International Journal of Intelligent Systems and Applications (IJISA)

IJISA Vol. 13, No. 2, Apr. 2021

Cover page and Table of Contents: PDF (size: 282KB)

Table Of Contents

REGULAR PAPERS

Geometrical Framework Application Directions in Identification Systems Review

By Nikolay N. Karabutov

DOI: https://doi.org/10.5815/ijisa.2021.02.01, Pub. Date: 8 Apr. 2021

The approaches review of the framework application in identification problems is fulfilled. It is showed that this concept can have different interpretations of identification problems. In particular, the framework is understood as a frame, structure, system, platform, concept, and basis. Two directions of this concept application are allocated: 1) the framework integrating the number of methods, approaches or procedures; b) the mapping describing in the generalized view processes and properties in a system. We give the review of approaches that are the basis of the second direction. They are based on the analysis of virtual geometric structures. These mappings (frameworks) differ in the theory of chaos, accidents, and the qualitative theory of dynamic systems. Introduced mappings (frameworks) are not set a priori, and they are determined based of the experimental data processing. The main directions analysis of geometrical frameworks application is fulfilled in structural identification problems of systems. The review includes following directions: i) structural identification of nonlinear systems; ii) an estimation of Lyapunov exponents; iii) structural identifiability of nonlinear systems; iv) the system structure choice with lag variables; v) system attractor reconstruction.

[...] Read more.
Collaborative E-Learning Process Discovery in Multi-tenant Cloud

By Sameh. Azouzi Jalel eddine. Hajlaoui Zaki. Brahmi Sonia. Ayachi Ghannouchi

DOI: https://doi.org/10.5815/ijisa.2021.02.02, Pub. Date: 8 Apr. 2021

With the appearance of the COVID-19 pandemic, the practice of e-learning in the cloud makes it possible to: avoid the problem of overloading the institutions infrastructure resources, manage a large number of learners and improve collaboration and synchronous learning. In this paper, we propose a new e-leaning process management approach in cloud named CLP-in-Cloud (for Collaborative Learning Process in Cloud). CLP-in-Cloud is composed of two steps: i) design general, configurable and multi-tenant e-Learning Process as a Service (LPaaS) that meets different needs of institutions. ii) to fulfill the user needs, developpe a functional and non-functional awareness LPaaS discovery module. For functional needs, we adopt the algorithm A* and for non-functional needs we adopt a linear programming algorithm. Our developed system allows learners to discover and search their preferred configurable learning process in a multi-tenancy Cloud architecture. In order to help to discover interesting process, we come up with a recommendation module. Experimentations proved that our system is effective in reducing the execution time and in finding appropriate results for the user request.

[...] Read more.
MTC: Minimizing Time and Cost of Cloud Task Scheduling based on Customers and Providers Needs using Genetic Algorithm

By Nasim Soltani Soulegan Behrang Barekatain Behzad Soleimani Neysiani

DOI: https://doi.org/10.5815/ijisa.2021.02.03, Pub. Date: 8 Apr. 2021

Cloud computing is considered a pattern for distributed and heterogeneous computing derived from many resources, and requests aim to share resources. Recently, cloud computing is graded among the top best technologies globally, which must be scheduled favorably to maximize providers’ profit and improve service quality for their customers. Scheduling specifies how users’ requests are assigned to virtual machines, and it plays a vital role in the efficiency and capability of the system. Its objective is to have a throughput or complete jobs in minimum time and the highest standard. Scheduling jobs in heterogeneous distributed systems is an NP-hard polynomial indecisive problem that is not solvable in polynomial time for real-time scheduling. The time complexity of jobs is growing exponentially, and this problem has a considerable effect on the quality of cloud services and providers’ efficiencies. The optimization of scheduling-related parameters using heuristic and meta-heuristic algorithms can reduce the search space complexity and execution time. This study intends to represent a fitness function to minimize time and cost parameters. The proposed method uses a multi-purposed weighted genetic algorithm that provides six basic parameters: utility, task execution cost, response time, wait time, Makespan, and throughput to provide comprehensive optimization. The proposed approach improved response and wait times, throughput, Makespan, and utility 16, 9, 7, 8 percentages, respectively, by only a one cost unit reduction, which is dispensable. As a result, both providers and users will experience better services. The statistical tests show that the achieved improvement is valid for 94% of experiments.

[...] Read more.
Implementation of Transfer Learning Using VGG16 on Fruit Ripeness Detection

By Jasman Pardede Benhard Sitohang Saiful Akbar Masayu Leylia Khodra

DOI: https://doi.org/10.5815/ijisa.2021.02.04, Pub. Date: 8 Apr. 2021

In previous studies, researchers have determined the classification of fruit ripeness using the feature descriptor using color features (RGB, GSL, HSV, and L * a * b *). However, the performance from the experimental results obtained still yields results that are less than the maximum, viz the maximal accuracy is only 76%. Today, transfer learning techniques have been applied successfully in many real-world applications. For this reason, researchers propose transfer learning techniques using the VGG16 model. The proposed architecture uses VGG16 without the top layer. The top layer of the VGG16 replaced by adding a Multilayer Perceptron (MLP) block. The MLP block contains Flatten layer, a Dense layer, and Regularizes. The output of the MLP block uses the softmax activation function. There are three Regularizes that considered in the MLP block namely Dropout, Batch Normalization, and Regularizes kernels. The Regularizes selected are intended to reduce overfitting. The proposed architecture conducted on a fruit ripeness dataset that was created by researchers. Based on the experimental results found that the performance of the proposed architecture has better performance. Determination of the type of Regularizes is very influential on system performance. The best performance obtained on the MLP block that has Dropout 0.5 with increased accuracy reaching 18.42%. The Batch Normalization and the Regularizes kernels performance increased the accuracy amount of 10.52% and 2.63%, respectively. This study shows that the performance of deep learning using transfer learning always gets better performance than using machine learning with traditional feature extraction to determines fruit ripeness detection. This study gives also declaring that Dropout is the best technique to reduce overfitting in transfer learning.

[...] Read more.
IC Floorplanning Optimization using Simulated Annealing with Order-based Representation

By Rajendra Bahadur Singh Anurag Singh Baghel

DOI: https://doi.org/10.5815/ijisa.2021.02.05, Pub. Date: 8 Apr. 2021

Integrated Circuits (IC) floorplanning is an important step in the integrated circuit physical design; it influences the area, wire-length, delay etc of an IC. In this paper, Order Based (OB) representation has been proposed for fixed outline floorplan with Simulated Annealing (SA) algorithm. To optimize the IC floorplan, two physical quantities have been considered such as area, and wire-length for hard IP modules. Optimization of the IC floorplan works in two phases. In the first phase, floorplans are constructed by proposed representation without any overlapping among the modules. In the second phase, Simulated Annealing algorithm explores the packing of all modules in floorplan to find better optimal performances i.e. area and wire-length. The Experimental results on Microelectronic Center of North Carolina benchmark circuits show that our proposed representation with SA algorithm performs better for area and wire-length optimization than the other methods. The results are compared with the solutions derived from other algorithms. The significance of this research work is improvement in optimized area and wire-length for modern IC.

[...] Read more.