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Abstract—The paper presents two approaches to the 

sensitivity analysis in multi-objective linear 

programming (MOLP). The first one is the tolerance 

approach and the other one is the standard sensitivity 

analysis. We consider the perturbation of the objective 

function coefficients. In the tolerance method we 

simultaneously change all of the objective function 

coefficients. In the standard sensitivity analysis we 

change one objective function coefficient without 

changing the others. In the numerical example we 

compare the results obtained by using these two 

different approaches. 

 

Index Terms— Multi-Criteria Decision Making,  Multi-

Objective Linear Programming, Sensitivity Analysis 

 

I. Introduction 

1.1 The aim of the Paper  

The paper analyses the sensitivity of the efficient 

solution in MOLP (and the weak efficient solutions). 

This problem was considered by many authors in 

different ways. The paper of  Hansen et al. [1] was one 

of the first attempts to use the tolerance approach in the 

MOLP. Hladik [2] gave some approximation methods 

for the maximal tolerance. The approach based on the 

volume of the polyhedron was described by Vetchera 

[3]. Sitarz [4] gave a method of analysing the sensitivity 

approach in MOLP based on the standard sensitivity 

approach in linear programming.  

In this work we present two approaches. The first of 

them serves finding a tolerance interval. This approach 

is used in the case of changing all the objective function 

coefficients. We present the approximation method for 

this approach, which is based on solving some 

additional  linear programming problems. The other 

approach is used in the case of changing only one 

objective function coefficient. This approach is based 

on the parameterization of the test problem for 

efficiency given by Steuer [5]. In this case we also 

present the sensitivity of weak efficiency. The 

following papers on the sensitivity analysis in MOLP 

are worth mentioning: the range set approach by 

Benson [6], the interval coefficients by Chanas and 

Kuchta [7], the tolerance approach by Hladik [8], 

standard sensitivity approach in MOLP by Sitarz [9, 10, 

11] 

1.2 Outline of the paper  

This paper consists of the following sections: section 

2 presents the introduction to MOLP, section 3 

considers the additive tolerance approach to MOLP, 

section 4 analyses the standard sensitivity analysis to 

MOLP (this section is a continuation of previous works 

by Sitarz [4, 12]). Next sections give the numerical 

example and application which illustrate the presented 

theory. The last section summarizes the paper 

 

II. Notation  

2.1 Main Notation  

The notation used in the paper is as follows. We 

consider multi-objective linear programming problem in 

the following form:  

VMax {Cx: xX}                                                     (1) 

where 

X={xRn: Axb, x0} or  X={xRn: Ax=b, x0} - 

feasible region in decision space. 

x n - vector of  decision variables 

C n,k - matrix of objective function coefficients  

A n,m -full row rank matrix of constraint 

coefficients 

b m  -  right hand side vector 

 

2.2 Degenerated Solutions  

For the basic solution of problem (1) connected with 

the base { 1 2, ,..., mjj j
a a a } we will use the following 

notation: 

B = { j1, ..., jm} - index set of the base   

AB = [ 1 2, ,..., mjj j
a a a ] - basic columns of A, 

AN - nonbasic columns of A  

x = [xB, xN] - basic solution associated with B, 

(xB=AB
-1 b0, xN=0) 

CB (CN) -  basic (nonbasic)columns of C  

N
C - matrix of the reduced costs 



 Approaches to Sensitivity Analysis in MOLP 55 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 03, 54-60 

For the degenerated basic solution of (1) we will use 

the following notation: 

(xB)i =0 - degenerated basic variable 

d - number of degenerated basic variables 

1

B N D

  A A  - matrix associated with degenerated 

basic variables and nonbasic column. 

For the extreme point of X we define the polar cone 

of X at the point x* in the following way: 

N(x*) = { x*R: Hx≥0} 

where  H=[hi]iI   and  hiR  are all vectors of the 

directions for the edges (iI) of X emerging from x*. In 

the case of the nondegenerated basic  solution 

[ , ]
B N

x x x , we have  

H=   0,1 T

BA
  

We call xX the efficient solution of (1) if 

~ x’X:     Cx*≤ Cx’    Cx*≠Cx’ 

We call xX the weak efficient solution of (1) if 

~ x’X:     Cx*< Cx’ 

It is obvious that every efficient solution is the weak 

efficient solution. 

 

III. Additive Tolerance  

The additive tolerance approach aims at finding a 

value (tolerance) representing the maximum absolute 

additive perturbation which can be applied 

simultaneously without effecting the efficiency.  The 

presented results are based on works [1, 2]. 

Let us introduce an additive -neighbourhood of a 

matrix C=[cij]: 

     ijij
ji

ij cddDCO
,

max:][  

We consider a new problem: 

VMax {Dx: xX}                                                   (2) 

which is built from problem (1) by changing matrix 

C  by matrix D. 

 

Definition 1.  

An additive tolerance for an efficient solution x*  is 

any real >0 such that x* remains efficient to (2) for all 

 COD  
. A maximal additive tolerance we denote 

as 
max . 

