
I.J. Information Technology and Computer Science, 2015, 02, 12-20
Published Online January 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.02.02

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 02, 12-20

A Framework for Assessing the Software

Reusability using Fuzzy Logic Approach for

Aspect Oriented Software

Pradeep Kumar Singh
1
, Om Prakash Sangwan

2

Amity University Uttar Pradesh, Noida, India1; Gautam Buddha University, Gr. Noida, India2

Email: pradeep_84cs@yahoo.com, sangwan_op@yahoo.co.in

Amar Pal Singh
3
, Amrendra Pratap

3

Amity University Uttar Pradesh, Department of CSE, Noida, India3

Email: singhamarpal48@gmail.com, amrendra.bt11@gmail.com

Abstract—Software reusability is very important and crucial

attribute to evaluate the system software. Due to incremental

growth of software development, the software reusability comes

under attention of many researcher and practitioner. It is pretty

easier to reuse the software than developing the new software.

Software reusability reduces the development time, cost and

effort of software product. Software reusability define the depth

to which a module can be reused again with very little or no

modification. However the prediction of this quality attribute is

cumbersome process. Aspect oriented software development is

new approach that introduce the concerns to overcome the

issues with modular programming and object oriented

programming. However many researcher worked on accessing

the software reusability on object oriented system but the

software reusability of aspect oriented system is not completely

explored. This paper explores the various metric that affects the

reusability of aspect oriented software and estimate it using

fuzzy logic approach.

Index Terms—Aspect Oriented Programming (AOP), Aspect

Oriented Software Development (AOSD), Software Reusability,

Cohesion, Coupling, Separation of Concern (SOC), Size and

Complexity, Fuzzy Logic.

I. INTRODUCTION

Software reusability is software quality attribute in

which software or its module is reused with very little

and no modification. Software reuse is the development

of existing software system by using their existing

features or components. The goal of software reusability

is to provide higher quality products, less development

time, higher scheduling accuracy and Reliability. There

are numerous software development methodologies to

support reusability with different characteristics.

A. Module Oriented Approach (MOA)

Module oriented approach (MOA) is very dominant

approach to develop the software. MOA is basically

depends on perception of procedure call. Procedure can

be also known as subroutine, method and function. It is

appropriate choice than simple sequential or unstructured

languages which involves complexity and requires

significant amount of reusability.

A few significant characteristics and restrictions of

Module Oriented Approach are listed below:

i. It provides reusability of code.

ii. MOA is robustly modular than structure.

iii. Development by writing or replaces the code.

iv. Inability to provide data binding with operations.

To overcome these limitations of MOA, Object

Oriented Approach (OOA) is introduced.

B. Object Oriented Appraoch (OOA)

OOA is applicable for real world problems. OOA

decompose problem into objects that abstract behavior

and data into a single unit. It introduces the concept of

inheritance, modularity, polymorphism and encapsulation.

[1, 2].

A few significant characteristics and restrictions of

Object Oriented Approach are listed below:

i. OOA approach mainly prominence on data relatively

than procedure.

ii. Allows message passing and functions through

interaction of objects.

iii. It provides the concept of classes, encapsulation and

hides implementation details.

iv. OOA provides an easy way to add new data and

functions, whenever required.

v. Ability to provide polymorphism and inheritances.

In practice with larger projects, it has been observed

that OOA has difficulty to separate concerns such as

readability, security, modifiability. To overcome the

limitations of object oriented approach (OOA), Aspect

Oriented (AO) approach is introduced.

C. Component Based Software Development (CBSD)

Nowadays CBSD is receiving as a new effective

development paradigm in industry. This approach has

wide acceptance in terms of cost effectiveness [3].

Software development in CBSD is a process of

composition of diverse software components into

integrated form. The main issue in CBSD is the

reclamation and selection of appropriate software

components from a huge variety of reusable components.

The major advantages of CBSB are as follow:

 A Framework for Assessing the Software Reusability using Fuzzy Logic 13

Approach for Aspect Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 02, 12-20

i. This technique provides in-time and high quality

solutions for new software development.

ii. This approach also offers high productivity, flexibility

and quality through reusability, replace-ability,

efficient maintainability, and scale ability.

iii. This approach also reduces development time for new

system.

D. Aspect Oriented Software Development (AOSD)

AOSD is reasonably forthcoming technique which

combines concerns that crosscut the modularity from

conventional programming approaches such as Module

Oriented Approach (MOA) and Object Oriented

Approach (OOA) [4, 5]. There are many languages that

belongs to family aspect oriented systems such as

AspectJ (Java Extension), AspectC (C Extension),

AspectC++ (C++ Extension), AspectXML (XML

Extension), CaserJ and HyperJ (used by IBM) [6, 7].

