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Abstract—Energy is a requirement for electronic devices. 

A processor is a substantial part of computer components 

in terms of energy consumption. A great concern has 

risen over recent years about computers with regard to the 

energy consumption.  Taking accurate information about 

energy consumption of a processor allows us to predict 

energy flow features. However, using traditional 

classifiers may not enhance the accuracy of the prediction 

of energy consumption. Deep learning shows great 

promise for predicting energy consumption of a processor. 

Stacked auto-encoders has emerged a robust type of deep 

learning. This work investigates the effects of tuning 

stacked auto-encoder in computer processor with regard 

to the energy consumption. To search parameter space, a 

grid search based training method is adopted. To prepare 

data to prediction, a data preprocessing algorithm is also 

proposed. According to the obtained results, on average, 

the method provides 0.2% accuracy improvement along 

with a remarkable success in reducing parameter tuning 

error. Further, in receiver operating curve analysis, tuned 

stacked auto-encoder was able to increase value of are 

under the curve up to 0.5.  

 

Index Terms—Deep Learning, Stacked Auto-Encoder 

(SAE), Energy Consumption Prediction. 

 

I.  INTRODUCTION 

Each part of a computer needs electrical energy to 

pursue its duty. A computer system can be divided into 

two categories: hardware and software. Researchers have 

long discussed distinctive properties of them in terms of 

energy consumption (EC) [1,2,3]. A processor is a 

hardware component that interacts with a large portion of 

a computer system. 

Processors are of great importance in energy 

consumption rate of a computer system [4]. They are 

executed in accordance with the commands of an 

operating system which manages processors. One can 

assume a computer system as a factory in which a 

processor can be regarded as a heavy worker of it. 

Because processors handle with data streams due to 

mainly input/output operations. 

To perform a profiling or prediction on energy 

consumption data, traditional methods such as random 

forest [19], naïve Bayes [20], and support vector machine 

(svm) [21] are frequently employed. However, such 

methods may not yield accurate results with real-time 

long-term data. In order to address this problem, deep 

learning [22] has emerged as a robust technique. 

Developments in neural networks have led to the 

adoption of some types of deep neural networks. Recent 

advances in hardware components such as GPU may 

have supported this process.  

SAE is a preferable deep learning method due to its 

advantages over traditional auto-encoders [23]. It 

provides hierarchical grouping for auto-encoder that 

ensures robustness in the structure of deep networks. 

Further, SAE is a robust unsupervised method that 

enables practitioners to create a large number of hidden 

units in deep neural network layers. 

Despite the fact that deep neural networks have been 

applied for energy consumption profiling, SAE has not 

been investigated in terms of processor energy profiling. 

On the other hand, optimizing various parameters creates 

a favorable effect on profiling methods by increasing the 

prediction accuracy. In recent years, deep learning 

methods have been applied on various fields such as wind 

power prediction [15], traffic data flow prediction [16], 

and image processing [8] without considering tuning 

parameters. Underlying motivation of selecting 

processors to perform the experiment is that they are easy 

to be exposed measure energy consumption. In addition 

to this, processors give tips for analyzing design patterns 

of programs being executed. 

In this work, the effects of tuning parameters of SAEs 

on processor energy consumption prediction are 

investigated. To this end, 14 data sets retrieved from the 

executions on the same processor are exposed to a data 

processing for deep learning. Thereafter, energy 

consumption rates are predicted with both tuned and 

basic SAEs. According to the obtained results, tuning 

SAEs provides two percent increase in accuracy.  

The rest of the paper is organized as follows: Section II 

summarizes the literature. Notions and background are 

described in Section III. The experiment and the results 

are detailed in Section IV. Conclusions are given in 

Section V. 

 

II.  RELATED WORKS 

When the literature is examined in detail, it is clearly 
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seen that SAE has been generally applied for image 

processing, biomedical detection systems, speech and 

audio processing, and energy profiling. 

Lin et al. [5] proposed a dynamic data-driven approach 

for stacked auto-encoders. Their method mainly depends 

on an association rule analysis to determine the weights 

of input data. A simulation was designed based on 

weather forecasting data. The method produced 

promising results for dynamic data environments that it 

was able to reduce average error rate up to 87%. One of 

the important application topics of SAEs is traffic flow 

prediction. Zhou et al. [6] proposed a SAE-based 

ensemble method that yielded higher accuracy than the 

alternatives such as ANN, LSBOOST, and SAE. 