 

Remark 1 [methods for computing the maximal 

tolerance]  

Algorithms for computing the maximal tolerance can 

be found in the work by Hansen et al. [1].  

The work by Hladik [3] gives the approximation 

method for finding max . In the following theorem, we 

use the following notation: 

H =  
ijijh  – matrix of the absolute values of hij.  

1  Rm – vector of ones. 

 

Theorem 1. [2] 

Let (opt, opt ) be the optimal solution to the 

following program:  

Max  

HCT   H 1  0     (3) 

      1T = 1 

0    Rm,  0    R 

Then opt  is an additive tolerance for problem (2). 

 

Remark  2.  [to theorem 1] 

Problem (3) is a linear programming problem, which 

makes it easy to solve.  Moreover, it is obvious that  

opt+ < 


max , but we do not know how much opt+ may 

differ from 


max , (in [2] we cannot find the upper limit 

of this approximation).  

 

IV. Standard Sensitivity Analysis  

4.1 Main results  

The standard sensitivity analysis aims at finding the 

values (a parameter set) of one objective function 

coefficient which can be applied without effecting the 

efficiency.  The presented results are based on Sitarz [4, 

12]. 

Let us introduce a new matrix  Dt = [dkl] which is 

obtained from matrix C by changing only one element 

cij into parameter t: 

, if  ( , ) ( , )

, if ( , ) ( , )

kl

kl

c k l i j
d

t k l i j


 


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We consider a new problem: 

VMax { Dt x: xX}                                                  (4) 

 

Definition 2.  

a. The set of all parameters t, for which 
*

x  is the 

weak efficient solution to (4) will be denoted by 
*

W

x
T . 

b. The set of all parameters t, for which 
*

x  is the 

efficient solution to (4) will be denoted by 
*

x
T . 

 

4.2 Topological Properties  

The topological properties of sets 
*

x
T  and 

*

W

x
T  are 

given in the following theorems.   

 

Theorem 2. [4, 12] 

a. The set  
*

x
T  is an interval. 

b. The set 
*

W

x
T  is a closed interval. 

 

4.3 Methods of computation  

We present the methods for describing sets  
*

x
T  and 

*

W

x
T . In the following theorem, we use the following 

notation: 

I  Rdxd - vector of ones, 

1  Rn-m - identity matrix. 

ND   - reduced cost matrix to problem (4) associated  

with nonbasic columns 

 

Theorem 3. [5] 

a. The solution x* is efficient to problem (4)  if and 

only if the problem: 

Max r 

- ND y + 1r  0                                                        (5) 

[A-1
BAN]d y + Is = 0 

0  y  Rn-m,  0  s  R 

 

has a bounded objective function value of zero. 

b. The solution x* is weak efficient to problem (4)  if 

and only if the problem:  

Max r 

- ND y + Iv = 0                                                        (6) 

[A-1
BAN]d y + Is = 0 

0  y  Rn-m, 0  v  Rk, 0  s  R 

 

has a bounded objective function value of zero. 

 

Remark 3.  [methods for finding the sets 
*

x
T  and 

*

W

x
T ] 

The detailed description of the algorithm for finding 

sets 
*

x
T  and 

*

W

x
T are given in works [4, 12]. Here, these 

methods are described in general way. As you may 

notice parameterizing the coefficient cij in the problem 

(4) causes parameterizing constraint matrix in problems 

(5) and (6).  Thus, initial multi-criteria problem (4) is 

transformed into one criterion problems (5) and (6) with 

the parameterized coefficient matrix. The sensitivity 

analysis of such one-criterion problems was presented 

in a detailed way in Gal [13]. The results of this 

analysis were used in Sitarz [6]. In this paper you can 

find the detailed computation. It is worth to notice the 

paper by Hladik and Sitarz [14], where some methods 

for computing are presented. 

 

V. Numerical Example  

Consider the following problem  [15, 2]: 

1 2

1 2

1 2

1 2

2

2.5 2

3.5 0.65

3 4 42

3 24

9

x x
VMax

x x

x x

x x

x

 
 

 

 

 



                                        (7) 

 

The set of feasible solutions X  is a polyhedron with 

the following  extreme points:  

]0,0[],0,8[],6,6[],9,2[],9,0[ 54321  xxxxx  

The set of all efficient solutions contains one  edge: 

43xx , this edge presents the set of all weak efficient 

solutions, too. Fig. 1 presents the graphical illustration 

of this problem. 

