INFORMATION CHANGE THE WORLD

International Journal of Intelligent Systems and Applications(IJISA)

ISSN: 2074-904X (Print), ISSN: 2074-9058 (Online)

Published By: MECS Press

IJISA Vol.6, No.11, Oct. 2014

Color and Local Maximum Edge Patterns Histogram for Content Based Image Retrieval

Full Text (PDF, 1190KB), PP.66-74


Views:201   Downloads:2

Author(s)

K. Prasanthi Jasmine, P. Rajesh Kumar

Index Terms

Color; Texture; Feature Extraction; Local Binary Patterns; Local Maximum Edge Binary Patterns; Image Retrieval

Abstract

In this paper, HSV color local maximum edge binary patterns (LMEBP) histogram and LMEBP joint histogram are integrated for content based image retrieval (CBIR). The local HSV region of image is represented by LMEBP, which are evaluated by taking into consideration the magnitude of local difference between the center pixel and its neighbors. This LMEBP differs from the existing LBP in a manner that it extracts the information based on distribution of edges in an image. Further the joint histogram is constructed between uniform two rotational invariant first three LMEBP patterns. The color feature is extracted by calculating the histogram on Hue (H), Saturation (S) and LMEBP histogram on Value (V) spaces. The feature vector of the system is constructed by integrating HSV LMEBP histograms and LMEBP joint histograms. The experimentation has been carried out for proving the worth of our algorithm. It is further mentioned that the databases considered for experiment are Corel-1K and Corel-5K. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to previously available spatial and transform domain methods on their respective databases.

Cite This Paper

K. Prasanthi Jasmine, P. Rajesh Kumar,"Color and Local Maximum Edge Patterns Histogram for Content Based Image Retrieval", International Journal of Intelligent Systems and Applications(IJISA), vol.6, no.11, pp.66-74, 2014. DOI: 10.5815/ijisa.2014.11.09

Reference

[1]Y. Rui and T. S. Huang, Image retrieval: Current techniques, promising directions and open issues, J.. Vis. Commun. Image Represent., 10 (1999) 39–62.

[2]A. W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, Content-based image retrieval at the end of the early years, IEEE Trans. Pattern Anal. Mach. Intell., 22 (12) 1349–1380, 2000.

[3]M. Kokare, B. N. Chatterji, P. K. Biswas, A survey on current content based image retrieval methods, IETE J. Res., 48 (3&4) 261–271, 2002.

[4]Ying Liu, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, Asurvey of content-based image retrieval with high-level semantics, Elsevier J. Pattern Recognition, 40, 262-282, 2007.

[5]J. R. Smith and S. F. Chang, Automated binary texture feature sets for image retrieval, Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Columbia Univ., New York, (1996) 2239–2242.

[6]H. A. Moghaddam, T. T. Khajoie, A. H Rouhi and M. Saadatmand T., Wavelet Correlogram: A new approach for image indexing and retrieval, Elsevier J. Pattern Recognition, 38 (2005) 2506-2518.

[7]H. A. Moghaddam and M. Saadatmand T., Gabor wavelet Correlogram Algorithm for Image Indexing and Retrieval, 18th Int. Conf. Pattern Recognition, K.N. Toosi Univ. of Technol., Tehran, Iran, (2006) 925-928.

[8]A. Ahmadian, A. Mostafa, An Efficient Texture Classification Algorithm using Gabor wavelet, 25th Annual international conf. of the IEEE EMBS, Cancun, Mexico, (2003) 930-933.

[9]H. A. Moghaddam, T. T. Khajoie and A. H. Rouhi, A New Algorithm for Image Indexing and Retrieval Using Wavelet Correlogram, Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, 2 (2003) 497-500.

[10]M. Saadatmand T. and H. A. Moghaddam, Enhanced Wavelet Correlogram Methods for Image Indexing and Retrieval, IEEE Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, (2005) 541-544.

[11]M. Saadatmand T. and H. A. Moghaddam, A Novel Evolutionary Approach for Optimizing Content Based Image Retrieval, IEEE Trans. Systems, Man, and Cybernetics, 37 (1) (2007) 139-153.

[12]L. Birgale, M. Kokare, D. Doye, Color and Texture Features for Content Based Image Retrieval, International Conf. Computer Grafics, Image and Visualisation, Washington, DC, USA, (2006) 146 – 149.