Forecasting any trend requires a sophisticated method to 

build a reliable model. To this end, SAE could be a 

feasible solution. In [7], a stacked auto-encoder namely 

SAEN was developed for tourism demand forecasting. It 

outperformed some widely known competitive methods 

such as seasonal autoregressive integrated moving 

average, and multiple linear regressions.  

There has been a great interest in the application of 

deep learning approach in image processing [8-10]. SAE 

was also applied on medical image processing. In, a SAE 

framework was developed for detecting nuclei on breast 

cancer histopathology images [11]. The method was then 

compared with nine alternatives. According to the results, 

SAE framework requires average training time.  However, 

it yields the highest accuracy in almost minimum time 

compared with the others. Audio processing is another 

application field of SAE. Deep learning methods have a 

great potential to be applied on audio data. Such a method 

was proposed by Luo et al. [12] to detect double 

compressed audio in codec identification. SAE achieved 

better results than traditional methods including neural 

network and deep belief net. Proposed method was found 

to be very effective with large-scale data sets. The 

number of decoders and encoders is equal in traditional 

stacked auto-encoders.  However, a recent study [13] 

presented a stacked auto-encoder having unequal number 

of encoders and decoders. The method was able to 

produce promising results for classification and 

compression problems. SAE is suitable for classification 

problems. For instance, in plant classification [14], three 

different auto-encoders were evaluated. The method 

achieved up to 93% accuracy for classification. 

Optimizing SAE parameters could create a favorable 

effect on the learning problem being handled. In [15], a 

forecasting algorithm was designed using SAE and back 

propagation. To increase the accuracy of forecasting, 

particle swarm optimization was adopted. The method 

was then compared with basic back propagation and 

support vector machine. The error of the method is stable 

at increasing forecasting steps. Video processing is an 

interesting application area of SAE. For collision 

detection in densely loaded motorways, a SAE 

framework [16] tested on large videos. The method was 

able to detect collisions up to 77.5%. However, there are 

various threats to validate the method in low traffic 

patterns. 

When some deep learning techniques are evaluated 

together, the size of training samples is crucial. In a 

comprehensive evaluation of three types of deep learning 

techniques [17], reducing the number of training 

instances adversely affect the accuracy. Lv et al. 

developed a deep learning method to predict traffic flow. 

They adopted a greedy algorithm to pre-train the deep 

neural network. The method was found superior to the 

competing ones such as support vector machine. 

Romansky et al.’s work [25] may include more 

relevant experimental model to ours in literature. They 

used deep time series to predict mobile software energy 

consumption. According to their findings, deep neural 

models are competitive with state-of-the-art models such 

as SVM. 

 

III.  PRELIMINARIES 

A.  SAE 

An auto-encoder (AE) consists of a single layer. An 

output in an AE is used for generating input. An example 

of an AE is given in Fig. 1-a in which the weight matrix 

is represented with W and b denotes a bias vector. H and 

X1 are the outputs of hidden layer vectors. If input nodes 

are represented with x0…xn,, n is the number of the nodes 

that are used for generating output y. Fig. 1-b shows a 

stacked auto-encoder that consists of multiple auto-

encoders. Each hidden layer output is used as the input of 

a higher level auto-encoder. Generally, top of SAE is 

considered as the highest level of auto-encoders. As the 

level increases, the number of input nodes reduces.  
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(a)                                                   (b) 

Fig.1. An illustration of auto-encoder and stacked auto-encoder (a) auto-encoder, (b) stacked auto-encoder 

B.  Energy Consumption Prediction 

If some sets of energy data are denoted with e1….em, m 

is the number of features. In a processor energy meter, 

these features could include some metrics such as elapsed 

time, cpu frequency, and processor power. In order to 

perform a prediction experiment, e1….em, is generally 

divided into two data sets by using percentage split or 

fold-based cross validation.  In this paper, 10 fold cross 

validation is repeated for 10 times. For each iteration, one 

part of the data sets is used for testing while nine parts are 

of testing.    

