IJISA Vol. 6, No. 6, 8 May 2014
Cover page and Table of Contents: PDF (size: 758KB)
Full Text (PDF, 758KB), PP.46-52
Views: 0 Downloads: 0
Rise Feedback, Chaos, Duffing System, Genesio-Tesi System
In this paper a new RISE controller is gained to control chaos in a tracking task. The technique copes with the chattering phenomenon whilst works for different classes of nonlinear systems incorporating different relative degrees. This control strategy will be primarily implemented on a Duffing chaotic system. In order to assess performance of the controller, the technique will be implemented on a more complex system, so called Genesio-Tesi dynamic. The result will be finally compared with an optimal controller. The capability of the proposed feedback technique to control the chaos is verified through simulation study with respect to similar classic approaches.
Milad Malekzadeh, Abolfazl Ranjbar Noei, Alireza Khosravi, Reza Ghaderi, "Application of the Rise Feedback Control in Chaotic Systems", International Journal of Intelligent Systems and Applications(IJISA), vol.6, no.6, pp.46-52, 2014. DOI:10.5815/ijisa.2014.06.05
[1]Hunt ER, “Stabilizing high-period orbits in a chaotic systems: the diode resonator”, phys Rev Lett,, 1991. Vol. 67, pp. 1953–1955.
[2]Garfinkel A, Spano ML,Ditto WL,Weiss JN, “Controlling cardiac chaos”, Science, 1992. Vol. 257, pp. 1230–1235.
[3]Roy R, Murphy TW, Maier TD, Gills Z, Hunt ER, “Dynamical control of a chaotic laser:experimental stabilization of a globally coupled system”, phys Rev Lett, 1992. Vol. 68, pp. 1259–1262.
[4]Ott E,Grebogi C, Yorje JA. , “Controlling chaos”, phys Rev Lett, Vol. 64, 1990, pp. 1196-1199.
[5]Yassen MT., “Adaptive control and synchronization of modified Chua’s circuit system”, Appl Math Comp, 2003,Vol. 135, pp. 113–128.
[6]Liao T-L, Lin S-H. , “Adaptive control and synchronization of Lorenz systems”, J Franklin Inst, 1999,Vol. 336, pp. 925-937
[7]LU J, Zhang S., “Controlling chen’s chaotic attractor using backstepping design based on parameters identification”, phys Lett A, 2001,Vol. 286, pp. 148–152.
[8]B. Xian, D. M. Dawson, M. S. de Queiroz and J. Chen, “A continues asymptotic tracking control strategy for uncertain nonlinear systems”, IEEE Trans. Auto. Ctrl, Vol 49, no 7, pp 1206-1211,2004.
[9]Levant, “Sliding order and sliding accuracy in sliding mode control”, International journal of control ,Vol 58, pp 1247-1263,1993
[10]Parag M. Patre,William MacKunis, Kent Kaiser and Warren E. Dixon, “Asymptotic tracking for uncertain dynamic systems via multilayer neural network fedforward and rise feedback control structure”, IEEE Trans. Auto. Ctrl, Vol 53, no 9, pp 2180-2185, 2004.
[11]Travis Dierks, S. Jagannathan, “Neural network control of mobile robot formations using rise feedback”, IEEE Trans. On systems, Man, and Cybernetics-Part B: Cybernetics, Vol 39, no 2, pp 332-347,2009.
[12]Jongho Shin, H. Jin Kim,Youdan Kim and Warren E. Dixon, “Autonomous flight of rotorcraft based UAV using rise feedback and NN feedforward terms”, IEEE Trans on Ctrl systems tech. , Vol 20, no 5, pp 1392-1399,2012.
[13]Wang Jiang,QiaoGuo-Dong,Deng Bin, “Observer-based robust adaptive variable universe fuzzy control for chaotic system”, Chaos, Solitons and Fractals. , Vol 23, pp 1013-1032,2005.
[14]Ercan Solak, Omer Morgul, Umut Ersoy “Observer-based control of a class of chaotic systems”, phys Lett,Vol. 279 , pp. 47–55, 2001.
[15]Jianxiong Zhang and Wansheng Tang, “Optimal control for a class of chaotic systems”, journal of applied mathematics, Hindawi, Vol. 2012.