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Abstract—Mining sequential patterns from sequence database 

has consequential responsibility in the data mining region as it 

can find the association from the ordered list of events.  Mining 

methods that predicated on the pattern growth approach, such as 

PrefixSpan, are well-organized enough to denude the sequential 

patterns, but engendering a projection database for each pattern 

regards as bottleneck of these methods. Lin (2008) first 

commenced the concept of tree structure to sequential pattern 

mining, which is acknowledged as Fast updated sequential 

pattern tree (FUSP - tree). However, link information stored in 

each node of FUSP - tree structure increases the complication of 

this method due to its link updating process. In this paper, at 

first, we have proposed a modified fast updated sequential 

pattern tree (called a mFUSP - tree) arrangement for storing the 

complete set of sequences with just frequent items, their 

frequencies and their relations among items in the given 

sequence into a compact data structure; excluding this tree 

structure avoids storing link information along to the next node 

of the following branch in the tree that carries the same item. 

Afterward, we have established by a mining method that our 

mFUSP - tree structure is proficient enough to ascertain out the 

perfect set of frequent sequential patterns from sequence 

databases without generating any intermediate projected tree 

and without calling for repeated scanning of the original 

database during mining. Our experimental result proves that, the 

performance of our proposed mFUSP - tree mining approach is 

a lot more trustworthy than other existing algorithms like GSP, 

PrefixSpan and FUSP - tree based mining. 

 

Index Terms— Intermediate Projected Tree, Projection 

Database, Sequential Pattern Mining, Frequent Pattern, 

Sequence Database, Tree - Based Mining. 

 

I. INTRODUCTION 

Data mining (sometimes called data or knowledge 

discovery) is the process of examining data to distill 

useful information and helpful knowledge from large 

databases. This information may assist us to reach a 

determination. Mining useful information and helpful 

knowledge from large databases has evolved into an 

important research field in data mining arena. Among 

them, sequential pattern mining in large transactional 

databases plays an important part in this area. Sequential 

pattern mining is the procedure of obtaining the complete 

set of frequent occurring ordered events or subsequences 

from a set of sequences or sequence database. The 

advantage to find the sequential patterns is, we can see 

the customer's sequences and predict the probability to 

purchase some items in next transactions by the clients. 

For instance, if a customer bought egg and sugar in one 

transaction, then, we can predict the probability to buy 

milk by this customer in the next: that is, if {egg, sugar} 

then {milk}. It is widely applied in the analysis of 

customer purchase patterns or web access patterns, 

sequencing or time-related processes such as science 

experiments, natural disasters, and in DNA sequences, 

and so on. Agrawal and Srikant first introduced 

sequential pattern mining in 1995 [1]. Based on their 

study, sequential pattern mining is stated as follows: 

“Given a sequence database or a set of sequences where 

each sequence is an ordered  list events or elements and 

each event or element is a set of items, and given a user-

specific minimum support threshold or min_sup, 

sequential pattern mining is the process of finding the 

complete set of frequent subsequences, that is, the 

subsequences whose occurrence frequency in the set of 

sequences or sequence databases is greater than or equal 

to min_sup.”  Past studies developed two major classes of 

sequential pattern mining methods; one class proposed 

apriori based mining algorithms and another class 

proposed pattern growth based mining methods. GSP 

(Generalized Sequential Pattern) [2] is an apriori based 

algorithm which can determine the complete set of 

frequent sequential patterns by using point-wise 

candidate sequences generation and test access. This 

algorithm scans the whole sequence database multiple 

times to find out the support count or frequency of each 

pattern from the database. As a result of multiple 

scanning, the complexity of GSP algorithm gradually 

increases with large database. PrefixSpan [3] is a pattern 

growth based approach which is similar to FP-growth [4]. 

It does not make a great number of useless candidate sets 

that makes out apriori based method. But, to see the 

sequential patterns, PrefixSpan recursively creates a 

circle of small projected databases from large databases. 

