
I.J. Information Technology and Computer Science, 2014, 01, 68-75
Published Online December 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.01.08

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 68-75

FSM Circuits Design for Approximate String

Matching in Hardware Based Network Intrusion

Detection Systems

Dejan Georgiev

Faculty of Electrical Engineering and Information Technologies , Skopje, Macedonia

E-mail: dejan@inbox.com

Aristotel Tentov

Faculty of Electrical Engineering and Information Technologies, Skopje, Macedonia

E-mail: toto@feit.ukim.edu.mk

Abstract— In this paper we present a logical circuits

design for approximate content matching implemented

as finite state machines (FSM). As network speed

increases the software based network intrusion

detection and prevention systems (NIDPS) are lagging

behind requirements in throughput of so called deep

package inspection - the most exhaustive process of

finding a pattern in package payloads. Therefore, there

is a demand for hardware implementation.

Approximate content matching is a special case of

content finding and variations detection used by

"evasion" techniques. In this research we will enhance

the k-differentiate problem with "ability" to detect a

generalized Levensthein edit distance i.e. transposition

of two neighboring characters. The proposed designs

are based on automata theory using the concept of state

reduction and complexity minimization. The main

objective is to present the feasibility of the hardware

design and the trade-off between the simple next state

and output functions of NFA and reduced number of

required memory elements (flip-flops) of DFA.

Index Terms — FSM, Content Matching, Generalized

Levensthein Distance, NFA,DFA

I. Introduction

Content matching is a process of finding a predefined

patterns of string character in an a-priori unknown input

stream. Content matching is the most often used option

at modern Intrusion Detection and Prevention Systems

(NIDPS) like Snort [1] . The content keyword used in

Snort allows to a user an important feature to set a rule

that search for a pattern in the package payload and

based on that process to raise an alarm or reaction. On

high speed network searching for all the content option

throughout all the incoming and outgoing packages is a

resource excusing process that is slowing down the

performances of the system. More over there is a need

to perform a check to a possible variations of the

content because of so named "evasion" techniques.

Software systems have processing limitations in that

regards. On the other hand hardware platforms, like

FPGA offer efficient implementation for high speed

network traffic.

Excluding the regular expressions as special case ,the

problem of approximate content matching basically is a

k-differentiate problem of finding a content

mcccC21 in a string ntttT21 such as the

distance D(C,X) of content C and all the occurrences of

a substring X is less or equal to k , where nmk  .

The approximate content matching with k mismatches

i.e. the minimal number of substitutions to change one

content to another with same length is named Hamming

distance. The Levenshtein distance or edit distance is a

string metric of minimal number of character edits

(insertion, deletion and substitution) required to change

one word to another not necessarily equal lengths. A

non-reduced NFA circuit for Levensthein distance

matching with (m+1)(k+1) states have been presented

by [2] . The Damerau-Levensthein distance or

generalized Levenshtein distance is used to refer do the

edit distance including transposition of any two

adjacent characters in a pattern. We will present

sequential logical circuits for real time approximate

content matching including character alternation,

substitution, insertion, deletion and transposition. The

approach presented in this paper is based on the theory

of [3] and [4] . The rest of the paper is organized as

follow: section 2 gives a brief review of the related

work in the scope and the basic principles used in this

research. Section 3 describes formal definition of Final

State Machines (FSM).

The implementation of generalized Levenshtein

approximate content matching as an "upgraded"

solution of [2] and extended with the concept of

complexity reduction is presented in section 3.1.

Tending to reduce the required memory elements we

present the solution as DFA is section 3.2. The benefits

 FSM Circuits Design for Approximate String Matching in Hardware 69

Based Network Intrusion Detection Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 68-75

and trade-offs compared to relate work are concluded in

section 4 and 6.

II. Background

In the recent years there have been several studies for

content matching in hardware mostly implemented on

FPGA's. The three main design approaches are brute-

force, NFA and DFA. The brute-force approaches [5] [6]

are efficient designs for high speed networks but mostly

intended for exact content findings. Approximate

matching could be achieved upon too much wasted

programmable logic resources and in that manner it is

impractical for complex patterns. The first to use non-

deterministic finite automata (NFA) on a programmable

hardware for regular expressions are the authors of [7] .

