
I.J. Information Technology and Computer Science, 2019, 2, 1-8
Published Online February 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2019.02.01

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2019, 2, 1-8

Tuning Stacked Auto-encoders for Energy

Consumption Prediction: A Case Study

Muhammed Maruf Öztürk
Computer Engineering, Engineering Faculty, Suleyman Demirel University, Isparta, Turkey

E-mail: muhammedozturk@sdu.edu.tr

Received: 09 January 2019; Accepted: 20 January 2019; Published: 08 February 2019

Abstract—Energy is a requirement for electronic devices.

A processor is a substantial part of computer components

in terms of energy consumption. A great concern has

risen over recent years about computers with regard to the

energy consumption. Taking accurate information about

energy consumption of a processor allows us to predict

energy flow features. However, using traditional

classifiers may not enhance the accuracy of the prediction

of energy consumption. Deep learning shows great

promise for predicting energy consumption of a processor.

Stacked auto-encoders has emerged a robust type of deep

learning. This work investigates the effects of tuning

stacked auto-encoder in computer processor with regard

to the energy consumption. To search parameter space, a

grid search based training method is adopted. To prepare

data to prediction, a data preprocessing algorithm is also

proposed. According to the obtained results, on average,

the method provides 0.2% accuracy improvement along

with a remarkable success in reducing parameter tuning

error. Further, in receiver operating curve analysis, tuned

stacked auto-encoder was able to increase value of are

under the curve up to 0.5.

Index Terms—Deep Learning, Stacked Auto-Encoder

(SAE), Energy Consumption Prediction.

I. INTRODUCTION

Each part of a computer needs electrical energy to

pursue its duty. A computer system can be divided into

two categories: hardware and software. Researchers have

long discussed distinctive properties of them in terms of

energy consumption (EC) [1,2,3]. A processor is a

hardware component that interacts with a large portion of

a computer system.

Processors are of great importance in energy

consumption rate of a computer system [4]. They are

executed in accordance with the commands of an

operating system which manages processors. One can

assume a computer system as a factory in which a

processor can be regarded as a heavy worker of it.

Because processors handle with data streams due to

mainly input/output operations.

To perform a profiling or prediction on energy

consumption data, traditional methods such as random

forest [19], naïve Bayes [20], and support vector machine

(svm) [21] are frequently employed. However, such

methods may not yield accurate results with real-time

long-term data. In order to address this problem, deep

learning [22] has emerged as a robust technique.

Developments in neural networks have led to the

adoption of some types of deep neural networks. Recent

advances in hardware components such as GPU may

have supported this process.

SAE is a preferable deep learning method due to its

advantages over traditional auto-encoders [23]. It

provides hierarchical grouping for auto-encoder that

ensures robustness in the structure of deep networks.

Further, SAE is a robust unsupervised method that

enables practitioners to create a large number of hidden

units in deep neural network layers.

Despite the fact that deep neural networks have been

applied for energy consumption profiling, SAE has not

been investigated in terms of processor energy profiling.

On the other hand, optimizing various parameters creates

a favorable effect on profiling methods by increasing the

prediction accuracy. In recent years, deep learning

methods have been applied on various fields such as wind

power prediction [15], traffic data flow prediction [16],

and image processing [8] without considering tuning

parameters. Underlying motivation of selecting

processors to perform the experiment is that they are easy

to be exposed measure energy consumption. In addition

to this, processors give tips for analyzing design patterns

of programs being executed.

In this work, the effects of tuning parameters of SAEs

on processor energy consumption prediction are

investigated. To this end, 14 data sets retrieved from the

executions on the same processor are exposed to a data

processing for deep learning. Thereafter, energy

consumption rates are predicted with both tuned and

basic SAEs. According to the obtained results, tuning

SAEs provides two percent increase in accuracy.

The rest of the paper is organized as follows: Section II

summarizes the literature. Notions and background are

described in Section III. The experiment and the results

are detailed in Section IV. Conclusions are given in

Section V.

II. RELATED WORKS

When the literature is examined in detail, it is clearly

2 Tuning Stacked Auto-encoders for Energy Consumption Prediction: A Case Study

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2019, 2, 1-8

seen that SAE has been generally applied for image

processing, biomedical detection systems, speech and

audio processing, and energy profiling.

