Mathematical Modeling of the Process of Vibration Protection in a System with two-mass Damper Pendulum

Full Text (PDF, 399KB), PP.18-25

Views: 0 Downloads: 0

Author(s)

Zhengbing Hu 1,* V.P.Legeza 2 I.A. Dychka 2 D.V.Legeza 3

1. School of Educational Information Technology, Central China Normal University, Wuhan, China

2. Faculty of Applied Mathematics, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Ukraine

3. Powerhouse, part of Essent Energy Group, Netherlands

* Corresponding author.

DOI: https://doi.org/10.5815/ijisa.2017.03.03

Received: 28 May 2016 / Revised: 5 Oct. 2016 / Accepted: 2 Dec. 2016 / Published: 8 Mar. 2017

Index Terms

Damping System, Two-Mass Damper Pendulum, Amplitude-Frequency Characteristic (AFC), Parameters Absorber Settings

Abstract

We analyzed the dynamic behavior of the damping system with a two-mass damper pendulum. The equations of motion of nonlinear systems were built. AFC equation systems have been identified in the linear formulation. Proposed and implemented a new numerical method of determining the optimum parameters of optimal settings two-mass damper.

Cite This Paper

Zhengbing Hu, V.P.Legeza, I.A.Dychka, D.V.Legeza,"Mathematical Modeling of the Process of Vibration Protection in a System with two-mass Damper Pendulum", International Journal of Intelligent Systems and Applications (IJISA), Vol.9, No.3, pp.18-25, 2017. DOI: 10.5815/ijisa.2017.03.03