AspectJ is most popular one and few significant

characteristics of AspectJ are listed below

i. It is most popular languages that used in AOP.

ii. Supports following characteristics such as joint points,

pointcuts, advice and introduction [8, 9].

iii. Defines new constructor, maintain in favor of

modular accomplishment for crosscutting concerns.

iv. It provides synchronization, consistency checking,

protocol management and others.

v. The concern that crosscuts the modularity of

traditional programming is known as cross-cutting

concerns for examples cross-cutting includes logging,

tracing, resource pooling, etc.

This paper is organized into five sections. Introduction

followed by related work is mentioned in second part.

Second section discusses the various reusability models

given by famous researcher and their metrics that affect

the reusability of software. The third section of this paper

unfolds the brief description of metrics that affect the

reusability of software. The fourth section of this paper

evaluates the software reusability by using fuzzy logic

approach. Finally, last section presents conclusion and

future aspects of the proposed work.

II. RELATED WORK

Nowadays, real world systems evolve so fast that they

are capable to congregate challenges among the customer

constraint as well as operational atmosphere. Design of

software concern is well modularized to meet all the non-

functional requirement of a system. AOSD still faces

several problems; quantitative assessment of some

important characteristics like modularity, complexity and

the overall quality of aspect oriented technology is fairly

unexploded. The related work will discussed the work

done so far by many researchers in the area of object

oriented approach and aspect oriented along with their

metrics for assessing software reusability [5].

ISO developed a quality model that was further known

as ISO/IEC 9126 Model [10]. According to ISO, quality

of software is consisted into six attributes namely

functionality, reliability, usability, efficiency,

maintainability, portability. This model is an

enhancement of earlier work which is specified by

McCall, Bohem, and FURPS.

In Dromey’s Quality Model, he integrates two quality

attributes namely reusability and process maturity in

ISO/IEC 1926 quality model [11].

Kumar et al. projected first quality model known as

Aspect-Oriented Software Quality Model (AOSQUAMO)

[12]. This model is an enhancement of ISO/IEC 9126

Quality Model. In this model Complexity, Reusability,

Modularity and Code-Reducibility are included in diverse

characteristics of ISO/IEC 9126 Model.

Castillo et al. proposed a conceptual quality model to

elucidate the AOSD evolving technologies like aspect,

composition concern, and quality requirement for

software system [13]. REASQ Model is another name of

this model which integrates ISO/IEC 9126 Model and

ISO/IEC 25030 model in addition to articulated in UML.

Kumar P. introduced new attribute to AOSQUAMO

Model i.e. evolvability [14]. The sub- characteristics of

Evolvability is sustainability, extensibility,

Configurability and Design Stability. This model is

known as AOSQ Model.

Price et al. offered a new dimension for assessing the

reusability measurements [15]. This dimension facilitates

the large scale object oriented structure reuse. The

researcher must have good understanding of application

domain and type of system that they expect to devlop in

future.

Barnard et al. projected a new reusability metric for

OO software which is based on empirical evidence taken

from well used accepted programming libraries in classes

are assumed to be highly reusable [16].

Dandashi et al. reported a measurement in support of

reusability of C++ code by actions of non-functional

quality attributes like Completeness, Understandability,

Adaptability and Maintainability [17].

A framework is projected by Sant’Anna et al. for

estimating the reusability and maintainability of AO

software [18]. They established a relationship between

reusability and maintainability internal metrics such as

coupling, cohesion, crosscutting concern and size. This

concern driven architecture proposed by Sant’anna et al.

[18] also help in measuring the SoC, Cohesion, Coupling

and Complexity for AO system.

Cunha et al. discussed the high level concurrency

patterns and mechanisms coded in AspectJ [19]. They

explored some advantages of reusability, modularity and

understandability. They accomplished that above

mentioned characteristics will progress the AO approach

while applying with java program.

Zhang et al. proposed AO approach with connectors in

reusable design and implementation of connectors [20].

They uncover the affect of crosscutting concerns in

reusability of connectors.

Aljasseret et al. proposed the extension of AspectJ

programming languages known as ParaAJ [21]. This

language has ability to parameterize aspects. This

language is upcoming step to modularize aspects and

enhancement in reusability.

14 A Framework for Assessing the Software Reusability using Fuzzy Logic

Approach for Aspect Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 02, 12-20

Zhao proposed a coupling metrics which is based on no.

of dependencies among aspects and classes like module-

class, attribute-class, aspect-inheritance and module-

method dependencies [22].