They have used technique of so called One-Hot-

Encoding (OHE) scheme. At OHE each state is

represented by a flip-flop where active state is

represented by 1 and inactive by 0. Based on this

research an efficient design for complex pattern

matching including bounded-length wildcard and

approximate content matching using NFA circuits have

been presented by [8] . The same paper has introduced a

8-to-256 shared ASCII character decoder. The

deterministic automata (DFA) approach uses a state

machine to track pattern matches across clock cycles.

By definition DFA can have only one active state but

that beneficially yields to a compact state encoding.

III. FSM Circuits

Content matching and approximate content matching

is basically a sequential problem and therefore in

hardware it can be solved using sequential logical

circuits. Formal definition of FSM explains it as a seven

- tuple

),,,,,,(FsQM  , where

Σ - Is the input alphabet;

Ψ - Denotes the output alphabet;

Q- Is the finite set of states;

QQ : - is the next state function;

Q: - represents the output function;

Qs - The initial state;

QF  - set of final states;

Each FSM has a finite number of states of which one

is initial state. At each unit of time FSM accepts a letter

from input alphabet, in our case the whole set of ASCII

characters, which cause a translation from one state to

another. The movement across the states is defined by

the next state function δ. In some states FSM produces

an output letter defined by the output function. The

concept of our solution is based on Moore type machine

shown on Fig.1

Fs

Q

,

memory state



Next state function
Output function

input output
 

Fig. 1: Block diagram of Moore FSM

Since package inspection is performed on the payload

(layer 5-7 of OSI model) the input alphabet Σ is defined

over all set of ASCII characters. The simplest character

decoder is presented by 8-to-1 bit decoder i.e. eight port

logical AND port as shown on Fig. 2

А

comparator

Fig. 2: Simple 8-to-1 decoder (comparator)

In the same manner an alternation function can be

presented as simple OR logical port. Alternation

between two characters encompasses approximate

matching with equal uncertainty i.e. equal probability to

occur one of the two possible characters. Techniques of

evasion most often use the principle of character

alternation replacing lower case with upper case

characters or visually similar alphanumerical characters,

for example S 5 , B b, b 6, I  ! etc.

3.1 Non-Deterministic Finite Automata

NFA representation is a directed graph where each

node is a state and each edge is associated with a input

character. A nondeterministic machine can have such

transition in which a state could be activated without

input character. These transitions are so called ԑ-

transitions. Additionally, from each state of NFA it is

70 FSM Circuits Design for Approximate String Matching in Hardware

Based Network Intrusion Detection Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 68-75

allowed more than one edge to originate for the same

input character, yielding a NFA to have more than one

active states. In context of approximate content

matching NFA's transition diagrams are appropriate for

pattern finding simulation. For the purposes of this

paper let M be a non-deterministic finite automata M

recognizing the language of contents },{)(21 CCML 

and all variants of 1C and 2C where ""1 ABCC  ,

""2 AbCC  .),,,,(kFsQM  having that Σ is the

ASCII set, s is the initial state, }.....,{ 21 nqqqQ  , δ is

the mapping function and ..},{ 10 FFFk  is a set of

final state , where index k represents the number of

errors allowed. }1,0{ is omitted from the

formulation of M.

Obviously 1C and 2C mismatch in the second

character (22 cc ) and therefore an alternation

function B|b can be used.



s
1q 2q

3q
4q

5q
6q 7q

1F

0F
A B|b C

B|b

B|b

A

C

B|b

C

A B|b C

k=0

k=1



A

)(| bB

)(C

8q

10q

9q

11q 12q 2F k=2



A

B|b

A

 

A

B|b

B|b

B|bbB|

C

C

C

)(C

k=2

k=2

Fig. 3.1.1: NFA transition diagram for generalized Levenshtein approximate content matching with 2 errors allowed (k=2) and complexity reduction

Fig. 3.1.1 shows two errors allowed (k=2) NFA for

generalized Levenshtein approximate content matching

without ԑ-transitions eliminated using an

)(qCLOSURE algorithm.

Here BA, and C represent the complementary

characters of A,B and C meaning

}{},{ BBAA  and }{CC  .

3.1.1 Complexity reduction

The NFA presented on Fig. 3.1.1 has (m+1)(k+1) +

(m-1)k number of states, where m is the length of the

pattern and k is the number of errors allowed. There are

situations where only the events of mismatches are

important but not the number of mismatches occurred.