[13]M. Subrahmanyam, A. B. Gonde and R. P. Maheshwari, Color and Texture Features for Image Indexing and Retrieval, IEEE Int. Advance Computing Conf., Patial, India, (2009) 1411-1416.

[14]Subrahmanyam Murala, R. P. Maheshwari, R. Balasubramanian, A Correlogram Algorithm for Image Indexing and Retrieval Using Wavelet and Rotated Wavelet Filters, Int. J. Signal and Imaging Systems Engineering.

[15]D.G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, Int. J. Computer Vision, 60 (2) (2004) 91–110.

[16]N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, IEEE Conf. Computer Vision and Pattern Recognition (CVPR), INRIA Rhone-Alps, Montbonnot, France, 2 (2005) 886–893.

[17]T. Ojala, M. Pietikainen, D. Harwood, A comparative sudy of texture measures with classification based on feature distributions, Elsevier J. Pattern Recognition, 29 (1): 51-59, 1996.

[18]T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (7): 971-987, 2002.

[19]M. Pietikainen, T. Ojala, T. Scruggs, K. W. Bowyer, C. Jin, K. Hoffman, J. Marques, M. Jacsik, W. Worek, Overview of the face recognition using feature distributions, Elsevier J. Pattern Recognition, 33 (1): 43-52, 2000.

[20]T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary patterns: Applications to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28 (12): 2037-2041, 2006.

[21]G. Zhao, M. Pietikainen, Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell., 29 (6): 915-928, 2007.

[22]M. Heikkil;a, M. Pietikainen, A texture based method for modeling the background and detecting moving objects, IEEE Trans. Pattern Anal. Mach. Intell., 28 (4): 657-662, 2006.

[23]X. Huang, S. Z. Li, Y. Wang, Shape localization based on statistical method using extended local binary patterns, Proc. Inter. Conf. Image and Graphics, 184-187, 2004.

[24]M. Heikkila, M. Pietikainen, C. Schmid, Description of interest regions with local binary patterns, Elsevie J. Pattern recognition, 42: 425-436, 2009.

[25]M. Li, R. C. Staunton, Optimum Gabor filter design and local binary patterns for texture segmentation, Elsevie J. Pattern recognition, 29: 664-672, 2008.

[26]B. Zhang, Y. Gao, S. Zhao, J. Liu, Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor, IEEE Trans. Image Proc., 19 (2): 533-544, 2010.

[27]A. Abdullah, R. C. Veltkamp and M. A. Wiering, Fixed Partitioning and salient points with MPEG-7 cluster correlogram for image categorization, Pattern Recognition, 43, (2010) 650-662.

[28]N. Jhanwara, S. Chaudhuri, G. Seetharamanc, and B. Zavidovique, Content based image retrieval using motif co-occurrence matrix, Image and Vision Computing 22, (2004) 1211–1220.

[29]C H Lin, Chen R T, Chan Y K A., Smart content-based image retrieval system based on color and texture feature, Image and Vision Computing 27 (2009) 658-665.

[30]Subrahmanyam Murala, R. P. Maheshwari, R. Balasubramanian, “Local Maximum Edge Binary Patterns: A New Descriptor for Image Retrieval and Object Tracking,” Signal Processing, vol. 92, pp. 1467–1479, 2012. 

[31]Subrahmanyam Murala, Maheshwari R.P., Balasubramanian R., Directional binary wavelet patterns for biomedical image indexing and retrieval, Proc. J. Med. Syst. doi:10.1007/s10916-011-9764-4.

[32]Marko Heikkil, MattiPietikainen, and Cordelia Schmid, Description of interest regions with local binary patterns, Pattern Recognition, 42: 425–436, 2009.

[33]Cheng-Hao Yao, Shu-Yuan Chen, Retrieval of translated, rotated and scaled color textures, Pattern Recognition, 36: 913 – 929, 2003.

[34]Valtteri Takala, Timo Ahonen, and Matti Pietikainen, Block-Based Methods for Image Retrieval Using Local Binary Patterns, SCIA 2005, LNCS 3450: 882–891, 2005.

[35]Corel–1K image database. [Online]. Available: http://wang.ist.psu.edu/docs/rela-ted.shtml.