Ceccato et al. presented the coupling metrics for

Aspect Oriented Programming languages [23]. They

present a framework for aspects, classes, modules and

term operation as class methods and aspect

advices/introductions.

Bortsch et al. extended the framework from OO

systems (Briand et al.) [24]. In their extended framework

they contain a specific definition of six different coupling

schemes such as locus of impact types of connection,

firmness of server, granularity, straight or undirected

connections, instantiation along with inheritance.

A unified framework for coupling is also reported by

Bartolomei et al. projected for AO system [25]. They

extended their work from the existing framework of

Briand’s frameworks (Briand et al. [26] ; Arisholm et al.

[27]). In their work, two AOP languages are considered

namely AspectJ and CaesarJ and showed that the how

these two languages can be instantiated on Java.

In [28], Kumar et al. projected a new framework of

coupling metrics by extending the work of Bartolomei et

al.[25], Briand et al.[26] and Arisholm et al. [27]

frameworks. They recognized the various types of

connection between couplings such as attribute type,

parameter type, attribute reference, operation invocation,

inheritance and high level association.

Zhao et al. projected a cohesion measure which is

based on dependency graphs [29]. They defined number

of dependencies among aspect and classes and cohesion

as the degree of relatedness among modules and

attributes.

Gelinas et al. define a metrics to measure the cohesion

in AO system [30]. This metrics is known as “ACoh

Metrics”. Two aspect cohesion criteria are defined in

ACoh metrics namely “Modules-Modules Connection

Criterion” and “Modules-Data Connection Criterion”.

On the basis of Table 1, we can conclude that most of

the researchers have worked upon mainly cohesion and

coupling metrics but Sant’Anna et al. introduced a new

metrics that majorly affects reusability i.e. “Separation of

Concern (SoC)”. SoC is the main metrics that

differentiate between aspect oriented software and object

oriented software. The size and complexity metrics is

least used by researchers but this metrics affects

maximum the reusability for aspect oriented software. So

we have considered four main metrics namely Separation

of Concern (SoC), Cohesion, Coupling, Size and

Complexity for the proposed work to develop reusability

model for AO software using Fuzzy Logic approach. All

these four metrics that affect the reusability of AOP are

discussed in next section in detail.

Table 1. Metrics used by Various Researcher and Software Practitioners to determine Software Reusability [5]

Researchers

Y
ear

C
o

u
p

lin
g

C
o

h
esio

n

S
ize &

C
o

m
p

lex
ity

S
o

C

Major Findings

Chiamder & Kemerer [32] 1994 X X X Projected Lack of Cohesion metric for AO System.

Bieman & Kang [33] 1995 X Proposed the frame work for Cohesion Measures in AOP.

Hender- Sellers [34] 1996 X
Extends the Chiamder & Kemerer framework criticizes

 the LCOM measure in AOP.

Briand et al. [16] 1999 X Contributed in OO system for Coupling Measurement.

Sant’Anna et al. [18] 2003 X X X X Projected LCO and LCC metrics for AO system.

Dospisil et al. [35,36] 2003 X Projected a metric based on the theory of entropy.

Zhao et al. [29] 2004 X X Projected number of dependencies among aspect and classes.

Ceccato et al. [23] 2004 X
They present a framework for aspects, classes, modules and term

 operation as class functions and aspect advices/introductions

Arishom et al. [27] 2004 X Dynamic Coupling dimension for OO Software.

Gelinas et al. [30] 2006 X Projected metric ACoh to measure aspect cohesion

Bortsh & Harison [24] 2006 X
Enhancement of framework for coupling

for OO systems proposed by Briand et al.

Bartomei et al. [25] 2006 X
Measured two AOP languages, AspectJ and CaesarJ

for coupling measure.

Sicilia et al. [37] 2006 X
Design issues of (AOD) extensions on

OJB libraries using fuzzy logic.

Patakiet et al. [38] 2006 X
Projected metrics that can compute complexity of MO,

OO and AO parts of programs implemented in AspectJ.

Zhang & Jacobson [39] 2006 X X Projected size and complexity metrics using cyclomatic number, size etc.

Xia et al. [40] 2008 X A new way of conveying complexity weight values to FP metric.

Aljasser et al. [21] 2009 X New language is proposed called ParaAJ which is an extension of AspectJ

Mickelson [41] 2009 X attentive on size metrics like NOC, module and LOC.

Coady & Kiczales [42] 2003 X
Studied runtime overheads as well as the position

of unknown concerns in OS code

 A Framework for Assessing the Software Reusability using Fuzzy Logic 15

Approach for Aspect Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 02, 12-20

III. METRICS AFFECTING THE SOFTWARE REUSABILITY

In this section various metrics which affects the

software reusability have been taken into consideration.