Lin et al. [5] proposed a dynamic data-driven approach

for stacked auto-encoders. Their method mainly depends

on an association rule analysis to determine the weights

of input data. A simulation was designed based on

weather forecasting data. The method produced

promising results for dynamic data environments that it

was able to reduce average error rate up to 87%. One of

the important application topics of SAEs is traffic flow

prediction. Zhou et al. [6] proposed a SAE-based

ensemble method that yielded higher accuracy than the

alternatives such as ANN, LSBOOST, and SAE.

Forecasting any trend requires a sophisticated method to

build a reliable model. To this end, SAE could be a

feasible solution. In [7], a stacked auto-encoder namely

SAEN was developed for tourism demand forecasting. It

outperformed some widely known competitive methods

such as seasonal autoregressive integrated moving

average, and multiple linear regressions.

There has been a great interest in the application of

deep learning approach in image processing [8-10]. SAE

was also applied on medical image processing. In, a SAE

framework was developed for detecting nuclei on breast

cancer histopathology images [11]. The method was then

compared with nine alternatives. According to the results,

SAE framework requires average training time. However,

it yields the highest accuracy in almost minimum time

compared with the others. Audio processing is another

application field of SAE. Deep learning methods have a

great potential to be applied on audio data. Such a method

was proposed by Luo et al. [12] to detect double

compressed audio in codec identification. SAE achieved

better results than traditional methods including neural

network and deep belief net. Proposed method was found

to be very effective with large-scale data sets. The

number of decoders and encoders is equal in traditional

stacked auto-encoders. However, a recent study [13]

presented a stacked auto-encoder having unequal number

of encoders and decoders. The method was able to

produce promising results for classification and

compression problems. SAE is suitable for classification

problems. For instance, in plant classification [14], three

different auto-encoders were evaluated. The method

achieved up to 93% accuracy for classification.

Optimizing SAE parameters could create a favorable

effect on the learning problem being handled. In [15], a

forecasting algorithm was designed using SAE and back

propagation. To increase the accuracy of forecasting,

particle swarm optimization was adopted. The method

was then compared with basic back propagation and

support vector machine. The error of the method is stable

at increasing forecasting steps. Video processing is an

interesting application area of SAE. For collision

detection in densely loaded motorways, a SAE

framework [16] tested on large videos. The method was

able to detect collisions up to 77.5%. However, there are

various threats to validate the method in low traffic

patterns.

When some deep learning techniques are evaluated

together, the size of training samples is crucial. In a

comprehensive evaluation of three types of deep learning

techniques [17], reducing the number of training

instances adversely affect the accuracy. Lv et al.

developed a deep learning method to predict traffic flow.

They adopted a greedy algorithm to pre-train the deep

neural network. The method was found superior to the

competing ones such as support vector machine.

Romansky et al.’s work [25] may include more

relevant experimental model to ours in literature. They

used deep time series to predict mobile software energy

consumption. According to their findings, deep neural

models are competitive with state-of-the-art models such

as SVM.

III. PRELIMINARIES

A. SAE

An auto-encoder (AE) consists of a single layer. An

output in an AE is used for generating input. An example

of an AE is given in Fig. 1-a in which the weight matrix

is represented with W and b denotes a bias vector. H and

X1 are the outputs of hidden layer vectors. If input nodes

are represented with x0…xn,, n is the number of the nodes

that are used for generating output y. Fig. 1-b shows a

stacked auto-encoder that consists of multiple auto-

encoders. Each hidden layer output is used as the input of

a higher level auto-encoder. Generally, top of SAE is

considered as the highest level of auto-encoders. As the

level increases, the number of input nodes reduces.

 Tuning Stacked Auto-encoders for Energy Consumption Prediction: A Case Study 3

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2019, 2, 1-8

(a) (b)

Fig.1. An illustration of auto-encoder and stacked auto-encoder (a) auto-encoder, (b) stacked auto-encoder

B. Energy Consumption Prediction

If some sets of energy data are denoted with e1….em, m

is the number of features. In a processor energy meter,

these features could include some metrics such as elapsed

time, cpu frequency, and processor power. In order to

perform a prediction experiment, e1….em, is generally

divided into two data sets by using percentage split or

fold-based cross validation. In this paper, 10 fold cross

validation is repeated for 10 times. For each iteration, one

part of the data sets is used for testing while nine parts are

of testing.