Reference

[1]Chang C.C. Mass dampers and their optimal designs for building vibration control // Eng. Struct. – 1999. – 21. – P. 454 – 463.
[2] Damping methods to mitigate wind-induced vibrations // J. Struct. Mech. – 2009. – 42, N1. – P. 38 – 47.
[3]Kwok K.C.S. Damping increase in building with tuned mass damper // ASCE J. Eng. Mech. – 1984. – 110, N11. – P. 1645 – 1649.
[4]Korenev B.G., Reznikov L.M. Dynamic Vibration Absorbers – Theory and Technical Applications. Chichester. “John Willey and Sons”. – 1993. – 296 p.
[5]Legeza V.P. The theory of vibration protection systems using isochronous roller dampers (models, methods, dynamic analysis, technical solutions) (in Russian). – Saarbrücken (Deutschland): LAMBERT Academic Publishing, 2013. – 116 p.
[6]Mead D.J. Passive vibration control. – New York: J. Wiley & Sons, 1999. – 540 p.
[7]Naprstek J., Fisher C., Pirner M., Fisher O. Non-linear dynamic behavior of a ball vibration absorber // 3rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2011). Corfu, Greece, 26 – 28 May 2011. – P. 1 – 14.
[8]Ogawa K., Sakai F., Hayashi K. Development of impact mass damper and its applications to tower structure // Kawasaki Technical Review. – 1991. – N108. – P. 84 – 89.
[9]Pirner M. Actual Behaviour of a Ball Vibration Absorber // Wind Engineering and Industrial Aerodynamics, 2002, Vol. 90, №8. – P. 987 – 1005.
[10]Simiu E., Scanlan R.H. Wind effects on structures: Fundamentals and applications to design, 3th Edition. – John Wiley (N.Y.), 1996. – 688 p.
[11]Snowdon J. C. Vibration and shock in damped mechanical systems. – John Wiley (N.Y.), 1968. – 473 p.
[12]Danilin A.N., Shklarchuk F.N., Lilien J.-L., Snegovski D.V., Vinogradov A.A., Djamanbayev M.A. Nonlinear Aeroelastic Vibrations and Galloping of Iced Conductor Lines under Wind // 7th Intern. Symp. On Cable Dynamics. Vienna (Austria), 10–13 Decemder 2007. – P. 129 – 134.
[13]Den Hartog J.P. Transmission line’s vibrations due to sleet // Transactions AIEE. 1932. V.51. – P.1074 – 1076.
[14]Den Hartog J.P. Mechanical Vibrations. McGraw-Hill, New York, 1956. –436 p.
[15]EPRI Transmission line reference book. Wind-induced Conductor motion. Electric Power Research Institute: Final Report, November, 2006.
[16]Keutgen R., Lilien J.-L. A new damper to solve galloping on bundled lines. Theoretical background, laboratory and field results // IEEE Transactions on Power Delivery, 1998, Vol.13, №1. – P. 260– 265.
[17]Lilien J.-L., Snegovski D. Hurricane Simulation on Power Transmission Line // Proc. Vth Cable Dynamics Symp., Santa Margherita. 2003. – P. 313 – 318.
[18]Lilien J.-L., Snegovski D. Wake–Induced Vibration of Power Transmission Line: Parametric Study // Proc. 8th Conf. on Flow-Induced, Paris, 2004. – P. 421 – 425.
[19]State of the art of conductor galloping. CIGRE Technical Brochure 322. Task force B2.11.06. Convenor Lilien J.-L. June 2007. – 140 p.
[20]Li J., Zhang Z., Chen J. Experimental Study on Vibration Control of Offshore Wind Turbines Using a Ball Vibration Absorber // J. Energy and Power Engineering, 2012, № 4. – P. 153 – 157.
[21]Zhang Z.-L., Chen J.-B., Li J. Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber // Structure and Infrastructure Engineering, Taylor & Francis, 2014, Vol. 10, № 8. – P. 1087 – 1100.
[22]Zhang Z.-L., Li J., Nielsen S.R.K., Basu B. Mitigation of edgewise vibrations in wind turbine blades by means of roller dampers // J. of Sound and Vibration, 2014, Vol. 333, Vol. 21. – P. 5283 – 5298.
[23]Achkire Y., Bossens F., Preumont A. Active damping and flutter control of cable-stayed bridges // J. of Wind Engineering and Industrial Aerodynamics. – 1998, Vol. 74–76. – P. 913–921.
[24]Lilien J.-L., Da Costa A.P. Vibration amplitudes caused by parametric excitation of cable stayed structures // Journal of Sound and Vibration, 1994, Vol. 174, №1. – P. 69 – 90.
[25]Pirner M., Fischer O. One prototype of the ball absorber and its effect on the tower // Int. Association for Shell and Spatial Struct. Proc. Working Group IV Masts and Towers. 19th Meeting in Krakow, Poland, September, 1999. – P. 187–196.
[26]Pirner M., Fischer O. The development of a ball vibration absorber for the use on towers // IASS, Jour. Of the Int. Association for shell and spatial structures, 2000, Vol. 41, №2. – P. 91 – 99.
[27]Abe M., Fujino Y. Dynamic characterization of multiple tuned mass and same design formulas // Int. J. Earthquake Eng. and Struct. Dyn. – 1994. – 23. – P. 813 – 835.
[28]Fujino Y., Abe M. Design formulas for tuned mass damper based on a perturbation technique // Int. J. Earthquake Eng. and Struct. Dyn. – 1993. – 22. – P. 833 – 854.
[29]Legeza V.P. Cycloidal Pendulum with a Rolling Cylinder // Mechanics of Solids. – 2012, Vol. 47, №4. – P. 380 – 384.
[30]Legeza V.P. Brachistochrone for a rolling cylinder // Mechanics of Solids. – 2010. Vol. 45, №1. – P. 27 – 33.
[31]Legeza V.P. Efficiency of a Vibroprotection System with an Isochronous Roller Damper // Mechanics of Solids, 2013. Vol. 48, №2. – P. 168 – 177.
[32]Weaver W., Timoshenko S.P., Young D.H. Vibration Problems in Engineering, 5th Edition. – John Wiley (N.Y.), 1990. – 624 p.
[33]Xu Y.L., Kwok K.C.S. Semianalytical method for parametric study of tuned mass damper // ASCE J. Struct. Eng. – 1994. – 120, N3. – P. 747 – 764.