There are mainly four metrics (a) SoC (b) Coupling (c)

Cohesion (d) Coupling, that majorly affects the software

reusability for AO software and all these have been taken

into account by Singh et al. [50] also. All the considered

metrics are discussed in more detail as follows:

A. Separation of Concern (SoC)

SoC stands for Separation of Concern [18]. It makes

available the capability to recognize, summarize and

control relevant particular concern [48]. The metrics to

evaluate SoC are as follows in AOP:

i. Concern Diffusion over Components (CDC)

The CDO metric calculates no. of major components,

formal parameter, return types, throws declarations and

local variables, or call their method.

ii. Concern Diffusion over Operations (CDO)

The CDO metric calculates the amount of chief

operations to add the accomplishment of concerns. It also

calculates no. of method as well as constructor.

iii. Concern Diffusion over LOC (CDLOC)

The CDLOC metrics counts no. of conversion points

designed for every concern all the way to the LOC [43].

B. Coupling Metrics

The coupling is process of defining the potency of

interconnection among the modules of system software

[18]. High coupling means high interconnection between

program modules that depends on each other [44]. There

are following coupling metric that mainly affects

software reusability for aspect oriented system.

i. Coupling between Components (CBC)

The CDO metric calculates the no. of classes that apply

in attribute declaration. This metrics also calculate formal

parameter, throws declaration and local variable.

ii. Depth of Inheritance Tree (DIT)

This metric defines highest extent from node to the

origin (root) of the tree. This metrics also defines

hierarchy for aspect or class.

C. Cohesion Metrics

This metric defines the closeness of the relationship

between the internal modules of program [18 [44]. There

are number of cohesion metric that mainly affects

software reusability of aspect oriented system as given

below

i. Lack of Cohesion in Operations (LCOO)

This metrics defines lack of cohesion of module.

Sant’Anna et al. [18] projected this LCOO metric. It is an

extension of Lack of Cohesion in Methods (LCOM)

metric which is framed via Chidamber and Kemerer [32].

D. Size Metrics

This metrics calculates the dimension of any software

system [18].The following size metrics are given below

[47]:

i. Vocabulary Size (VS)

VS count no. of classes and aspects into a system. In

VS metric module instances are not counted.

ii. Lines of Code (LOC)

LOC is conventional measure that calculates the size of

software. It calculates LOC which excludes blank lines as

well as comments.

iii. Number of Attributes (NOA)

NOA calculates no. of attributes for every class and

aspect. NOA exclude the inherited attribute.

iv. Weighted Operations per Component (WOC)

This metric determine the complication (complexity)

of a component in provisions for operation.

IV. PROPOSED FUZZY MODEL FOR ASPECT ORIENTED

SOFTWARE REUSABILITY

In this section of paper, the fuzzy logic approach has

been discussed for the assessment of software reusability

for aspect oriented software.

A. Fuzzy Inference System

Fuzzy inference system is proficient with map inputs

during input membership functions and associated

parameters as shown in Fig.1. The parameters associated

with the membership functions and corresponding

associated output parameters are used to understand the

final output of fuzzy system. The FIS structure was

generated from the Matlab Fuzzy logic Toolbox [45].

Fig. 1. Fuzzy Inference System

B. Dependent and Independent Variables

The dependent variable is output variable i.e. is

reusability, which comes after fuzzification method. The

fuzzy set for every output variable will set for

defuzzification [46]. The lists of independent variables

are four main metrics that majorly affects the reusability.

These four metrics are namely Separation of Concerns

(SoC), Coupling, Cohesion, and Size metrics.

Measurement values of all metrics always normalized

between number 0 and 1. The result for all metrics will be

use as an input to the fuzzy inference system (FIS) for

measuring the reusability of aspect oriented software.

Mamdani fuzzy system is commonly used and same has

been used to evaluate software reusability as shown in

Fig.2.

16 A Framework for Assessing the Software Reusability using Fuzzy Logic

Approach for Aspect Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 02, 12-20

Fig. 2. FIS Structure: Reusability Model

Table 2 summarizes the system information as follow:

Table 2. System Information in MATLAB

Name “Reusability”

Type “Mamdani”

No. of Inputs 4

No. of Outputs 1

C. Membership Functions

Membership function enables users to exhibit as well

as amend every membership functions that are linked by

every input and output variables for the complete FIS.

Fig.3 and Fig.4 shows the membership function for input

and output variable.

In this work, the scale of membership functions for

input as Low (L), Medium (M) and High (H).