To do this, the algorithm first scans the original database 

to get the frequent items and their corresponding counts, 

and then, it starts the mining operation. In mining process, 

it first finds the subsequences for every prefix i.e. 

frequent items. After this, the algorithm finds the 

sequential patterns from the projected databases which 

are produced from each prefix sequence and then, it 

recursively creates set of small projected databases for 

every frequent subsequence. In this approach, the 

sequences grow from short to large with recursively 



78 Mining Sequential Patterns from mFUSP - Tree 

Copyright © 2015 MECS                                          I.J. Information Technology and Computer Science, 2015, 07, 77-89 

projected databases which increases both the time and 

space complexity. Also, each time it commands to scan 

the projected database to find the frequent items that 

mean it needs multiple scanning of the projected database. 

Mining algorithm [5] of FUSP - tree [6] is also based on 

pattern growth approach which can find frequent 

sequential patterns from FUSP - tree data structure by 

recursively breeding set of small projected trees from the 

large tree. Links stored in the FUSP - tree facilitate  to 

find the frequent items easily without scanning each 

projected tree, but each time it needs to expense lots of 

effort to update the links of each projected tree during 

mining. 

 
Table 1. Sequence Database 

Sequence ID(SID) Sequence 

10 p(pqr)(pr) 

20 (pt)r(pu) 

30 p(pqr)(pv) 

40 (pq)(pt) 

 

In this paper, we have developed a modified fast 

updated sequential pattern tree (called a mFUSP - tree) 

structure and mFUSP - tree mining algorithm based on 

pattern growth approach for sequence database. At first, 

this paper generates a mFUSP - tree structure of the 

sequence database to store only frequent items.   For this 

ground, the large database is condensed into a smaller 

tree data structure and when frequent items are not 

exchanged, the approach doesn’t need to re- skim the 

original database once the tree is created and can get the 

results only from the tree. At the time of tree creation, it 

lays the frequency of each item in the tree’s node which 

helps us to dilute the effort of monotonous support 

counting during mining. In this way, our mining 

algorithm can overlook the multiple scanning of large 

database. It requires only twice scans of large database to 

create the mFUSP - tree. Our proposed mFUSP - tree 

mining algorithm is also capable to discover the complete 

set of frequent sequential patterns from the mFUSP - tree 

without re-building the intermediate projected trees. So 

that, our mining method can keep off the effort of links 

updating of each projected tree and our mFUSP - tree 

structure does not associate the same item in the tree; 

these are different from FUSP - tree [6]. In this study, we 

have provided both theoretical and substantial proof of 

the completeness and correctness of the mFUSP - tree 

mining algorithm. Moreover, a thorough experimental 

study is provided to compare the proposed approach with 

GSP [2], PrefixSpan [3], and FUSP-Tree Based mining [5] 

on both synthetic and real datasets. The results show that 

the proposed algorithm is much efficient than others. 

The arrangement of this paper is as follows. Section 2 

introduces the definitions of sequential pattern mining. In 

Section 3, we briefly review the pattern growth mining 

and two existing works. Section 4 proposes a compact 

data structure, called mFUSP - tree, for storing complete 

sequence database and a mFUSP - tree mining method 

with example for mining sequential patterns. Carrying out 

analysis is presented in part 5 and final section 6 draws 

the conclusion that points out the potency of our study. 

 

II. PROBLEM DEFINITIONS 

Permit, I = {i1, i2, . . ., in} be a set of items in the 

database D. 

Definition 1:  A finite number of items, denoted as X 

= {i1, i2, . . ., im}, for all 1≤ m ≤ n, is called an itemset or 

element or event. An itemset is also known as a subset of 

I or X occur in I, de-noted as X ⊆ I. 

For example, let, I = {p, q, r, t} and (pqr) is an itemset 

or element or event of I where each item in (pqr) must 

exist in I. 

Definition 2:  A sequence is an ordered list of itemsets.  

A sequence s = (s1, s2, . . . , sm) where si is an itemset or 

element or event. An item can pass at most once in an 

ingredient of a sequence, but can occur multiple times in 

different ingredients of a sequence 

For instance, s = {(p) (pqr) (prt)} is a sequence which 

has three elements or itemsets: (p), (pqr), (prt) and 4 

items: {p, q, r, t}. Items p and r appear more than once in 

different elements but appear only once in separate 

element. 

Definition 3:  A sequence database D is a set of 

records or rows where each record represented as <SID, 

s>. SID (sequence ID) is the identifier of each sequence 

and s is the sequence. Table 1 shows a sequence database 

which contains four sequences and six items which are: 

{p, q, r, t, u, and v}. 

