Image Superresolution via Divergence Matrix and Automatic Detection of Crossover

Full Text (PDF, 623KB), PP.1-8

Views: 0 Downloads: 0

Author(s)

Dmytro Peleshko 1,* Taras Rak 2 Ivan Izonin 1

1. Lviv Polytechnic National University / Department of Publishing Information Technologies, Lviv, 79013, Ukraine

2. Lviv State University of Life Safety, Lviv, 79013, Ukraine

* Corresponding author.

DOI: https://doi.org/10.5815/ijisa.2016.12.01

Received: 11 Feb. 2016 / Revised: 17 Jun. 2016 / Accepted: 5 Sep. 2016 / Published: 8 Dec. 2016

Index Terms

Superresolution, similarity measure, crossover operations, automatic detection, aggregate divergence matrix

Abstract

The paper describes the image superresolution method with aggregate divergence matrix and automatic detection of crossover. Formulation of the problem, building extreme optimization task and its solution for solving the automation determination of the crossover coefficient is presented. Different ways for building oversampling images algorithms based on the proposed method are shows. Based on practical experiments shows the effectiveness of the procedure of automatically the determination of the crossover coefficient. Experimentally established the effectiveness of the procedures oversampling images at high zoom resolution by the developed method.

Cite This Paper

Dmytro Peleshko, Taras Rak, Ivan Izonin, "Image Superresolution via Divergence Matrix and Automatic Detection of Crossover", International Journal of Intelligent Systems and Applications (IJISA), Vol.8, No.12, pp.1-8, 2016. DOI:10.5815/ijisa.2016.12.01