Let us analyse the sensitivity for extreme points 

 6,63 x  and   0,84 x  by using the approaches 

presented earlier. The results are presented in Table 1.  
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Table 1: The additive tolerance (approximated and maximal) and the intervals obtained by using the standard sensitivity analysis 

 3x  
4x  

opt ;  max  0.716;   0.875 0.3875;   0.3875 

c11=2.5 

1
x

T  (, 6) (, +) 

1

W

x
T  (, 6] (, +) 

[c11 max , c11+ max ] [1.6, 3.3] [2.1, 2.8] 

c12=2 

1
x

T  (0.833, +) (, +) 

1

W

x
T  [0.833, +) (, +) 

[c12 max , c12+ max ] [1.1,  2.8] [1.6, 2.3] 

c21=3,5 

1
x

T  (, +) (1.950, +) 

1

W

x
T  (, +) [1.950, +) 

[c21 max , c21+ max ] [2.625,  4.375] [3.1125, 3.8875] 

c22=0,65 

1
x

T  (, +) (, 1.167) 

1

W

x
T  (, +) (, 1.167] 

[c22 max , c22+ max ] [-0.2, 1.5] [0.2, 1.0] 

 

Remark 4 [to the results obtained in Table 1] 

a) Comparing the intervals 
1

x
T

1

W

x
T  with the intervals 

[cij max , cij+ max ] we can observe that the intervals 

1
x

T
1

W

x
T  are bigger then [cij max , cij+ max ]. This 

results from the way of the perturbation. In the first 

method, connected with 
1

x
T

1

W

x
T , we change only one 

coefficient, although  in the second method we change 

all  the coefficients simultaneously and independently.   

b) Let us notice that in all of the cases the closure of 

1
x

T  equals to 
1

W

x
T , this is not a rule, the sets cl 

1
x

T and  

1

W

x
T  can differ much more, Sitarz [12]. 

c) The values of max  and its approximation opt do 

not differ much. However, we do not know how much 

different they can be, Hladik [2].  

 

 

 

Fig. 1: Graphical illustration of the example in the decision space 

 

VI. Application in diet problem 

We consider a famous problem of linear 

programming – the diet problem. This problem is 

analysed in the case of one-criterion in many works, for 

example by Gass [16, 17]. In the case of bi-criteria 

linear programming problem, the diet problem is 

considered by Benson and Morin [18] for the nutrition 

planning in developing  nations.  
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Here, we focus on the “Optimal Nutrition” proposed 

by Kwasniewski [19].  There are strict rules on the 

proportion between the three main food components: 

protein (P), fat (F)  and carbohydrates (C). The ideal 

proportion between the main food components should 

be in the range of : 

1 (P)   :    2.5 - 3,5 (F)   :    0.5 - 0.8 (C)  

Moreover, the correct amount of protein to be 

consumed in a day is 1 g per 1 kg of a bodyweight (BW). 

In our model (BW) is a constant parameter, thus we 

denote it by const BW. By using the above rules we take 

into account two criteria:  

- minimizing the cost of the diet  

- maximizing the food energy 

To formulate MOLP problem we need to use some 

food products with known contents of protein, fat, 

carbohydrates and food energy. To illustrate this 

numerically, let us  consider ten basic food products: 

- Butter – x1 

- Bacon – x2 

- Chocolate – x3 

- Cheese – x4 

- Sour cream  - x5 

- Eggs – x6 

- Salmon  - x7 

- Pasta – x8 

- Bread – x9 

- Potatoes   - x10 

 

We use the table of mean contents of P , F, C (g) and 

food energy (Kcal) (in 100 g of a given product) which 

can be found in a cookery book. Moreover, we proceed 

calculation for the mean costs of products in Poland (in 

2012 for 100 g in euro) and we take const BW  = 70.. 

Now, we are able to present MOLP problem 

describing the above problem.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We analyse the sensitivity of the following efficient 

solution: 

, 

 

It is worth mentioning that the values of criteria 

functions for this solution are as follows: 2,37 (cost),  

2079 (energy) . 

We present the results of sensitivity analysis by 

means of the additive tolerance approach. By using the 

above data, we obtain that the given solution  

remains efficient with changing simultaneously the cost 

coefficients maximally by max = 9,4%. In other words, 

the maximal additive tolerance for this solution is equal 

to 0.094. It means that the coefficients of the objective 

functions for cost can be maximally changed by 9,4% 

and our solution is still efficient. 

 

VII. Summary 

We have dealt with the sensitivity analysis of 

efficiency in MOLP. We analysed the perturbation of 

the objective function coefficients. We have presented 

two approaches: the tolerance approach and standard 

sensitivity analysis. On the basis of these approaches 

the feasible intervals of the coefficient perturbations 

were constructed (see Table 1). By comparing these 

intervals, big differences between the considered 

methods were observed, which was the consequence of 

the objective function coefficients’ perturbation. 

The future research can be directed into the method 

of connecting these two approaches and finding the 

mathematical relationships. It might be possible to find 

a new approach which can be a mean of these two 

approaches (the intervals between the intervals obtained 

by using these two methods). Moreover, the further 

research and problems to solve, according to the author, 

are as follows: 

- numerical analysis of algorithms by using various 

optimization methods: [20], [21].  
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- extension using the augmented Tchebycheff metric: 

[22].  

- comparison with outranking methods based on 

compromise programming: [23], [24]. 

- including more general structure to describe the 

preferences of decision maker, for instance fuzzy 

numbers or stochastic dominance: [25], [26]. 
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