Fig. 3. Membership Function for Input Variable

The output variable is scaled into Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH).

Fig. 4. Membership Function for Output Variable

D. Knowledge Base for Model

Fig. 5 shows the knowledge base model for fuzzy

inference system. This knowledge model is known as rule

editor. It constructs the rule using graphical rule editor

Interface. In this paper, it has four measurement

parameters and used three scales. So, total no. of rules is

34 which are 81 rules. Hence from this combination it has

eighty one if-then rules that constructed and inserted in

Rule Editor. Some sample rules have been shown in

Table 3.

The triangular (trimf) membership functions are scaled

into following:

For input variables

 Low (0-0.33).

 Medium (0.3-0.66).

 High (0.6-1.0).

The output variable is scaled into following:

 Very Low (0-0.2).

 Low (0.18-0.42).

 Medium (038-0.62).

 High (0.58-0.82).

 Very high (0.78-1.0).

 A Framework for Assessing the Software Reusability using Fuzzy Logic 17

Approach for Aspect Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 02, 12-20

Table 3. Some sample Rules

Rules #
Inputs Output

(Reusability) SoC Cohesion Coupling Size & Complexity

1 Low Low Low Medium Low

2 Low Medium High High Very Low

3 Low Medium Medium Low Medium

4 High High High Medium High

5 High High Low Medium Very High

6 High High Low Low Very High

Fig. 5. Rule Editor

E. Rule Viewer

Fig. 6 shows the rule viewer of proposed fuzzy model

for AO software. The rule viewer is consisting of five

columns. The first to four columns represents the input

variable and the “if” part of each rule. Every rule is a

row of plots, and each column is a variable that is used.

The fifth column represents the membership function for

output variable and the “then” part of each rule. The fifth

column also represents the cumulative weighted

conclusion for the proposed FIS. The bold vertical line on

the plot is defuzzified output.

Fig. 6. Rule viewer

F. Surface viewer
Fig. 7, 8 and 9 show the surface viewer for proposed

fuzzy model by considering two metrics at a instance. In

18 A Framework for Assessing the Software Reusability using Fuzzy Logic

Approach for Aspect Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 02, 12-20

the surface viewer users are able to produce a 3D output

surface for two inputs. Fig. 6 shows a three-dimensional

output surface for the set of two metrics (Separation of

Concern and Cohesion) for reusability evaluation.

Fig. 7. Surface Viewer for Separation of Concern and Cohesion.

Fig. 8. Surface Viewer for Coupling and Separation of Concern

Fig. 9. Surface Viewer for coupling and Size and complexity.

G. Experimental Results

Suppose the subsequent crisp value of inputs is fed to

the proposed fuzzy model: Separation_of_concern = 0.17,

Cohesion= 0.44, Coupling= 0.60 and Size & Complexity

= 0.22. These inputs value are provided to the

fuzzification process and get the output as 0.52 (Medium).

The fuzzification on given values evaluate the reusability

of AO software using proposed fuzzy system by using

software metrics and shown in Fig. 10.

Experimental results based on firing some rules on the

proposed fuzzy based AO reusability system are reported

in Table 4.

Fig. 10. Software Reusability for a given Input Set

Table 4. Experimental results for some rules

Rules #
Inputs Output

(Reusability)
Results

SoC Cohesion Coupling Size & Complexity

1 L(0.12) L(0.13) L(0.08) M(0.48) L(0.32) Worst Applicable

2 L(0.14) M(0.48) H(0.85) H(0.83) VL(0.12) Not Applicable

3 L(0.17) M(0.44) M(0.60) L(0.22) M(0.52) Somewhat Applicable

4 H(0.78) H(0.69) L(0.30) M(0.35) VH(0.9) Highly Applicable

5 H(0.87) H(0.88) M(0.58) M(0.57) H(0.7) Applicable

H. Defuzzification

It is a process of mapping from a space of fuzzy

control actions defined over an output universe of

discourse into a space of crisp (non-fuzzy) control actions.

There are various names for this method such as center-

of-mass, center-of-area, or center-of-gravity method.

Centre of Gravity (COG) has large applicability for

defuzzification. The defuzzified output for X* is by (1)

and defuzzified output is shown in Fig.11 and validated

for the rule number 3 from Table 4.