Let y denote the class of a feature set. Since energy

consumption rates change greatly in ranges, they should

be factored via threshold values. For instance, in a data

set, while 0.1-0.5 joules can be represented with 1, 0.6-1

and the other ranges can be represented with 2 and 0,

respectively.

Energy consumption data have some metrics such as

frequency, graphic frequency, and package power limit

which are constant for all the instances. They should be

eliminated before training process to obtain reliable

prediction results.

C. Measuring energy consumption on a computer system

In a traditional way, energy consumption can be

calculated via Eq. 1. Here P denotes the power spent in a

specific time interval T. By multiplying these parameters,

consumed energy can be calculated.

.E PT (1)

To measure energy consumption, there are various

alternatives depending on the device being analyzed. For

instance, PETRA [26] is an energy meter that is used for

measuring energy consumption of mobile programs.

PETRA can be executed via a jar file that makes it easy

to use. An address of an .apk is given to the user interface

of PETRA by executing Monkey test runner. However,

PETRA needs to be updated frequently so that it is very

sensitive to the type of operating system.

Jalen [27] is another tool for measuring energy

consumption of a program. It can be run via a jar file

along with the path of the program to be measured.

However, Jalen is for linux operating systems and it does

not regard processor in terms of energy consumption.

In this paper, Intel Power Gadget [28,29] is employed

for recording energy consumption of processors. It helps

users to monitor and estimate processor package power.

Fig.2. Data monitoring screen of Intel Power Gadget.

Fig. 2 shows main screen of Intel Power Gadget. It

provides users detail information including package

power, GPU frequency, and temperature. In this screen,

user starts monitoring by clicking log button. This

operation creates a .csv file in which power consumption

details are saved.

IV. METHOD

A. Data Sets

To generate energy consumption data sets, 14 software

programs have been run in compliance with random 100

test cases. Intel power gadget has been used for recording

data sets. It is a user friendly tool that records energy

consumption details of processors while executing some

processes. Recorded features are as follows: System Time,

Read Time Stamp Counter, Elapsed Time (sec),CPU

4 Tuning Stacked Auto-encoders for Energy Consumption Prediction: A Case Study

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2019, 2, 1-8

Frequency_0(MHz), Processor Power_0(Watt),

Cumulative Processor Energy_0(Joules), Cumulative

Processor Energy_0(mWh), IA Power_0(Watt),

Cumulative IA Energy_0(Joules), Cumulative IA

Energy_0(mWh), Package Temperature_0(C), Package

Hot_0, GT Power_0(Watt), Cumulative GT

Energy_0(Joules), Cumulative GT Energy_0(mWh),

Package Power Limit_0(Watt), and GT Frequency(MHz).

IA denotes package and cores, whereas, GT is the graphic

processing unit.

B. Data Preprocessing

Input, output, and main steps of the preprocessing

operations are given in Algorithm 1. Here EC represents

a matrix of energy consumption values.

Algorithm 1 is used for preparing data sets to be

exposed to SAE. 1-4 steps are designed for eliminating

features having constant values. For instance, GT

Frequency (MHz) has been eliminated because it is 600

for all the instances. 5-9 steps are for deleting non-

numeric values of the data sets. In the experiment, IA

Power_0 (Watt) feature is determined as prediction class.

Step 10 assigns i to 11 that is the number of features after

nine steps. Energy consumption values changes between

0-2 for all the test cases so that 11-16 steps make IA

Power_0 suitable for prediction by changing its values to

0 or 1 by considering energy consumption rates that

enables us to perform receiver operating characteristic

analysis.

C. Tuning Parameters of SAE

Grid search algorithm is used with manual grid in the

experiment. It is a simple tuning strategy that searches a

given list of hyperparameters. Grid search selects the best

parameters from search space by comparing performance

parameters. If total number of predictions is denoted with

P in the dimension d, the complexity for m steps can be

formulated as in Eq. 2 in which possible choices of each

parameter are c.