Let y denote the class of a feature set. Since energy 

consumption rates change greatly in ranges, they should 

be factored via threshold values. For instance, in a data 

set, while 0.1-0.5 joules can be represented with 1, 0.6-1 

and the other ranges can be represented with 2 and 0, 

respectively.  

Energy consumption data have some metrics such as 

frequency, graphic frequency, and package power limit 

which are constant for all the instances. They should be 

eliminated before training process to obtain reliable 

prediction results. 

C.  Measuring energy consumption on a computer system 

In a traditional way, energy consumption can be 

calculated via Eq. 1. Here P denotes the power spent in a 

specific time interval T. By multiplying these parameters, 

consumed energy can be calculated. 

 

.E PT                                     (1) 

 

To measure energy consumption, there are various 

alternatives depending on the device being analyzed. For 

instance, PETRA [26] is an energy meter that is used for 

measuring energy consumption of mobile programs. 

PETRA can be executed via a jar file that makes it easy 

to use. An address of an .apk is given to the user interface 

of PETRA by executing Monkey test runner. However, 

PETRA needs to be updated frequently so that it is very 

sensitive to the type of operating system.  

Jalen [27] is another tool for measuring energy 

consumption of a program. It can be run via a jar file 

along with the path of the program to be measured. 

However, Jalen is for linux operating systems and it does 

not regard processor in terms of energy consumption. 

In this paper, Intel Power Gadget [28,29] is employed 

for recording energy consumption of processors. It helps 

users to monitor and estimate processor package power. 

 

 

Fig.2. Data monitoring screen of Intel Power Gadget. 

Fig. 2 shows main screen of Intel Power Gadget. It 

provides users detail information including package 

power, GPU frequency, and temperature. In this screen, 

user starts monitoring by clicking log button. This 

operation creates a .csv file in which power consumption 

details are saved. 

 

IV.  METHOD 

A.  Data Sets 

To generate energy consumption data sets, 14 software 

programs have been run in compliance with random 100 

test cases. Intel power gadget has been used for recording 

data sets. It is a user friendly tool that records energy 

consumption details of processors while executing some 

processes. Recorded features are as follows: System Time, 

Read Time Stamp Counter, Elapsed Time (sec),CPU 
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Frequency_0(MHz), Processor Power_0(Watt), 

Cumulative Processor Energy_0(Joules), Cumulative 

Processor Energy_0(mWh), IA Power_0(Watt), 

Cumulative IA Energy_0(Joules), Cumulative IA 

Energy_0(mWh), Package Temperature_0(C), Package 

Hot_0, GT Power_0(Watt), Cumulative GT 

Energy_0(Joules), Cumulative GT Energy_0(mWh), 

Package Power Limit_0(Watt), and GT Frequency(MHz). 

IA denotes package and cores, whereas, GT is the graphic 

processing unit.  

B.  Data Preprocessing 

Input, output, and main steps of the preprocessing 

operations are given in Algorithm 1. Here EC represents 

a matrix of energy consumption values. 

Algorithm 1 is used for preparing data sets to be 

exposed to SAE. 1-4 steps are designed for eliminating 

features having constant values. For instance, GT 

Frequency (MHz) has been eliminated because it is 600 

for all the instances. 5-9 steps are for deleting non-

numeric values of the data sets. In the experiment, IA 

Power_0 (Watt) feature is determined as prediction class. 

Step 10 assigns i to 11 that is the number of features after 

nine steps.  Energy consumption values changes between 

0-2 for all the test cases so that 11-16 steps make IA 

Power_0 suitable for prediction by changing its values to 

0 or 1 by considering energy consumption rates that 

enables us to perform receiver operating characteristic 

analysis. 

 

 

C.  Tuning Parameters of SAE 

Grid search algorithm is used with manual grid in the 

experiment. It is a simple tuning strategy that searches a 

given list of hyperparameters. Grid search selects the best 

parameters from search space by comparing performance 

parameters. If total number of predictions is denoted with 

P in the dimension d, the complexity for m steps can be 

formulated as in Eq. 2 in which possible choices of each 

parameter are c. 

