International Journal of Intelligent Systems and Applications (IJISA)

IJISA Vol. 11, No. 8, Aug. 2019

Cover page and Table of Contents: PDF (size: 186KB)

Table Of Contents

REGULAR PAPERS

Structural Transformations of Incoming Signal by a Single Nonlinear Oscillatory Neuron or by an Artificial Nonlinear Neural Network

By Roman Peleshchak Vasyl Lytvyn Oksana Bihun Ivan Peleshchak

DOI: https://doi.org/10.5815/ijisa.2019.08.01, Pub. Date: 8 Aug. 2019

Structural transformations of incoming informational signal by a single nonlinear oscillatory neuron or an artificial nonlinear neural network are investigated. The neurons are modeled as threshold devices so that the artificial nonlinear neural network under consideration are systems of nonlinear van der Pol type oscillatory neurons. The neurons are coupled by synaptic weight coefficients to endow the systems with the configuration topology of a chain or a ring. It is shown that the morphology of the outgoing signal – with respect to the shape, amplitude and time dependence of the instantaneous frequency of the signal – at the output of such a neural network has a higher degree of stochasticity than the morphology of the signal at the output of a single neuron. We conclude that the process of coding by a single neuron or an entire chain-like or circular neural network may be considered in terms of frequency modulations, which are known in Physics as a way to transmit information. We conjecture that frequency modulations constitute one of the ways of coding of information by the neurons in these types of neural networks.

[...] Read more.
Sugarcane Crop Yield Forecasting Model Using Supervised Machine Learning

By Ramesh A. Medar Vijay S. Rajpurohit Anand M. Ambekar

DOI: https://doi.org/10.5815/ijisa.2019.08.02, Pub. Date: 8 Aug. 2019

Agriculture is the most important sector in the Indian economy and contributes 18% of Gross Domestic Product (GDP). India is the second largest producer of sugarcane crop and produces about 20% of the world's sugarcane. In this paper, a novel approach to sugarcane yield forecasting in Karnataka(India) region using Long-Term-Time-Series (LTTS), Weather-and-soil attributes, Normalized Vegetation Index(NDVI) and Supervised machine learning(SML) algorithms have been proposed. Sugarcane Cultivation Life Cycle (SCLC) in Karnataka(India) region is about 12 months, with plantation beginning at three different seasons. Our approach divides yield forecasting into three stages, i)soil-and-weather attributes are predicted for the duration of SCLC, ii)NDVI is predicted using Support Vector Machine Regression (SVR) algorithm by considering soil-and-weather attributes as input, iii)sugarcane crop is predicted using SVR by considering NDVI as input. Our approach has been verified using historical dataset and results have shown that our approach has successfully modeled soil and weather attributes prediction as 24 steps LTTS with accuracy of 85.24% for Soil Temperature given by Lasso algorithm, 85.372% accuracy for Temperature given by Naive-Bayes algorithm, accuracy for Soil Moisture is 77.46% given by Naive-Bayes, NDVI prediction with accuracy of 89.97% given by SVR-RBF, crop prediction with accuracy of 83.49% given by SVR-RBF.

[...] Read more.
Balinese Historian Chatbot using Full-Text Search and Artificial Intelligence Markup Language Method

By Kadek Teguh Wirawan I Made Sukarsa I Putu Agung Bayupati

DOI: https://doi.org/10.5815/ijisa.2019.08.03, Pub. Date: 8 Aug. 2019

In the era of technology, various information could be obtained quickly and easily. The history of Bali is one of the information that could be obtained. Balinese have known their history through Babad and stories which are told through generations. Babad is traditional-historical writing which tells important event that has happened. As technology evolves, Balinese’s interest in studying their own history has been decreased. It is caused by people interest in studying history books and chronicles tend to decrease over time. Therefore, an innovation of technology, which able to convert historical data from printed media to digital media, is needed. The technology that could be used is Chatbot technology; a computer program that could carry out conversations. Chatbot technology is used to make people learning history easily by using Instant Messenger LINE as a platform to communicate. This Chatbot uses two methods, namely the Artificial Intelligence Markup Language method and the Full-Text Search method. The Artificial Intelligence Markup Language method is used as the process of making characteristic of questions and answers. The Full-Text Search method is the process of matching answers based on user input. This chatbot only uses Indonesian to communicate. The results of this study are a Chatbot that could be accessed by using Instant Messenger LINE and could communicate like historian expert.