(* cos(*()))dp
O c

m
  (2)

The experiment is performed with R package via

“caret” and “mxnet” libraries. “caret” is a machine

learning library coded with S language of R to perform

tuning algorithms. “mxnet” provides practitioners to

create deep neural networks for specific purposes. They

are easy to learn for practitioners who cope with tuning

problems of machine learning algorithms. Algorithm 2

searches best parameters of SAE. First, as in step 1, data

is read from a “csv” file. Thereafter, it is divided into

training and testing parts (Dt1, Dt2). Step 3 determines

control method which is utilized in Step 5 for training via

grid search. The bounds of parameter space are in Step 4.

Algorithm 3 predicts energy consumption rates by

using detected parameters of SAE. Parameters are

produced by Algorithm 2. “mx.mlp” function generates

SAEs to build model. Step 2 predicts energy consumption

rates based on optimized SAE model. Energy

consumption prediction is a multi-class problem so that

softmax function is used in the model for assign

probability to each class. Eq. 3 calculates softmax

function. Here f(x) denotes softmax function and x is an

input vector. K is the number of output units and i

enumerates output units.

1

()
i

i

x

i K
x

j

e
f x

e





 (3)

 Tuning Stacked Auto-encoders for Energy Consumption Prediction: A Case Study 5

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2019, 2, 1-8

Table 1. Formulas of performance parameters.

Name Formula

TPR TP/(TP+FN)

FPR FP/(FP+TN)

accuracy (TP+TN)/(TP+TN+FP+FN)

RMSE

1
2 2

1

1
()

n

i

yi zi
n 

 
 

  


D. Performance Parameters

Three performance indexes are used in the experiment

to evaluate the effectiveness of tuning. They are root-

mean square error (RMSE), accuracy, and area under the

curve (AUC) which is obtained drawing true positive rate

(TPR) against false positive rate (FPR). The formulas of

the performance measures are given in Table 1. For

RMSE, yi is the observed energy consumption, and zi is

the predicted energy consumption. n is the number of

observations. Other formulas are generated from the

notions of confusion matrix.

E. Results

Mean accuracy values of the experiment are presented

in Table 2. Tuned and basic SAEs are compared with 20

epochs. According to the obtained findings, in the second

iteration, tuned SAE was able to achieve the best

accuracy with 0.742857. On the other hand, the best

accuracy of SAE is 0.542857. Further, in basic SAE, as

the number of iterations increases, accuracy declines

inconsistently that for some iterations, accuracy increases.

Using tuning operation on SAE improved accuracy up to

0.2.

Table 2. Mean accuracy values of 100 test cases. Bold-faced values are

the best for each column.

Iteration number Tuned SAE
Basic SAE with random

parameters

1 0.67619 0.542857

2 0.742857 0.533333

3 0.742857 0.552381

4 0.742857 0.552381

5 0.742857 0.485714

6 0.742857 0.485714

7 0.742857 0.466667

8 0.742857 0.485714

9 0.742857 0.495238

10 0.742857 0.495238

11 0.742857 0.47619

12 0.742857 0.466667

13 0.742857 0.47619

14 0.742857 0.438095

15 0.742857 0.438095

16 0.742857 0.47619

17 0.742857 0.466667

18 0.742857 0.47619

19 0.742857 0.438095

20 0.742857 0.438095

Table 3. Mean RMSE results for tuned SAE. Bold-faced

value is the best.