X*= ∑ A x / ∑ A (1)

X*=0.5029

Fig. 11. Defuzzified Output

 A Framework for Assessing the Software Reusability using Fuzzy Logic 19

Approach for Aspect Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 02, 12-20

V. CONCLUSION AND FUTURE SCOPE

In this paper fuzzy logic approach is used to access the

reusability of AO software. It is proved that application

of fuzzy logic approach has shown their applicability

other than traditional statistical techniques. The input

variables in fuzzy model are software design metrics that

derived from literature review. The four main metrics

have been discovered from literature reviewed namely

separation of concern (SoC), cohesion, coupling, size and

complexity. On the basis of input variables, 81 rules are

designed. These rules are based on expert’s knowledge

and judgment. So, it is concluded that proposed model

based on fuzzy will helps the software developer’s to

select the best quality of software in terms of reusability

among AO software.

In future, the dynamic metrics can also be considered

for accessing the reusability of AO software systems. A

maintainability model to show the relationship between

the maintainability and metrics (static and dynamic

metrics) for AO software has been reported by us in our

previous work [31]. Due to unavailability of dynamic

metrics measurement tools, we have taken into account

only static metrics. Apart from fuzzy logic technique,

other soft computing techniques such as Artificial Neural

Network (ANN), Adaptive Neuro Fuzzy Inference

System (ANFIS) and Support Vector Machine (SVM)

can also be taken into consideration for the assessment of

software reusability.

ACKNOWLEDGMENT

We would like to thank the faculty of Amity University

for helping us in refining the objective and Amity

University for providing us research environment and

facilities. We also like to extend our thanks to Dr. Arun

Sharma, Professor, CSE, K.I.E.T. Ghaziabad for his

valuable suggestions.

REFERENCES

[1] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.

Lorensen, “Object-Oriented Modeling and Design”,

Prentice-Hall, New York, 1991.

[2] I. Jacobson, M. Christerson, P. Johnson & G. Overgaard,

“Object Oriented Software Engineering: A Use Case

Approach”, Addison Wesley, 1992

[3] C. Szyperzaki, “Component Software: Beyond Object-

Oriented Programming”, Addison-Wesley”, 2001.

[4] A. Kumar, R. Kumar, P.S. Grover, “A Comparative Study

of Aspect-Oriented Methodology with Module-Oriented

and Object-Oriented Methodologies”, ICFAI Journal of

Information Technology, Volume 2, No 4, pp. 7-15,

December 2006.

[5] P. K. Singh, Parag Mittal, Lakshay Batra and Utkarsh

Mittal, “A Perception on Programming Methodologies for

Software Development”, IJCA Proceedings on 4th

International IT Summit Confluence 2013 - The Next

Generation Information Technology Summit Confluence

2013(2), Pages 1-6, January 2014.

[6] I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann,

“Overview of CaesarJ Transactions on Aspect-Oriented

Software Development”, LNCS, 3880, pp. 135-173, 2006.

[7] B.R. Pekilis, “Multi-Dimensional Separation of Concerns

and IBM Hyper/J”, Technical Research Report, January 22,

2002.

[8] T. Elrad, M. Aksits, G. Kiczales, K. Lieberherr, H. Ossher,

“Discussing Aspects of AOP”, Communications of the

ACM, 44(10), pp. 33–38, 2001.

[9] J.D. Gradecki, N. Lesiecki, “Mastering AspectJ: Aspect-

Oriented Programming in Java”, Wiley, 2003.

[10] ISO9126 Information Technology, “Software Product
Evaluation – Quality characteristics and guidelines for

their use”, International Organization for Standardization,

Geneva, 1992.

[11] R. G. Dromey, “A Model for Software Product Quality,”

IEEE Transactions on Software Engineering, Volume 21,

Number 2, pp. 146 - 162, February 1995.

[12] A. Kumar, P. S. Grover, R. Kumar, “A Quantitative
Evaluation of Aspect-Oriented Software Quality Model”,

ACM SIGSOFT Software Engineering Notes Volume 34,

Number 5, pp. 1 - 9, September 2009.

[13] I. Castillo, F. Losavio, A. Matteo, J. Boegh,

“REquirements, Aspects and Software Quality: the

REASQ model”, Journal of Object Technology, Volume 9,

Number 4, pp. 69 - 91, 2010.

[14] P. Kumar, “Aspect-Oriented Software Quality Model: The

AOSQ Model”, Advanced Computing: An International

Journal, Vol.3, No.2, March 2012.

[15] M.W. Price, S.A. Demurjian, “Analyzing and Measuring

Reusability in Object-Oriented Design”, In the Proceedings

of the 12th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and

Applications, Atlanta, Georgia, US, pp. 22-33, October 05-

09, 1997.

[16] J. Barnard, “A New Reusability Metric for Object-Oriented

Software”, Software Quality Journal, Vol. 7, Issue 1, pp.

35–50, 1998.