[...] Read more.
Forecasting of Dry Freight Index Data by Using Machine Learning Algorithms

By Kemal Akyol

DOI: https://doi.org/10.5815/ijisa.2019.08.04, Pub. Date: 8 Aug. 2019

Discovery of meaningful information from the data and design of an expert system are carried out within the frame of machine learning. Supervised learning is used commonly in practical machine learning. It includes basically two stages: a) the training data are sent to as input to the classifier algorithms, b) the performance of pre-learned algorithm is tested on the testing data. And so, knowledge discovery is carried out through the data. In this study, the analysis of Lloyd data is performed by utilizing Gradient Boosted Trees and Multi-Layer Perceptron learning algorithms. Lloyd data consist of the Baltic Dry Index, Capesize Index, Panamax Index and Supramax Index values, updated daily. Accurate prediction of these data is very important in order to eliminate the risks of commercial organization. Eight datasets from Lloyd data are obtained within the frame of two scenarios: a) the last three index values in the freight index datasets; b) the last three index values in both crude oil price and freight index datasets. The results show that the models designed with Gradient Boosted Trees and Multi-Layer Perceptron algorithms are successful for Lloyd data prediction and so proved their applicability.

[...] Read more.
Efficient Intelligent Framework for Selection of Initial Cluster Centers

By Bikram K. Mishra Amiya K. Rath Santosh K. Nanda Ritik R. Baidyanath

DOI: https://doi.org/10.5815/ijisa.2019.08.05, Pub. Date: 8 Aug. 2019

At present majority of research is on cluster analysis which is based on information retrieval from data that portrays the objects and their association among them. When there is a talk on good cluster formation, then selection of an optimal cluster core or center is the necessary criteria. This is because an inefficient center may result in unpredicted outcomes. Hence, a sincere attempt had been made to offer few suggestions for discovering the near optimal cluster centers. We have looked at few versatile approaches of data clustering like K-Means, TLBOC, FEKM, FECA and MCKM which differs in their initial center selection procedure. They have been implemented on diverse data sets and their inter and intra cluster formation efficiency were tested using different validity indices. The clustering accuracy was also conducted using Rand index criteria. All the algorithms computational complexity was analyzed and finally their computation time was also recorded. As expected, mostly FECA and to some extend FEKM and MCKM confers better clustering results as compared to K-Means and TLBOC as the former ones manages to obtain near optimal cluster centers. More specifically, the accuracy percentage of FECA is higher than the other techniques however, it’s computational complexity and running time is moderately higher.

[...] Read more.
Comparative Study of Convolutional Neural Network with Word Embedding Technique for Text Classification

By Amol C. Adamuthe Sneha Jagtap

DOI: https://doi.org/10.5815/ijisa.2019.08.06, Pub. Date: 8 Aug. 2019

This paper presents an investigation of the convolutional neural network (CNN) with Word2Vec word embedding technique for text classification. Performance of CNN is tested on seven benchmark datasets with a different number of classes, training and testing samples. Test classification results obtained from proposed CNN are compared with results of CNN models and other classifiers reported in the literature. Investigation shows that CNN models are better suitable for text classification than other techniques. The main objective of the paper is to identify best-fitted parameter values batch size, epochs, activation function, dropout rates and feature maps values. Results of proposed CNN are better than many other classification techniques reported in the literature for Yelp Review Polarity dataset and Amazon Review Polarity dataset. For all the seven datasets, accuracy obtained by proposed CNN is close to the best-known results from the literature.

[...] Read more.