Reference

[1]Iu. M. Rashkevych, I.V. Izonin, D.D. Peleshko, I.O. Malets “Zmina rozdilnoi zdatnosti zobrazhennia zasobom psevdoobertannia vyrodzhenoho matrychnoho operatora vidnosnykh symetrychnykh mir konverhentsii”, in Bulletin of the Lviv Polytechnic National University, Computer Science and Information Technology, № 826, pp. 259–266, 2015 (in Ukrainian)
[2]Dmytro Peleshko, Taras Rak, Marta Peleshko, Ivan Izonin, and Danylo Batyuk “Two-frames image superresolution based on the aggregate divergence matrix”, Data stream Mining & Processing: proc. of the 1st international scien. and techn. conf., 23–27 August 2016, Lviv, Ukraine: Lviv Polytechnic Publishing House, 2016, pp. 235–238. doi: 10.1109/DSMP.2016.7583548
[3]R. Penrose “A generalized inverse for matrices”, in Proceedings of the Cambridge Philosophical Society 51, pp. 406-413, 1955.
[4]Yevgeniy V. Bodyanskiy, Elena A. Vynokurova, Artem I. Dolotov "Self-Learning сascade spiking neural network
for fuzzy clustering based on group method of data handling" in Journal of Automation and Information Sciences, vol 45, № 3, pp. 23-33, 2013.
[5]Semkyn, B. Y. and Dvoichenkov, B. Y. (1973) "Ob tkvyvalentnosty mer skhodstva y razlychyia" Yssledovanye system. T. 1: Analyz slozhnykh system, Vol 1, pp. 45-76. (in Russian)
[6]Kliushyn, D.A. and Petunyn, Iu.I. (2003) “Neparametrycheskyi kryteryi ekvyvalentnosty heneralnykh sovokupnostei, osnovannyi na mere blyzosty mezhdu vyborkamy”, in Ukrainskyi matematychnyi zhurnal [Ukrainian Mathematical Journal], V.5, № 2, pp.147– 163. (in Ukrainian)
[7]Kulczinsky, S. (1927) “Zespoly, rуslin w Pienach”, Bull. intern. acad. polon. sci. lett. Cl. sci. math. natur., Ser. B, S.2. pp. 241—272.
[8]Ochiai, A. (1957) “Zoogeographical studies on the soleoid fishes found Japan and its neighboring regions. II”, Bull. Jap. Soc. sci. Fish., Vol. 22, № 9, pp. 526—530.
[9]Sorensen, T. (1948) “A method of establishing groups of equal amplitude in plant sociology based on similarity of species content”, Kongelige Danske Videnskabernes Selskab. Biol. Krifter, № 4, pp. 1-34.
[10]Braun–Blanquet, J. (1951) “Pflanzensoziologie:Grundzge der Vegetationskunde», Berlin: Springer–Verlag WIEN GMBN, 530 p.
[11]Simpson G.G. (1947) “Holarctic mammalian faunas and continental relationship during the Cenozoic”, Bull. Geol. Sci. America, Vol. 58, pp. 613-688.
[12]Szymkiewicz, D. (1934) “Une contribution statistique a la geographie floristique”, Acta Soc. Bot. Polon, Vol. 34, № 3, pp. 249—265.
[13]Sѐmkyn, B. Y. (2007) “Kolychestvennыe pokazately dlia otsenky odnostoronnykh florystycheskykh sviazei, predlozhennыkh B. A. Yurtsevym”, Bot. Zh, V. 92, pp. 114–127.
[14]Superresolution. Electronic resource: http://www.wikiwand.com/en/Superresolution.
[15]K. Nasrollahi and T.B. Moeslund “Super-resolution: a comprehensive survey”, in Machine Vision and Applications, Vol. 25, № 6, pp. 1423–1468, 2014.
[16]I. Izonin, R. Tkachenko, D. Peleshko, T. Rak and D. Batyuk, "Learning-based image super-resolution using weight coefficients of synaptic connections," Scientific and Technical Conference "Computer Sciences and Information Technologies" (CSIT), 2015 Xth International, Lviv, 2015, pp. 25-29. doi: 10.1109/STC-CSIT.2015.7325423
[17]D. Glasner, S. Bagon and M. Irani “Super-Resolution from a Single Image” in Computer Vision: proc. of 12-th intern. conf., Kyoto, 27 Sept. – 4 Oct. 2009, IEEE, pp. 349 – 356.
[18]K. Nasrollahi and T.B. Moeslund “Super-resolution: a comprehensive survey”, in Machine Vision and Applications, Vol. 25, № 6, pp. 1423–1468, 2014.
[19]M. Elad and A. “Feuer Restoration of a single super-resolution image from several blurred, noisy and down-sampled measured images” in IEEE Transactions on Image Processing, Vol. 6, № 12, pp. 1646–1658, 1997
[20]A. J. Patti, Y. Altunbasak “Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolation”, in IEEE Transaction on Image Processing, Vol. 10, № 1, pp. 179–186, 2001
[21]A. J. Patti, M. Sezan, and A. M. Tekalp “Robust methods for high quality stills from interlaced video in the presence of dominant motion”, in IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7, № 2, pp. 328-342, 1997
[22]Wanqiang Shen, Lincong Fang, Xiang Chen, Honglin Xu “Projection onto Convex Sets Method in Spacefrequency Domain for Super Resolution”, in Journal of computers, Vol. 9, № 8, pp. 1959–1966, 2014
[23]Y. W. Tai, W. S. Tong, and C. K. Tang “Perceptually-inspired and edge-directed color image super-resolution”, in Computer Vision and Pattern Recognition: proc. of intern. conf, New York, 17 – 22 June 2006, Los Alamitos: IEEE CS, 2006, Vol. 2., pp. 1948-1955.
[24]Zhifei Tang, Deng M., Chuangbai Xiao and Jing Yu “Projection onto convex sets super-resolution image reconstruction based on wavelet bi-cubic interpolation”, in Electronic and Mechanical Engineering and Information Technology (EMEIT): proc. of intern. conf., Harbin, 12-14 Aug. 2011, IEEE Press, 2011, Vol. 2, pp. 351 - 354.
[25]Frederick W. Wheeler, Ralph T. Hoctor and Eamon B. Barrett “Super-Resolution Image Synthesis using Projections onto Convex Sets in the Frequency Domain”, in Computational Imaging, Electronic Imaging Symposium, : proc. of intern. conf., San Jose, January 2005, Vol. 5, pp. 479-490.
[26]S. Cain, R. C. Hardie, and E. E. Armstrong “Restoration of aliased video sequences via a maximum-likelihood approach”, in Passive Sensors: proc. of nat. infrared inform. symp., Monterey, Mar. 1996, pp. 377–390.
[27]Wanqiang Shen, Lincong Fang, Xiang Chen, Honglin Xu “Projection onto convex sets method in spacefrequency domain for super resolution”, in Journal of computers, Vol. 9, № 8, pp. 1959–1966, 2014.
[28]Zhifei Tang, Deng M., Chuangbai Xiao, Jing Yu “Projection onto convex sets super–resolution image reconstruction based on wavelet bi–cubic interpolation” in Electronic and Mechanical Engineering and Information Technology (EMEIT): proc. of intern. conf., Harbin, Vol. 2, P. 351 – 354, 2011.