[17] F. Dandashi, “A Method for Assessing the Reusability of

Object-Oriented Code Using a Validated Set of Automated

Measurements”, In Proceedings of the ACM Symposium

on Applied Computing, Madrid, Spain, pp. 997-1003, 2002.

[18] C. Sant'Anna, A. Garcia, C. Chavez, C. Lucena, and A.

Von Staa, “On the Reuse and Maintenance of Aspect-

Oriented Software: An Assessment Framework”, 23rd

Brazilian Symposium on Software Engineering, Manaus,

Brazil, October 2003.

[19] C.A. Cunha, J.L. Sobral, M.P. Monteiro, “Reusable

aspect-oriented implementations of concurrency patterns

and mechanisms”, In Proceedings of the 5th international

Conference on Aspect-Oriented Software Development

(Bonn, Germany, March 20 - 24, 2006), ACM, New York,

NY, pp. 134-145, 2006.

[20] J. Zhang, H. Li, X. Cai, “Research on Reusability of

Software Connector Based on AOP”, In the IEEE

Proceedings of International Conference on Computer

Science and Information Technology, pp. 113-117, 2008.

[21] K. Aljasser, P. Schachte, “ParaAJ: toward Reusable and

Maintainable Aspect Oriented Programs”, In Proceedings

of Thirty-Second Australasian Computer Science

Conference , Wellington, New Zealand, CRPIT, 91, Mans,

B., Ed. ACS, pp. 53-62, 2009.

[22] J. Zhao, “Measuring Coupling in Aspect-Oriented

Systems”, In: 10th International Software Metrics

Symposium (Metrics 04), 2004.

[23] M. Ceccato, P. Tonella, “Measuring the Effects of

Software Aspectization”, In: Proceedings of the 1st

20 A Framework for Assessing the Software Reusability using Fuzzy Logic

Approach for Aspect Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 02, 12-20

Workshop on Aspect Reverse Engineering, ACM Press,

2004.

[24] M. Bartsch, R. Harrison, “An Evaluation of Coupling

Measures for AspectJ”, Presented at the LATE Workshop

at the Aspect-Oriented Software Development Conference

(AOSD). Bonn, Germany. 2006.

[25] T. Bartolomei, A. Garcia, C. Sant’Anna, E. Figueiredo,

“Towards a Unified Coupling Framework for measuring

Aspect-Oriented Programs”, In 3rd International Workshop

on Software Quality Assurance Portland, Oregon, USA, ,

ACM Press, November 6, 2006

[26] L.C. Briand, J.W. Daly, J. Wust, “A Unified Framework

for Coupling Measurement in Object-Oriented Systems”,

IEEE Transactions on Software Engineering, 25(1), pp. 91-

120, 1999.

[27] E. Arisholm, L.C. Briand, A. Føyen, “Dynamic Coupling

Measurement for Object-Oriented Software”, IEEE

Transactions on Software Engineering, 30(8), pp. 491-506,

2004.

[28] A. Kumar, R. Kumar, P.S. Grover, “Generalized Coupling

Measure for Aspect-Oriented Systems”, ACM SIGSOFT

Software Engineering Notes, 34(3), pp. 1-6, 2009.

[29] J. Zhao, B. Xu, “Measuring Aspect Cohesion”, In:

Proceedings of International Conference on Fundamental

Approaches to Software Engineering, March 29-31, LNCS

2984, Springer-Verlag, Barcelona, Spain, pp.54-68, 2004.

[30] J.F. Gelinas, M. Badri, L. Badri, “A Cohesion Measure for

Aspects” Journal of Object Technology, 5(7), pp. 97–114,

2006.

[31] P.K.Singh, O.P.Sangwan, "Aspect Oriented Software

Metrics Based Maintainability Assessment: Framework

and Model", published in proceeding's of Confluence-2013,

The Next Generation Information Technology Submit, 26th

-27th September, Amity University, Noida, India, 2013.

[32] S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for

Object- Oriented Design”, IEEE Transactions on Software

Engineering, 20(6), pp. 476–493, 1994.

[33] J.M. Bieman, B.K. Kang, “Cohesion and Reuse in an

Object-Oriented System”, In Proc. ACM Symp. Software

Reusability (SSR’94), pp. 259-262. 1995.

[34] B. Henderson-Sellers, “Software Metrics”, Prentice Hall,

Hemel Hempstead, UK, 1996.

[35] J. Dospisil, “Measuring Code Complexity in Projects

Designed with AspectJ” Informing Science InSITE-

“Where Parallels Intersects”, pp. 185-197, 2003.