 

( * cos( *( )))dp
O c

m
                         (2) 

 

 
 

The experiment is performed with R package via 

“caret” and “mxnet” libraries. “caret” is a machine 

learning library coded with S language of R to perform 

tuning algorithms. “mxnet” provides practitioners to 

create deep neural networks for specific purposes. They 

are easy to learn for practitioners who cope with tuning 

problems of machine learning algorithms. Algorithm 2 

searches best parameters of SAE. First, as in step 1, data 

is read from a “csv” file. Thereafter, it is divided into 

training and testing parts (Dt1, Dt2). Step 3 determines 

control method which is utilized in Step 5 for training via 

grid search. The bounds of parameter space are in Step 4. 

 

 
 

Algorithm 3 predicts energy consumption rates by 

using detected parameters of SAE. Parameters are 

produced by Algorithm 2. “mx.mlp” function generates 

SAEs to build model. Step 2 predicts energy consumption 

rates based on optimized SAE model. Energy 

consumption prediction is a multi-class problem so that 

softmax function is used in the model for assign 

probability to each class. Eq. 3 calculates softmax 

function. Here f(x) denotes softmax function and x is an 

input vector. K is the number of output units and i 

enumerates output units.   
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Table 1. Formulas of performance parameters. 

Name Formula 

TPR TP/(TP+FN) 

FPR FP/(FP+TN) 

accuracy (TP+TN)/(TP+TN+FP+FN) 

RMSE 

1
2 2

1

1
( )

n

i

yi zi
n 

 
 

  
  

D.  Performance Parameters 

Three performance indexes are used in the experiment 

to evaluate the effectiveness of tuning. They are root-

mean square error (RMSE), accuracy, and area under the 

curve (AUC) which is obtained drawing true positive rate 

(TPR) against false positive rate (FPR). The formulas of 

the performance measures are given in Table 1. For 

RMSE, yi is the observed energy consumption, and zi is 

the predicted energy consumption.  n is the number of 

observations. Other formulas are generated from the 

notions of confusion matrix.  

E.  Results 

Mean accuracy values of the experiment are presented 

in Table 2. Tuned and basic SAEs are compared with 20 

epochs. According to the obtained findings, in the second 

iteration, tuned SAE was able to achieve the best 

accuracy with 0.742857. On the other hand, the best 

accuracy of SAE is 0.542857. Further, in basic SAE, as 

the number of iterations increases, accuracy declines 

inconsistently that for some iterations, accuracy increases. 

Using tuning operation on SAE improved accuracy up to 

0.2.  

Table 2. Mean accuracy values of 100 test cases. Bold-faced values are 

the best for each column. 

Iteration number Tuned SAE 
Basic SAE with random 

parameters 

1 0.67619 0.542857 

2 0.742857 0.533333 

3 0.742857 0.552381 

4 0.742857 0.552381 

5 0.742857 0.485714 

6 0.742857 0.485714 

7 0.742857 0.466667 

8 0.742857 0.485714 

9 0.742857 0.495238 

10 0.742857 0.495238 

11 0.742857 0.47619 

12 0.742857 0.466667 

13 0.742857 0.47619 

14 0.742857 0.438095 

15 0.742857 0.438095 

16 0.742857 0.47619 

17 0.742857 0.466667 

18 0.742857 0.47619 

19 0.742857 0.438095 

20 0.742857 0.438095 

 

Table 3. Mean RMSE results for tuned SAE. Bold-faced  

value is the best. 

layer1 layer2 layer3 RMSE Rsquared 

80 10 2 0.51488 0.16805 

80 10 3 0.528638 0.141662 

80 10 5 0.511084 0.144412 

80 20 2 0.518676 0.189492 

80 20 3 0.521836 0.175013 

80 20 5 0.522578 0.156506 

80 25 2 0.507903 0.149588 

80 25 3 0.532979 0.175687 

80 25 5 0.501979 0.184426 

85 10 2 0.507076 0.164327 

85 10 3 0.506222 0.17498 

85 10 5 0.516843 0.1605 

85 20 2 0.520204 0.128154 

85 20 3 0.509162 0.148409 

85 20 5 0.519032 0.158413 

85 25 2 0.52041 0.117148 

85 25 3 0.533475 0.154795 

85 25 5 0.522118 0.159829 

90 10 2 0.513195 0.180583 

90 10 3 0.519889 0.151531 

90 10 5 0.522863 0.161013 

90 20 2 0.517321 0.182455 

90 20 3 0.532141 0.141483 

90 20 5 0.515681 0.14772 

90 25 2 0.507656 0.137887 

90 25 3 0.528421 0.171819 

90 25 5 0.513364 0.122673 

 

Table 3 shows average grid search results of the test 

cases in terms of tuned SAE. Best configurations are 

determined by searching optimal number of hidden layers 

in layer1, layer2, and layer3. According to the 

experimental results, (85, 25, 5) is the optimal. Compared 

to the basic SAE, tuned SAE reduced RMSE up to 0.5 

that basic SAE was able to achieve 0.57 RMSE with 

random parameters. 