According to [4] in such cases the number of states for

generalized Levenshtein approximate content matching

could be reduced by cutting the upper right angle

triangle from NFA transition diagram thus reducing the

graph for
2k number of states. In similar manner we

can remove all the states and transition intended to

insert a character before the content to be find and it's

associate states. Thus the overall reduction of states is

given by

 FSM Circuits Design for Approximate String Matching in Hardware 71

Based Network Intrusion Detection Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 68-75

22k (1)

It is obvious that the reduced number of states is

independent of the length of the pattern m, taking in

consideration that mk  . Reducing the number or

states retreats important feature - the exact matching. A

possible compromise could be acquired by cutting only

the down left corner of the transition diagram.

3.1.2 NFA circuits for approximate string matching

As it was mentioned before the one-hot-encoding

(OHE) technique is very suitable to represent the states

of non-deterministic finite automata. Each state is

associate with a flip-flop in a scheme that the output of

a state flip-flop is connected to a input logic to

successive one or more than one flip-flops in a logical

conjunction depending of the transition edges. Each

active state is represented by a flip-flop output 1 and

inactive output 0, considering that more or even all the

state could be active in the same time. Pattern matching

starts with any input character from Σ at the initial state

(s) and translates to the one of the final states (F)

according to the matching algorithm. A match is

registered when there is a liner - time transition

including insertion, deletion, substitution and

transposition of 1's throughout the flip-flop starting at

the initial state and ending at the final state. This is

similar process as described by the Shift-And algorithm

by [9] . In general NFA for generalized Levensthein

approximate content matching requires (m+1)(k+1) +

(m-1)k basic memory elements, the same as the number

of states. Hence any state of the transition diagram is

represented by a most basic memory element, in this

case a D flip-flop. In the logical circuit we present as a

generalized Levenshtein distance including the size

reduction the number of states i.e. the number of

necessary flip-flops is equal to

2 () 1,k m k m k m    (2)

NFA implementation in hardware is a feasible

solution since multi-active states can be realized as

concurrent logical elements. For a given content

C="A(B|b)C" a logical circuit for generalized -

Levenshtein approximate content matching whose

transition diagram was shown in Fig. 3.1.1 in RTL

schematic view including character decoders

(comparators) is presented on Fig. 3.1.2.

Fig. 3.1.2: NFA logical circuit for generalized Levenshtein approximate content matching from Fig.3.1.1

For simulation purposes ISE Project Navigator

(0.61xd) is used. The mapping function δ i.e. the next

state function is a combinational logical circuit

composed of basic AND, OR and NOT functions. It is

72 FSM Circuits Design for Approximate String Matching in Hardware

Based Network Intrusion Detection Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 68-75

anticipated that all the logical components are

synchronized with a centralized clock signal. It is also

important to note that the complexity to the input of any

flip-flop in the diagram is not more than 5- input OR

gate meaning one input for each edit distance metric:

exact, insert, delete, replace and transpose, regardless of

the overall number of states.

Character comparators (decoders) are presented as

well. The mapping function δ i.e. the next state function

is a combinational logical circuit composed of basic

AND, OR and NOT functions. It is anticipated that all

the logical components are synchronized with a

centralized clock signal. It is also important to note that

the complexity to the input of any flip-flop is not more

than 5- input OR gate meaning one input for each edit

distance metric: exact, insert, delete, replace and

transpose.

3.2 Deterministic Finite State Machines

If the space complexity of a given NFA for

approximate content matching is given by mk than the

corresponding DFA will have much lower states than
mk2 , in fact according [11] this number of states is

1km . Our intention in implementation of finite state

machine for approximate content matching is circuit

design with minimal number of memory elements for

memory state encoding and minimal complexity of next

state and the output function. DFA despite NFA cannot

have more than one active state in a given moment of

time. But this feature can be an advantage in possibility

to utilize the technique of compact or sequential state

encoding. In theory the number of bit required i.e. the

number of basic memory elements - D flip flops to

encode a DFA is equal to)(log 1
2

km and still

processing input characters in a linear time.

3.2.1 NFA to DFA

Deterministic finite state automata can be observed as

a special case of nondeterministic automata.

Consequently, the language accepted by NFA could be

accepted by DFA as well. In other words if a language

is accepted by NFA given as },,,,{ FsQM  we can

find a DFA defined by },,,,{ FsQM   that accepts

same language, that is)()(MLML  . The transition

from non-deterministic automata to an equivalent

deterministic automata is performed by mapping all

active states in given point of time from NFA to a

corresponding singular state of DFA. The last can be

mathematically depicted as

}{),(),(),(1001 sNAqAqAq  

Table 1 shows mapping from NFA to a equivalent

DFA states for transition diagram represented on

Fig.3.1.1. Following the concept presented on Table 1 it

is feasible to design a pseudo-adaptive DFA like one

that do not accepts successive metric of same type. For

example from DFA state s0 it can be temporally

assumed that the NFA mapping 126)|,(qbBq  is not

valid thus removing double character replacement, but

the same is yet regular for the others NFA to DFA

mappings.