[36] Jana Dospisil, “Measuring Code Complexity in Projects

Designed with Aspect/J™", Informing Science + IT

Education (InSITE) Conference, Finland, June 2003.

[37] M.A. Sicilia, E. García-Barriocana, “Extending Object

Database Interfaces with Fuzziness Through Aspect-

Oriented Design”, ACM SIGMOD Record, 35(2), pp. 4–9,

2006.

[38] N. Pataki, A. Sipos, Z. Porkolab, “Measuring the

Complexity of Aspect-Oriented Programs with

Multiparadigm Metric”, ECOOP Doctoral Symposium and

PhD Students Workshop, 2006.

[39] C. Zhang, H. A. Jacobsen, “Quantifying Aspects in

Middleware Platforms”, Department of Electrical and

Computer Engineering and Department of Computer

Science, University of Toronto, 2000.

[40] W. Xia, L.F. Capretz, D. Ho, F. Ahmed, “A new

Calibration for Function Point complexity weights:

Information and Software Technology”, 50(7-8), pp. 670-

683, 2008.

[41] Magnus Mickelsson, “Aspect-Oriented Programming

compared to Object-Oriented Programming when

implementing a distributed, web based application”,

Department of Information Technology, Uppsala

University, 2002.

[42] Y. Coady, G. Kiczales, “Back to the Future: A Retroactive

Study of Aspect Evolution in Operating System Code”,

University of British Columbia, 2003.

[43] A.F.Garcia, C.N. Santpana, G.C. Christina, “Agents and

Objects: An Empirical Study on Software Engineering”.

Technical Report 06-03, Computer Science Department,

PUC-Rio, February 2003.

[44] I. Sommerville, “Software Engineering”, 6.ed. Harlow,

England, Addison-Wesley, 2001.

[45] MATLAB Toolbox, http://www.mathworks.com “MatLab

Toolbox for ANN, FIS, ANFIS”.

[46] Fuzzy Logic Toolbox, User’s Guide version 2, The Math

Works Inc., SA, July 2002. SIGSOFT Software

Engineering Notes, pp. 6, Volume 34, July 2009.

[47] N. Fenton, S.L. Pfleeger, “Software Metrics: A Rigorous

and Practical Approach”, 2.ed. London: PWS, 1997.

[48] P. Tarr, et al. “N Degrees of Separation: Multi-

Dimensional Separation of Concerns”, Proceedings of the

21st International Conference on Software Engineering,

May 1999.

[49] S. Rajasekaran, G.A. Vijayalakshmi Pai, “Neural Networks,
Fuzzy Logic, and Genetic Algorithms Synthesis and

Application”, PHI learning, Eastern Economy Edition.

[50] P. K. Singh, O. P. Sangwan, A. Pratap, A. P. Singh, “A

Quantitative Evaluation of Reusability for Aspect Oriented

Software using Multi-criteria Decision Making Approach”

published in World Applied Sciences Journal, Volume 30,

Issue 12, Pages 1966-76, 2014.

Author’s Profile
Pradeep Kumar Singh, Mr. Pradeep Kumar Singh is M.Tech

(CSE) from GGSIPU Delhi and pursuing his PhD. from Gautam

Buddha University, Greater Noida, India. Currently, he is

working as Assistant Professor in Department of Computer

Science and Engineering of Amity University Uttar Pradesh,

Noida, India. He is member of ACM, CSI and many

professional bodies. He has published 10 papers in International

Conferences and Journals of repute. His major area of Interest

includes Software Engineering, Object Oriented Software

Engineering, Aspect Oriented Software Engineering, Software

Testing and Soft Computing Techniques.

Dr. Om Prakash Sangwan is M.Tech (CSE) and PhD. in

Computer Science & Engineering. Currently, he is working as

Assistant Professor in Department of Computer Science and

Engineering of Gautam Buddha University, Greater Noida.

Uttar Pradesh, India. He is Senior Member of ACM, CSI, IEEE

and many professional bodies. He has filled two Patents and

published 35 papers in International Conferences and Journals

of repute. His major area of Interest includes Software

Engineering, Object Oriented Software Engineering, Aspect

Oriented Software Engineering, Soft Computing Techniques

and Artificial Intelligence.

Amar Pal Singh is a M.Tech.(CSE) student from Amity

University Uttar Pradesh, Noida, India. His interests include

Software Engineering, Soft Computing Techniques. He has

published four papers in International Journal and Conferences.

Amrendra Singh is a student of M.Tech. (CSE) from Amity

University Uttar Pradesh, Noida, India. His interests include

Software Engineering, Soft Computing Techniques. He has

published three papers in International Conference and Journals.

