Farzin Piltan, Maziyar Keshtgar, Meysam Jalali, "Colonial Competitive Optimization Sliding Mode Controller with Application to Robot Manipulator", International Journal of Intelligent Systems and Applications(IJISA), vol.5, no.7, pp.50-56, 2013. DOI:10.5815/ijisa.2013.07.07
[1]Utkin, I.V., 1977. Variable structure systems with sliding modes, IEEE. Trans. Auto. Control, 22(2): 2121-222.
[2]H. Elmali and N. Olga, Robust output tracking control of nonlinear MIMO systems via sliding mode technique, Automatica 28 (1992) 145-151.
[3]C.L. Hwang and C.H.Lan, the position control of electrohydraulic servomechanism via a novel variable structure control, Mechatronic 4 (1994) 369-391.
[4]J.-J.E. Slotine, Sliding controller design for nonlinear systems, International Journal of Control 40 (2) (1984) 421–434.
[5]T. R. Kurfess, Robotics and automation handbook: CRC, 2005.
[6]B. Siciliano and O. Khatib, Springer handbook of robotics: Springer-Verlag New York Inc, 2008.
[7]OKYAY KAYNAK., 2001. Guest Editorial Special Section on Computationally Intelligent Methodologies and Sliding-Mode Control. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 48(1): 2-3.
[8]Piltan, F., et al.,Design Sliding Mode Controller for RobotManipulator withArtificialTunable Gain, Canadian Pure and Applied Sciences, Vol.5,No.2,pp.1573-1579,June 2011.
[9]Piltan, F., et al.,Artificial ControlofNonlinearSecondOrderSystems BasedonAFGSMC, AustralianJournalof Basic andApplied Sciences, 5(6):509-522,2011.
[10]The Berkeley Institute in Soft Computing. [Online] Available:http://www-bisc.cs.berkeley.edu
[11]Xinghuo Yu, Fellow, IEEE, and O. Kaynak, Fellow, IEEE, Sliding-Mode Control with Soft Computing: A Survey, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 9, SEPTEMBER 2009.
[12]A. Sabanovic, K, Jezernik and O. Kaynak, Chattering free sliding modes in robotic manipulators control, Mechatronics 1 (1) (1994).
[13]E.Atashpaz-Gargari, C. Lucas, Imperialist Competitive Algorithm: An Algorithm for Optimization Inspires by Imperialistic Competition,2007 IEEE Congress on Evolutionary Computation, Sigapore, 2007.
[14]E.tashpaz-Gargari, C. Lucas, "Colonial Competitive Algorithm: A Socio-Politically Inspired Optimization Strategy,IEEE transaction on Evolutionary Computation.
[15]Brian Armstrong, OussamaKhatib& Joel Burdick , “The Explicit Dynamic Model and Inertial Parameters of the PUMA 560Arm” , Stanford University, Artificial Intelligence Laboratory, IEEE 1986.
[16]Slotine, J.J.E. and J.A. Coetsee, 1986. Adaptive sliding controller synthesis for nonlinear systems, Int. J. Control, 43(6): 1631-1651.
[17]Slotine, J.J.E. and W. Li, 1987. On the adaptive control of robot manipulators, Int. J. Robotics research, 6(3): 49-59.
[18]Armstrong, B., Khatib, O. and Burdick, J. 2002. The Explicit Dynamic Model and Inertial Parameters of the PUMA 560 Arm. IEEE, 510-518.
[19]ZHANG D. Q. and Panda S. K. Chattering-free and fast response sliding mode controller. IEE Proceedings-D:Theory and Applications, 1999, 146: 171-177.
[20]Wang, L.X., 1993. Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy systems, 1(2): 146-154.
[21]SPONG M W, VIDIASAGAR M. Robot Dynamics and Control, Wiley, New York, 1989.
[22]Abdel-Razzak MERHEB, “Nonlinear Control Algorithms applied to 3 DOF PUMA Robot”, METU 2008.
[23]The Hutchinson Dictionary of World History, Oxford: Helicon Publishing, 1999.
[24]R. R. Palmer, “A History of the Modern World”, New York: Alfred A. Knopf, 1964, ©1956.
[25]Piltan, F., et al.,Design of Model Free Adaptive Fuzzy Computed Torque Controller: Applied to Nonlinear Second Order System,International Journal of Robotics and Automation (IJRA), Volume (2): Issue (4): 2011.
[26]Piltan, F., et al.,Design of PC-Based Sliding Mode Controller and Normalized Sliding Surface Slope Using PSO Method for Robot Manipulator, International Journal of Robotics and Automation (IJRA), Volume (2): Issue (4): 2011.
[27]Piltan, F., et al.,Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modified PSO SISO Lyapunov Based Fuzzy Sliding Mode Algorithm,International Journal of Robotics and Automation (IJRA): Volume (2): Issue (5): 2011.
[28]Piltan, F., et al.,Evolutionary Design of Mathematical Tunable FPGA Based MIMO Fuzzy Estimator Sliding Mode Based LyapunovAlgorithm: Applied to Robot Manipulator,” International Journal of Robotics and Automation (IJRA), Volume (2): Issue (5): 2011.
[29]Piltan, F., et al.,Artificial Robust Control of Robot Arm: Design a Novel SISO Back-stepping Adaptive Lyapunov Based Variable Structure Control,International Journal of Control and Automation (IJCA): Vol. 4 No. 4, December, 2011.
[30]Piltan, F., et al., 2011. Design Artificial Nonlinear Robust Controller Based on CTLC and FSMC with Tunable Gain, International Journal of Robotic and Automation, 2 (3): 205-220.
[31]Piltan, F., et al., 2011. Design Mathematical Tunable Gain PID-Like Sliding Mode Fuzzy Controller with MinimumRule Base, International Journal of Robotic and Automation, 2 (3): 146-156.