Table 1: NFA to DFA states mapping for transition diagram on Fig.3.1.1

 A B|b C },|,{ CbBA

s {s0} 1sq 763 qqsq 6sq 6sq

1sq {s1} 761 qqsq 763 qqsq 76qsq 76qsq

6sq {s2} 121qsq 763 qqsq 21296 Fqqsq 126qsq

121qsq {s3} 761 qqsq 763 qqsq 276 Fqsq 76qsq

126qsq {s4} 121qsq 763 qqsq 21296 Fqqsq Fqqsq 1296

76qsq {s5} 21271 Fqqsq 212763 Fqqqsq 21296 Fqqsq 2126 Fqsq

126qsq {s6} 126qsq 763 qqsq 296 Fqsq 126qsq

761 qqsq {s7} 212761 Fqqqsq 212763 Fqqqsq 212976 Fqqqsq 21276 Fqqsq

1271 qqsq {s8} 212761 Fqqqsq 212763 Fqqqsq 21276 Fqqsq 21276 Fqqsq

763 qqsq {s9} 21271 Fqqsq 212763 Fqqqsq 21296 Fqqsq 2126 Fqsq

1296 qqsq {s10} 121qsq 2763 Fqqsq 21296 Fqqsq 121qsq

1276 qqsq {s11} 2121 Fqsq 212763 Fqqqsq 21296 Fqqsq 2126 Fqsq

12761 qqqsq {s12} 212761 Fqqqsq 212763 Fqqqsq 212976 Fqqqsq 21276 Fqqsq

12763 qqqsq {s13} 1271 qqsq 212763 Fqqqsq 21296 Fqqsq 2126 Fqsq

12976 qqqsq {s14} 2121 Fqsq 212763 Fqqqsq 21296 Fqqsq 2126 Fqsq

 FSM Circuits Design for Approximate String Matching in Hardware 73

Based Network Intrusion Detection Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 68-75

3.2.2 DFA Circuits for approximate string matching

Single active state feature of DFA is favorable

condition for compact and natural binary encoding in

the synthesis process. If N is the number of states of

DFA than the number of required memory elements for

encoding the memory state is at most   1log2 N

using binary coding. But there is always a trade-off

between reduced memory elements and complexity of

next state and output function on the other hand. Also,

in circuit design views DFA are easier to describe in

HDL (hardware description language). Fig. 3.2.1 shows

DFA logic circuit implementation for mapping function

presented in Table 1. The realization of DFA circuit

performs the same approximate matching of the content

"A(B|b)C" as the circuit presented on Fig.3.1.2. It

should be noticed that circuit on Fig. 3.2.1 does not

incorporate character decoder because of simplicity. As

it can be seen only four flip-flops are used to encode

each of eight DFA states. The next state and the output

function is assembled by combinational logic much

complex in term combinational logical elements utilized

compared to NFA.

Fig. 3.2.1: DFA logical circuit for generalized Levenshtein approximate content matching from Fig.3.1.1

IV. Evaluation Results and Discuss

The FSM logical circuit modules presented here are

able to process one input character per clock cycle

concurrently regardless of the number of edit distance

metrics incorporated. Compared to the exact string

matching circuits we achieve the same processing speed

but with much more "flexibility".

74 FSM Circuits Design for Approximate String Matching in Hardware

Based Network Intrusion Detection Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 68-75

The NFA design presented in this paper uses one-hot

encoding and therefore the number of memory elements

used for memory state is equal to the number of states

of transition diagram for approximate content matching.

As far as authors are aware the only similar concept for

approximate string matching in hardware has been

implemented by [2] . Compared to their design have

reduced number of states and enhanced performances to

detect transposition besides insertion, deletion and

substitution. For the DFA design we have implemented

classical approach to FSM with binary encoding. The

benefit is reduced number of memory elements used to

record a state as a trade-off to the complexity of the

next state and the output functions. Considering the

hardware fundamental features that accept concurrent

implementations NFA's are better solutions in that

regards.

