International Journal of Intelligent Systems and Applications (IJISA)

IJISA Vol. 16, No. 3, Jun. 2024

Cover page and Table of Contents: PDF (size: 201KB)

Table Of Contents

REGULAR PAPERS

Performance Evaluation of Laguerre Transform and Neural Network-based Cryptographic Techniques for Network Security

By Lateef A. Akinyemi Bukola H. Akinwole

DOI: https://doi.org/10.5815/ijisa.2024.03.01, Pub. Date: 8 Jun. 2024

As the world evolves day by day with new technologies, there is a need to design a secure network in such a way that intruders and unauthorized persons should not have access to the network as well as information regarding the personnel in any firm. In this study, a new cryptographic technique for securing data transmission based on the LaplaceLaguerre polynomial (LLP) is developed and compared to an existing auto-associative neural network technique (AANNT).The performance of the LLPT and AANNT was tested with some selected files in a MATLAB environment and the results obtained provided comparative information (in respect of AANNT versus LLPT) as follows: encryption time (1.67 ms versus 3.9931s), decryption time (1.833 ms versus 2.1172s), throughput (26.2975 Kb/s versus 0.01098 Kb/s), memory consumption (3.349 KB versus 15.958 KB). From the compared results, it shows that AANNT offers a faster processing time, higher throughput, and takes up less memory space than the LLPT. However, cryptanalysis of the AANNT is possible if the network's weight and design are known; hence, the technique is unreliable for ensuring the data integrity and confidentiality of encrypted data. The proposed LLP cryptographic algorithm is designed to provide a higher security level by making the LLP algorithm computationally tedious to invert using the standard Laplace transform inversion method. When compared to the AANN-based cryptographic technique, cracking the algorithm to uncover the encryption key takes time. This shows the strength and robustness of the proposed LLP cryptographic algorithm against attacks, as well as its suitability for solving the problem of data privacy and security when compared to the AANN-based cryptographic algorithm. 

[...] Read more.
A Hyper-chaotic Medical Image Encryption with Optimized Key Value

By Subhajit Das Manas Kumar Sanyal

DOI: https://doi.org/10.5815/ijisa.2024.03.02, Pub. Date: 8 Jun. 2024

This article delves into a medical image encryption/decryption method based on hyper chaotic dynamics and genetic algorithms. The proposed algorithm boasts simplicity in implementation, featuring straightforward operations that render it well-suited for real-time applications while elevating its security measures. Leveraging the sensitivity of chaotic behavior to initial conditions, a genetic algorithm is employed to select optimal initial conditions for the 5D multi-wing hyper-chaotic system. Initially, a secret key generation method based on the input image is applied, followed by stages of diffusion and encryption utilizing the chaotic system. The secret key undergoes optimization through a genetic algorithm, considering specific parameters within the encrypted image as encryption factors. Subsequently, the encrypted image with the optimized secret key is finalized, serving as the basis for decrypting the cipher image. The proposed method undergoes simulation, testing, and comparison against other image encryption algorithms. Both experimental results and computer simulations affirm the robustness of this cryptographic system, showcasing a significant key space value (2^256), high key sensitivity (Number of Pixels Change Rate: NPCR > 99.55%, Unified Average Changing Intensity: UACI > 33.37%), and its ability to fend off various types of attack.

[...] Read more.
A Proposed Stacked Machine Learning Model to Predict the Survival of a Patient with Heart Failure

By Md. Raihan Mahmud Dip Nandi Md. Shamsur Rahim Christe Antora Chowdhury

DOI: https://doi.org/10.5815/ijisa.2024.03.03, Pub. Date: 8 Jun. 2024

Now a days heart failure is one of the most common chronic diseases that cause death. As it possesses high risk of death, it is important to predict patient’s survival and optimize treatment strategies. Machine learning techniques have come to light as useful tools for evaluating enormous quantities of patient data and deriving important patterns and insights in recent years. The purpose of the study is to investigate the feasibility of using the machine learning methods for predicting heart failure patient’s chances of survival. We have worked on a dataset with 2029 heart failure patients and the dataset comprises 13 features. To conduct this research, we suggested a model (Stacked machine learning model using scikit-learn using Decision Tree, Naive Bias, Random Forest, Linear Regression, SVM, XGBoost, ANN) using which we got better results than previously existed researches. We believe the suggested model will help advance our understanding of heart attack prediction.