 

 

Fig.3. ROC curve of SAE generated using random  

instances without tuning.
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Fig. 3-4 illustrate AUC values of basic and tuned SAE, 

respectively. Basic SAE achieved 0.79 value of AUC, 

whereas tuned SAE outperformed it with 0.84 value of 

AUC. Selected test cases may have affected this 

difference. However, RMSE results support the evidence 

provided by values of AUC. Using merely energy 

consumption data retrieved from processor could create a 

threat to the validity. However, performing a 

preprocessing on EC data as in this paper helps removing 

that threat.  

F.  Threats to the Validity 

Executing test cases having similar coding structure 

could create an internal threat. To alleviate this threat, a 

random selection has been made on the test case pool.  

Using same parameter settings for comparing tuned 

SAE with basic SAE could create misleading results. We 

changed parameter settings randomly in basic SAE to 

create a reliable comparison setting. 

 

 

Fig.4. ROC curve of SAE generated via tuning based on grid search. 

Algorithm 1 is suitable for imperfect data instances so 

that it was compared with three alternatives including 

Expectation-Maximization (EM) [30], Multiple 

Imputation (MI) [31], and K-nearest Neighbor Imputation 

(kNNI) [32]. Complexities of those methods are 

presented in Table 4. For EM, m is the iteration and n 

denotes the number of parameters. While k denoted the 

number of steps in MI, l is the number of versions of the 

data set. For kNNI, n represents the number of instances 

and d is the number of dimensions. Even in worst case, 

Algorithm 1 shows competitive complexity compared 

with EM and kNNI. On the other hand, MI yields lower 

complexity than Algorithm 1 in some cases. 

Table 4. Complexity comparison of similar algorithms. 

Method Complexity 

EM O(m.n^3) 

MI O(kl+l) 

kNNI O(nd) 

Proposed method (Algorithm 1) O(m.n) 

V.  CONCLUSIONS 

This study focuses on tuning SAEs to improve 

prediction performance of energy consumption of 

processors. In this respect, a data preprocessing algorithm 

is proposed to make data suitable for prediction. To 

evaluate the findings, tuned SAE has been compared with 

basic SAE. According to the study results, selecting 

random parameters to execute a SAE based model does 

not perform well in terms of prediction accuracy and 

RMSE. Instead, using parameter search methods such as 

grid search increases prediction performance remarkably. 

However, as in [24], developing sophisticated tuning 

methods may provide new insights into energy 

consumption prediction. 

SAEs have been applied in various fields in recent 

years. Generally speaking, almost all the studies 

including a SAE based method for predicting real-time 

data streams use same evaluation metrics. Developing 

problem-oriented metrics for SAE may deepen our 

knowledge to find suitable solution. 
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APPENDIX A CODE SNIPPET FOR TUNING SAE  

library(mxnet) 

set.seed(7) 

# load the library 

library(caret) 

mydata=read.csv("energyDraw.csv") 

train.ind = c(1:50, 100:150) 

train.x = data.matrix(mydata[train.ind, 1:11]) 

train.y = mydata[train.ind, 11] 

test.x = data.matrix(mydata[-train.ind, 1:11]) 

test.y = mydata[-train.ind, 11] 

# prepare training scheme 

control <- trainControl(method="repeatedcv", 

number=10, repeats=10) 

# design the parameter tuning grid 

grid <- expand.grid(layer1=c(80,85,90), 

layer2=c(10,20,25), layer3=c(2,3,5), hidden_dropout=1, 

visible_dropout=1) 

# train the model 

model <- train(energy~., data=train.x, method="dnn", 

trControl=control, tuneGrid=grid) 

# summarize the model 

print(model) 
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