layer1 layer2 layer3 RMSE Rsquared

80 10 2 0.51488 0.16805

80 10 3 0.528638 0.141662

80 10 5 0.511084 0.144412

80 20 2 0.518676 0.189492

80 20 3 0.521836 0.175013

80 20 5 0.522578 0.156506

80 25 2 0.507903 0.149588

80 25 3 0.532979 0.175687

80 25 5 0.501979 0.184426

85 10 2 0.507076 0.164327

85 10 3 0.506222 0.17498

85 10 5 0.516843 0.1605

85 20 2 0.520204 0.128154

85 20 3 0.509162 0.148409

85 20 5 0.519032 0.158413

85 25 2 0.52041 0.117148

85 25 3 0.533475 0.154795

85 25 5 0.522118 0.159829

90 10 2 0.513195 0.180583

90 10 3 0.519889 0.151531

90 10 5 0.522863 0.161013

90 20 2 0.517321 0.182455

90 20 3 0.532141 0.141483

90 20 5 0.515681 0.14772

90 25 2 0.507656 0.137887

90 25 3 0.528421 0.171819

90 25 5 0.513364 0.122673

Table 3 shows average grid search results of the test

cases in terms of tuned SAE. Best configurations are

determined by searching optimal number of hidden layers

in layer1, layer2, and layer3. According to the

experimental results, (85, 25, 5) is the optimal. Compared

to the basic SAE, tuned SAE reduced RMSE up to 0.5

that basic SAE was able to achieve 0.57 RMSE with

random parameters.

Fig.3. ROC curve of SAE generated using random

instances without tuning.

6 Tuning Stacked Auto-encoders for Energy Consumption Prediction: A Case Study

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2019, 2, 1-8

Fig. 3-4 illustrate AUC values of basic and tuned SAE,

respectively. Basic SAE achieved 0.79 value of AUC,

whereas tuned SAE outperformed it with 0.84 value of

AUC. Selected test cases may have affected this

difference. However, RMSE results support the evidence

provided by values of AUC. Using merely energy

consumption data retrieved from processor could create a

threat to the validity. However, performing a

preprocessing on EC data as in this paper helps removing

that threat.

F. Threats to the Validity

Executing test cases having similar coding structure

could create an internal threat. To alleviate this threat, a

random selection has been made on the test case pool.

Using same parameter settings for comparing tuned

SAE with basic SAE could create misleading results. We

changed parameter settings randomly in basic SAE to

create a reliable comparison setting.

Fig.4. ROC curve of SAE generated via tuning based on grid search.

Algorithm 1 is suitable for imperfect data instances so

that it was compared with three alternatives including

Expectation-Maximization (EM) [30], Multiple

Imputation (MI) [31], and K-nearest Neighbor Imputation

(kNNI) [32]. Complexities of those methods are

presented in Table 4. For EM, m is the iteration and n

denotes the number of parameters. While k denoted the

number of steps in MI, l is the number of versions of the

data set. For kNNI, n represents the number of instances

and d is the number of dimensions. Even in worst case,

Algorithm 1 shows competitive complexity compared

with EM and kNNI. On the other hand, MI yields lower

complexity than Algorithm 1 in some cases.

Table 4. Complexity comparison of similar algorithms.

Method Complexity

EM O(m.n^3)

MI O(kl+l)

kNNI O(nd)

Proposed method (Algorithm 1) O(m.n)

V. CONCLUSIONS

This study focuses on tuning SAEs to improve

prediction performance of energy consumption of

processors. In this respect, a data preprocessing algorithm

is proposed to make data suitable for prediction. To

evaluate the findings, tuned SAE has been compared with

basic SAE. According to the study results, selecting

random parameters to execute a SAE based model does

not perform well in terms of prediction accuracy and

RMSE. Instead, using parameter search methods such as

grid search increases prediction performance remarkably.

However, as in [24], developing sophisticated tuning

methods may provide new insights into energy

consumption prediction.

SAEs have been applied in various fields in recent

years. Generally speaking, almost all the studies

including a SAE based method for predicting real-time

data streams use same evaluation metrics. Developing

problem-oriented metrics for SAE may deepen our

knowledge to find suitable solution.

REFERENCES

[1] P. I. Pénzes and A. J. Martin, “Energy-delay efficiency of

VLSI computations,” Proceedings of the 12th ACM Great

Lakes symposium on VLSI, pp. 104-111, 2002.

[2] L. Senn, E. Senn, and C. Samoyeau, ”Modelling the

power and energy consumption of NIOS II softcores on

FPGA,” Cluster computing workshops (cluster workshops)

IEEE international conference on, pp. 179-183, 2012.

[3] A. Sinha and A. P. Chandrakasan, “JouleTrack: a web

based tool for software energy profiling,” In Proceedings

of the 38th annual Design Automation Conference, pp.

220-225, June 2001.