Definition 4:  The number of items in a sequence is 

called the length of the sequence. A sequence with length 

l is called an l-sequence. 

For illustration, first sequence, s1 = {(p) (pqr) (pr)} 

shown in Table 1 has 6 items. So, it is called 6-sequence. 

Definition 5:  The absolute support of a sequence s in 

a sequence database, D is the number of sequences in D 

that contain s. The relative support of a sequence s in a 

sequence database, D is the percentage of sequences in D 

that contain s. 

For case in point, sequence (pq) appears 3 times in the 

Table 1, so the absolute support of (pq) is 3 and the 

relative support of (pq) is 75% {(100 × 3) ÷ 4}. 

Definition 6:  Given a minimum support threshold 

(min_sup), a sequence s is called a frequent sequential 

pattern in D if absolute support or support of s ≥ min_sup. 

Let, the minimum support threshold is 50%. Specify 

that, for four sequences in Table 1, the minimum support 

threshold (min_sup) is (4*0.5) = 2. So, sequence (pq) is a 

frequent sequential pattern in Table 1 because the support 

of (pq) ≥ min_sup (3 ≥ 2). 

Definition 7:  For two sequences α = (α1, α2, . . . , αn) 

and β = (β1, β2, . . . , βm) where αi and βj are itemsets for 1 

≤ i ≤ n and 1 ≤ j ≤ m. β is defined as a subsequence of α if 

β1 ⊆ α1, β2 ⊆ α2, . . . , βm ⊆ αn. 

Suppose sa = {(p) (pq)}. sa is a subsequence of s1 and s1 

is a supersequence of sa.  sa is sequential pattern of length 

3 (i.e. 3-pattern). 

Definition 8: For an item α from itemset I and a 

sequence s, the α-prefix of s is the prefix of s from the 
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first point (the leftmost item) to the first occurrence of α 

inclusive and after the α-prefix is taken away, the 

remainder portion of s is known as the α-projection of s. 

For exemplar, the q-prefix of the sequence {(p) (pqr) 

(pr)} is {(p) (pq)} and the q-projection is {(r) (pr)}. 

Definition 9: If α is the last item of s then α-prefix is s 

itself and the α-projection is the empty sequence €. 

For instance, the u-projection of {(pt) (r) (pu)} is € and 

u-prefix is this sequence itself. 

Definition 10: The multiple set of α-projections from 

the sequences where α occurs in sequence database D is 

called the α-projection database Dα. 

For example, all the q-projections from sequence 

database shown in Table 1 are {(r) (pr)}, {(r) (pv)}, and 

{(pt)}. These three sequences are known as q-projection 

database, Dq. 

Definition 11:  Sequence relation denoted as s-relation 

is a relation that exists between two items α and β if they 

appear in  different itemsets of a sequence, s and  itemset 

relation denoted as i-relation is a relation that exists 

between two items α and β if both appear in the same  

itemset of a sequence,  s. 

From Table 1, we can see that first sequence s1 has 

three events, (p), (pqr), and (pr). Item p appears in the 

first event (p) and item r appears in the second event (pqr) 

of the first sequence, s1; so, in this situation, there exists 

s-relation between them. On the other hand, second event 

(pqr) holds both item p and r; in this case, there exists i-

relation between them. 

 

III. REVIEW OF WORKS 

In this segment, we have discussed an apriori based 

mining method, pattern growth mining, and FUSP - tree 

structure which will aid us to better understand our 

proposed approach. 

A. Generalized Sequential Patterns (GSP) 

GSP (Generalized Sequential Patterns) [2] is an apriori 

based sequential pattern mining algorithm which was 

proposed by Srikant and Agrawal in 1996. During mining, 

it generates lots of candidate sets and it tests them by 

multiple passes. The GSP algorithm to find the frequent 

sequential patterns is outlined as follows: 

First Part: It scans the whole sequence database and 

finds length - 1 sequential patterns. 

Second Part: To find the entire frequent sequential 

pattern, it scans the whole database iteratively. Each 

iteration discovers all the frequent sequential patterns 

with the same length. 

