International Journal of Intelligent Systems and Applications (IJISA)

IJISA Vol. 12, No. 6, Dec. 2020

Cover page and Table of Contents: PDF (size: 283KB)

Table Of Contents

REGULAR PAPERS

Finding the Number of Clusters in Data and Better Initial Centers for K-means Algorithm

By Ahmed Fahim

DOI: https://doi.org/10.5815/ijisa.2020.06.01, Pub. Date: 8 Dec. 2020

The k-means is the most well-known algorithm for data clustering in data mining. Its simplicity and speed of convergence to local minima are the most important advantages of it, in addition to its linear time complexity. The most important open problems in this algorithm are the selection of initial centers and the determination of the exact number of clusters in advance. This paper proposes a solution for these two problems together; by adding a preprocess step to get the expected number of clusters in data and better initial centers. There are many researches to solve each of these problems separately, but there is no research to solve both problems together. The preprocess step requires o(n log n); where n is size of the dataset. This preprocess step aims to get initial portioning of data without determining the number of clusters in advance, then computes the means of initial clusters. After that we apply k-means on original data using the resulting information from the preprocess step to get the final clusters. We use many benchmark datasets to test the proposed method. The experimental results show the efficiency of the proposed method.

[...] Read more.
Predicting Financial Prices of Stock Market using Recurrent Convolutional Neural Networks

By Muhammad Zulqarnain Rozaida Ghazali Muhammad Ghulam Ghouse Yana Mazwin Mohmad Hassim Irfan Javid

DOI: https://doi.org/10.5815/ijisa.2020.06.02, Pub. Date: 8 Dec. 2020

Financial time-series prediction has been long and the most challenging issues in financial market analysis. The deep neural networks is one of the excellent data mining approach has received great attention by researchers in several areas of time-series prediction since last 10 years. “Convolutional neural network (CNN) and recurrent neural network (RNN) models have become the mainstream methods for financial predictions. In this paper, we proposed to combine architectures, which exploit the advantages of CNN and RNN simultaneously, for the prediction of trading signals. Our model is essentially presented to financial time series predicting signals through a CNN layer, and directly fed into a gated recurrent unit (GRU) layer to capture long-term signals dependencies. GRU model perform better in sequential learning tasks and solve the vanishing gradients and exploding issue in standard RNNs. We evaluate our model on three datasets for stock indexes of the Hang Seng Indexes (HSI), the Deutscher Aktienindex (DAX) and the S&P 500 Index range 2008 to 2016, and associate the GRU-CNN based approaches with the existing deep learning models. Experimental results present that the proposed GRU-CNN model obtained the best prediction accuracy 56.2% on HIS dataset, 56.1% on DAX dataset and 56.3% on S&P500 dataset respectively.

[...] Read more.
Deep Learning Sign Language Recognition System Based on Wi-Fi CSI

By Marwa R. M. Bastwesy Nada M. ElShennawy Mohamed T. Faheem Saidahmed

DOI: https://doi.org/10.5815/ijisa.2020.06.03, Pub. Date: 8 Dec. 2020

Many sensing gesture recognition systems based on Wi-Fi signals are introduced because of the commercial off-the-shelf Wi-Fi devices without any need for additional equipment. In this paper, a deep learning-based sign language recognition system is proposed. Wi-Fi CSI amplitude and phase information is used as input to the proposed model. The proposed model uses
three types of deep learning: CNN, LSTM, and ABLSTM with a complete study of the impact of optimizers, the use of amplitude and phase of CSI, and preprocessing phase. Accuracy, F-score, Precision, and recall are used as performance metrics to evaluate the proposed model. The proposed model achieves 99.855%, 99.674%, 99.734%, and 93.84% average recognition accuracy for the lab, home, lab + home, and 5 different users in a lab environment, respectively. Experimental results show that the proposed model can effectively detect sign gestures in complex environments compared with some deep learning recognition models.

[...] Read more.
Improving Cloud Data Encryption Using Customized Genetic Algorithm

By Muhammad Junaid Arshad Muhammad Umair Saima Munawar Nasir Naveed Humaira Naeem

DOI: https://doi.org/10.5815/ijisa.2020.06.04, Pub. Date: 8 Dec. 2020

Data Encryption is widely utilized for ensuring data privacy, integrity, and confidentiality. Nowadays, a large volume of data is uploaded to the cloud, which increases its vulnerability and adds to security breaches. These security breaches include circumstances where sensitive information is being exposed to third parties or any access to sensitive information by unauthorized personnel. The objective of this research is to propose a method for improving encryption by customizing the genetic algorithm (GA) with added steps of encryption. These added steps of encryption include the data being processed with local information (chromosome's value calculated with computer-generated random bits without human intervention). The improvement in the randomness of the key generated is based on altering the population size, number of generations, and mutation rate. The first step of encrypting is to convert sample data into binary form. Once the encryption process is complete, this binary result is converted back to get the encrypted data or cipher-text. Foremost, the GA operators (population size, number of generations, and mutation rate) are changed to determine the optimal values of each operator to bring forth a random key in the minimum possible time, then local intelligence is headed in the algorithm to further improve the outcomes. Local Intelligence consists of local information and a random bit generated in each iteration. Local Information is the current value of a parent in each iteration at the gene level. Both local information and random bit are then applied in a mathematical pattern to generate a randomized key. The local intelligence-based algorithm can operate better in terms of time with the same degree of randomness that is generated with the conventional GA technique. The result showed that the proposed method is at least 80% more efficient in terms of time while generating the secret key with the same randomness level as generated by a conventional GA. Therefore, when large data are intended to be encrypted, then using local intelligence can demonstrate to be better utilized time.

[...] Read more.
Evaluation of Websites by Many Criteria Using the Algorithm for Pairwise Comparison of Alternatives

By Rasim M. Alguliyev Gulnara Ch. Nabibayova Saadat R. Abdullayeva

DOI: https://doi.org/10.5815/ijisa.2020.06.05, Pub. Date: 8 Dec. 2020

The article proposes a comprehensive method for the multicriteria evaluation of websites. The essence of this method is that using this method we can not only evaluate a website traditionally, but also obtain the following useful results: importance coefficient of each of the criteria, the evaluation of the website for each criterion individually. Moreover, we can also compare the sampled websites and then rank them. It is noted that in order to get the precise result, the sampled websites must be referred to the same category, that is, have the same set of criteria for evaluation.

[...] Read more.