[4] S. Lee, A. Ermedahl, S. L. Min, and N. Chang, “An

accurate instruction-level energy consumption model for

embedded risc processors,” Acm Sigplan Notices, vol. 36,

no. 8, pp. 1-10, 2001.

[5] Y. S. Lin, C. C. Chiang, J. B. Li, Z. S. Hung, and K. M.

Chao, “Dynamic fine-tuning stacked auto-encoder neural

network for weather forecast,” Future Generation

Computer Systems, vol. 89, pp. 446-454, 2018.

[6] T. Zhou, G. Han, X. Xu, Z. Lin, C. Han, Y. Huang, and J.

Qin, “δ-agree AdaBoost stacked autoencoder for short-

term traffic flow forecasting,” Neurocomputing, vol. 247,

pp. 31-38, 2017.

[7] S. X. Lv, L. Peng, and L. Wang, “Stacked autoencoder

with echo-state regression for tourism demand forecasting

using search query data,” Applied Soft Computing, vol. 73,

pp. 119-133, 2018.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770-778, 2016.

[9] T. H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma,

“PCANet: A simple deep learning baseline for image

classification?,” IEEE Transactions on Image Processing,

vol.24, no. 12, pp. 5017-5032, 2015.

[10] D. Shen, G. Wu, and H. I. Suk, “Deep learning in medical

image analysis,” Annual review of biomedical engineering,

vol. 19, pp. 221-248, 2017.

[11] J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang, and

A. Madabhushi, “Stacked sparse autoencoder (SSAE) for

nuclei detection on breast cancer histopathology

images. IEEE transactions on medical imaging, vol. 35,

 Tuning Stacked Auto-encoders for Energy Consumption Prediction: A Case Study 7

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2019, 2, 1-8

no. 1, pp. 119-130, 2016.

[12] D. Luo, R. Yang, B. Li, and J. Huang, “Detection of

double compressed AMR Audio using stacked

autoencoder,” IEEE Transactions on Information

Forensics and Security, vol. 12, no. 2, pp. 432-444, 2017.

[13] A. Majumdar and A. Tripathi, ”Asymmetric stacked

autoencoder,” Neural Networks (IJCNN) International

Joint Conference, pp. 911-918, 2017.

[14] M. Yang, A. Nayeem, and L. L. Shen, “Plant

classification based on stacked autoencoder,” Technology,

Networking, Electronic and Automation Control

Conference (ITNEC), pp. 1082-1086, 2017.

[15] R. Jiao, X. Huang, X. Ma, L. Han, and W. Tian, “A

Model Combining Stacked Auto Encoder and Back

Propagation Algorithm for Short-Term Wind Power

Forecasting,” IEEE Access, vol. 6, pp. 17851-17858, 2018.

[16] D. Singh and C. K. Mohan, “Deep Spatio-Temporal

Representation for Detection of Road Accidents Using

Stacked Autoencoder,” IEEE Transactions on Intelligent

Transportation Systems, in press.

[17] V. Singhal, A. Gogna, and A. Majumdar, “Deep

dictionary learning vs deep belief network vs stacked

autoencoder: An empirical analysis,” International

conference on neural information processing, pp. 337-344,

2016.

[18] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Y. Wang, “Traffic

flow prediction with big data: A deep learning approach,”

IEEE Trans. Intelligent Transportation Systems, vol. 16

no. 2, pp. 865-873, 2015.

[19] M. A. Beghoura, A. Boubetra, and A. Boukerram, “Green

software requirements and measurement: random decision

forests-based software energy consumption profiling,”

Requirements Engineering, vol. 22, no. 1, pp. 27-40, 2017.

[20] A. L. França, R. Jasinski, P. Cemin, V. A. Pedroni, and A.

O. Santin, “The energy cost of network security: A

hardware vs. software comparison,” Circuits and Systems

(ISCAS) IEEE International Symposium, pp. 81-84, 2015.

[21] A. S. Ahmad, M. Y. Hassan, M. P. Abdullah, H. A.

Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A

review on applications of ANN and SVM for building

electrical energy consumption forecasting,” Renewable

and Sustainable Energy Reviews, vol. 33, no. 1, pp. 102-

109, 2014.

[22] D. N. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L.