Compared to exact content matching and regular

expression matching approximate matching has some

drawbacks. Namely, they are prone to false positives

reports. Reducing the complexity i.e. removing the

states for exact matching may cause enormous number

of approximate detections since in that manner the

system is set to function to at most k mismatches. Still

the approximate string matching despite regular

expression matching provides better control of the

number errors allowed.

V. Conclusion

In this paper we presented a method to design an

approximate content matching module implemented in

hardware as a Moore type FSM logical circuit. We have

used Damerau-Levenshtein distance theory to enhance

the performances of previous proposed designs i.e. to

detect switched positions of two neighboring characters

in a pattern as one of the methods utilized by evasion

techniques. Additionally an alternation function was

employed. Both theoretical concept (NFA and DFA)

have been coded in HDL and simulated by ISE Project

Navigator (0.61xd). The simulated results are meeting

the projected criteria of our design. In similar manner

principles presented here can be expanded to a more

complex matching components e.g. with more than two

errors allowed (k>2) and combination with other

complex matching methods .

References

[1] SNORT (www.snort.org)

[2] Christopher R. Clark "Design of efficient FPGA

circuits for matching complex patterns in network

intrusion detection systems" , in partial fulfillment

of the requirement for degree Master of science in

Electrical and computer engineering , Georgia

Institute of Technology, December 2003, pp 34-36

[3] Jan Holub - "Simulation of NFA in approximate

content and sequence matching", Department of

computer and science and engineering, Faculty of

electrical engineering, Czech technical university

Karlovo, Prague

[4] Jan Holub "Reduced nondeterministic finite

automata for approximate content matching" ,

Department of computer and science and

engineering, Faculty of electrical engineering,

Czech technical university Karlovo, Prague

[5] Ioannis Sourdis "Efficient and high-speed FPGA-

based string matching for packet inspection" ,

Technical University of Crete, Chania, July 2004

[6] Young H. Cho and Willian H. Mangione-Smith

"Deep network packet filter design for

reconfugurable devices" University of California,

Los Angeles

[7] Reetinder Sidhu and Viktor K.Prasanna "Fast

regular expression matching using FPGAs" ,

Department of EE-Systems, University of

Southern California , Los Angeles CA 90089

[8] Christopher R. Clark, David E. Schimmel

"Efficient reconfigurable logic circuit for matching

complex network intrusion detection patterns" , In

proceeding of international conference of field-

programmable logic and applications (FPL),

Lisbon, Portugal, September 2003

[9] Ricardo Baeza-Yates " Algorithms for string

searching: a survey" ,Department of computer

science ,University of Waterloo, Ontario, Canada

[10] Enoch O. Hwang - "Digital logic and

microprocessor design with VHDL" , La Sierra

University, Riverside

[11] Borivoj Melichar "Approximate string matching

by finite automata" , Department of computer

science and engineering, Czech Technical

University, Prague

Authors' Profiles

Dejan Georgiev was born in

Radovis, Republic of Macedonia in

1981. He received 5-year engineering

degree in electronics and

telecommunications and his Master

Degree in telecommunications from

Faculty of Electrotechnical

Engineering and Information

Technologies - Skopje, R. Macedonia. He is currently

working towards his PhD in Computer Science and

Computer Engineering. He has work experience at

home and international telecommunication company

and governmental agencies.

 FSM Circuits Design for Approximate String Matching in Hardware 75

Based Network Intrusion Detection Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 68-75

Aristotel Tentov, PhD is Full

Professor at University "St. Kiril i

Metodij" in Skopje, Faculty of

Electrical Engineering, Computer

Science Department, Skopje,

Republic of Macedonia. He has

completed his PhD in Computer

Science in 1994. Dr Aristotel Tentov

published as an author or as a coauthor more than 20

scientific papers on conferences, symposiums and

journals. Besides that, he was an author or a coauthor

on more than 20 technical reports or projects. Dr.

Tentov is engaged in several research areas: Computer

Architectures, wired, wireless and mobile networking,

Design of Integrated Circuits, Multiprocessor Systems,

RFID devices and environments etc.

How to cite this paper: Dejan Georgiev, Aristotel

Tentov,"FSM Circuits Design for Approximate String

Matching in Hardware Based Network Intrusion Detection

Systems", International Journal of Information Technology

and Computer Science(IJITCS), vol.6, no.1, pp.68-75, 2014.

DOI: 10.5815/ijitcs.2014.01.08