[...] Read more.
Hybrid Deep Optimal Network for Recognizing Emotions Using Facial Expressions at Real Time

By Rakshith M. D. Harish H. Kenchannavar

DOI: https://doi.org/10.5815/ijisa.2024.03.04, Pub. Date: 8 Jun. 2024

Recognition of emotions by utilizing facial expressions is the progression of determining the various human facial emotions to infer the mental condition of the person. This recognition structure has been employed in several fields but more commonly applied in medical arena to determine psychological health problems. In this research work, a new hybrid model is projected using deep learning to recognize and classify facial expressions into seven emotions. Primarily, the facial image data is obtained from the datasets and subjected to pre-processing using adaptive median filter (AMF). Then, the features are extracted and facial emotions are classified through the improved VGG16+Aquila_BiLSTM (iVABL) deep optimal network. The proposed iVABL model provides accuracy of 95.63%, 96.61% and 95.58% on KDEF, JAFFE and Facial Expression Research Group 2D Database (FERG-DB) which is higher when compared to DCNN, DBN, Inception-V3, R-152 and Convolutional Bi-LSTM models. The iVABL model also takes less time to recognize the emotion from the facial image compared to the existing models.

[...] Read more.
A Self-driving Car Controller Module Based on Rule Base Reasoner

By Anik Kumar Saha Md. Abdur Razzaque

DOI: https://doi.org/10.5815/ijisa.2024.03.05, Pub. Date: 8 Jun. 2024

The rapid improvement of sensing and recognition technology has had an impact on the vehicle sector that led to the development of self-driving cars. Thus, vehicles are capable of driving themselves without human interaction, mostly relying on cameras, various sensors technology, and advanced algorithms for navigation. In this research, a controller module of a self-driving car project is proposed using a rule baser reasoner that is capable to drive a car considering the health condition of the driver, the road lanes, traffic signs, obstacles created by other vehicles. A number of sensors including Global Positioning System module, camera, compass, ultrasonic sensor, physiological sensor (heartbeat, blood pressure, body temperature, etc.) are involved while reasoning. The proposed controller consists of several modules: sensor module, lane detection module, road sign and human detection module, reasoning module, Instruction execution module. According to the experimental results the proposed system is able to make correct decisions with a success rate of about 90-95%.

[...] Read more.
From Nature to UAV - A Study on Collision Avoidance in Bee Congregation

By Nahin Hossain Uday Md. Zahid Hasan Rejwan Ahmed Md. Mahmudur Rahman Abhijit Bhowmik Debajyoti Karmaker

DOI: https://doi.org/10.5815/ijisa.2024.03.06, Pub. Date: 8 Jun. 2024

Insects engage in a variety of survival-related activities, including feeding, mating, and communication, which are frequently motivated by innate impulses and environmental signals. Social insects, such as ants and bees, exhibit complex collective behaviors. They carry out well-organized duties, including defense, nursing, and foraging, inside their colonies. For analyzing the behavior of any living entity, we selected honeybees (Apis Mellifera) and worked on a small portion of it. We have captured the video of honeybees flying close to a hive (human-made artificial hive) while the entrance was temporarily sealed which resulted in the” bee cloud”. An exploration of the flight trajectories executed and a 3D view of the” bee cloud” constructed. We analyzed the behaviors of honeybees, especially on their speed and distance. The results showed that the loitering honeybees performed turns that are fully coordinated, and free of sideslips so thus they made no collision between themselves which inspired us to propose a method for avoiding collision in unmanned aerial vehicle. This paper gives the collective behavioral information and analysis report of the small portion of data set (honeybees), that bee maintains a safe distance (35mm) to avoid collision.

[...] Read more.