Jiao, L. Qendro, and F. Kawsar, F. “Deepx: A software

accelerator for low-power deep learning inference on

mobile devices,” Proceedings of the 15th International

Conference on Information Processing in Sensor

Networks, p. 23, 2016.

[23] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A.

Manzagol, “Stacked denoising autoencoders: Learning

useful representations in a deep network with a local

denoising criterion,” Journal of machine learning

research, pp. 3371-3408, 2010.

[24] H. Zhan, G. Gomes, X. S. Li, K. Madduri, and K. Wu,

“Efficient Online Hyperparameter Optimization for

Kernel Ridge Regression with Applications to Traffic

Time Series Prediction,” arXiv preprint arXiv:1811.00620,

2018.

[25] S. Romansky, N. C. Borle, S. Chowdhury, A. Hindle, and

R. Greiner, “Deep Green: modelling time-series of

software energy consumption,” In Software Maintenance

and Evolution ICSME, pp. 273-283, 2017.

[26] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A.

Zaidman, and A. De Lucia, “Petra: a software-based tool

for estimating the energy profile of android applications,”

Proceedings of the 39th International Conference on

Software Engineering Companion, pp. 3-6, 2017.

[27] D. Feitosa, R. Alders, A. Ampatzoglou, P. Avgeriou, and

E. Y. Nakagawa, “Investigating the effect of design

patterns on energy consumption,” Journal of Software:

Evolution and Process, vol. 29, no. 2, 2017.

[28] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy

consumption using genetic improvement,” Proceedings of

the Annual Conference on Genetic and Evolutionary

Computation, pp. 1327-1334, 2015.

[29] G. Bekaroo, C. Bokhoree, and C. Pattinson, “Power

measurement of computers: analysis of the effectiveness

of the software based approach,” Int. J. Emerg. Technol.

Adv. Eng, vol. 4, no. 5, pp. 755-762, 2014.

[30] G. K. Van Steenkiste and J. Schmidhuber, “Neural

expectation maximization,” Advances in Neural

Information Processing Systems, pp. 6691-6701, 2017.

[31] P. Li, E. A. Stuart, and D. B. Allison, “Multiple

imputation: a flexible tool for handling missing data,”

Jama, vol. 314, no. 18, pp. 1966-1967, 2015.

[32] Y. H. Kung, P. S. Lin, and C. H. Kao, “An optimal k-

nearest neighbor for density estimation,” Statistics &

Probability Letters, vol. 82, no. 10, pp. 1786-1791, 2012

APPENDIX A CODE SNIPPET FOR TUNING SAE

library(mxnet)

set.seed(7)

load the library

library(caret)

mydata=read.csv("energyDraw.csv")

train.ind = c(1:50, 100:150)

train.x = data.matrix(mydata[train.ind, 1:11])

train.y = mydata[train.ind, 11]

test.x = data.matrix(mydata[-train.ind, 1:11])

test.y = mydata[-train.ind, 11]

prepare training scheme

control <- trainControl(method="repeatedcv",

number=10, repeats=10)

design the parameter tuning grid

grid <- expand.grid(layer1=c(80,85,90),

layer2=c(10,20,25), layer3=c(2,3,5), hidden_dropout=1,

visible_dropout=1)

train the model

model <- train(energy~., data=train.x, method="dnn",

trControl=control, tuneGrid=grid)

summarize the model

print(model)

Authors’ Profiles

M. Maruf Öztürk: Received his Master

and Ph. D. degree at 2012 and 2016,

respectively from Computer Engineering

Department of University of Sakarya.

Currently he works as a researcher at

Computer Engineering Department of

Suleyman Demirel University. His main

8 Tuning Stacked Auto-encoders for Energy Consumption Prediction: A Case Study

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2019, 2, 1-8

interests lie in green software, fault prediction, hyperparameter

optimization, and test case prioritization.

How to cite this paper: Muhammed Maruf Öztürk, "Tuning

Stacked Auto-encoders for Energy Consumption Prediction: A

Case Study", International Journal of Information Technology

and Computer Science(IJITCS), Vol.11, No.2, pp.1-8, 2019.

DOI: 10.5815/ijitcs.2019.02.01