In each iteration to find length-k sequential patterns 

(Lk), it does the following: 

1. By joining two length-(k-1) frequent sequential pat-

terns if only their first and last items are different, it 

generates the length-k candidate sequential patterns, 

Ck. 

2. It prunes the length-k candidate sequential patterns 

if any of its length-(k-1) contiguous subsequences is 

infrequent. 

Then, it scans the whole database and finds the support 

for all the length-k candidate sequential patterns. If the 

support of any length-k candidate sequence is greater 

than or equal to min_sup, it puts this candidate sequence 

in length-k frequent sequential pattern (Lk). 

It extends this procedure until there is any frequent 

sequential pattern or candidate sequence found. 

However, GSP algorithm holds the difficulty that is 

described in formula 1 (see Problem 1). 

Problem 1: For n sequential patterns (candidate + 

frequent), needs to scan the whole database n times to 

determine the support of each sequential pattern. When 

the size of the database increases, it generates the number 

of sequential patterns used in the mining algorithm 

supplementary and as a result the scans of whole database 

increases extremely as well. This problem is defined as 

follows: 

Dsize α Seqnum and Seqnum α Dscan                                 (1) 

Here, Dsize denotes the total size of the database, Seqnum 

represents as the total number of sequential patterns and 

Dscan means the total scans of the whole database. If Dsize 

increases, then both Seqnum and Dscan also increase and 

vice versa. 

B.  Pattern Growth Approach 

At this time, we interpret the basic concept of pattern 

growth approach for sequential pattern mining since our 

proposed algorithm is based on it. Pattern growth 

approach is founded along the theory of conditional 

searching. Based on the definition 8, 9, and 10, this 

theory is illustrated as follows: prefix sequences are 

grown by finding smaller projection database from the 

larger database for each prefix sequence. 

Then, recursively find frequent sequences from this 

projection database and add these frequent sequences to 

prefix sequence to find next frequent patterns. In sum, the 

frequent sequential patterns become larger and projection 

databases become smaller as the recursive calls go deeper 

and more mysterious. Granting to the theory of 

conditional searching, the pattern growth approach for 

sequential pattern mining is shown in Algorithm 1. 

Algorithm 1: Pattern Growth Mine (pattern p, 

database D, int η) 

Input: Sequence Database D, Minimum Support 

Threshold η, Frequent Pattern p. Initially, p set as null. 

Output: Complete set of frequent sequential patterns 

Method: 

1. F → € 

2. for each item α in I do 

2.1. if (Support of α ≥ η) 

2.1.1. if  item α is sequence related (see 

Definition 11) to p  

2.1.1.1. then,  q ← (p) U (α) 

2.1.1.2. F → F U q 

2.1.1.3. Construct α-Projection Database 

Dα of D 

2.1.1.4. F → F U Pattern Growth Mine (q, 

Dα, η) 

2.1.2. endif 
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2.1.3. if item α is itemset related (see Definition 

11)  to p 

2.1.3.1. then, q ← (p U α) 

2.1.3.2. F → F U q 

2.1.3.3. Construct α-Projection Database 

Dα of D 

2.1.3.4. F → F U Pattern Growth Mine (q, 

Dα, η) 

2.1.4. endif 

2.2. endif 

3. endfor 

4. return F 

 

But, pattern growth approach holds the dilemma that is 

explained in formula 2 (see Problem 2). PrefixSpan [3] is 

a sequential pattern mining algorithm based on pattern 

growth approach and it also goes through the same 

difficulty. 

Problem 2: In the nastiest case, for n frequent 

sequential patterns, needs to create n projection databases 

that mean one or more projection sequences for each 

projection database.  The number of sequential patterns 

as well as projection databases generation rises in 

increasing order of the size of the whole database. This 

problem is illustrated as follows: 

Dsize α Seqnum and Seqnum α Dproject                              (2) 

Here, Dproject represents as the total number of 

projection databases. If Dsize increases, then both Seqnum 

and Dproject increase as well and vice versa. (Look at 

problem 1 to be familiar with the meaning of Dsize and 

Seqnum) 

Definition 12:  If two nodes of a tree structure contain 

items from two different events of a sequence, then there 

exists sequence relation or s-relation and if two nodes 

hold items from the same event of a sequence, then there 

exist itemset relation or i-relation. 

C.  FUSP - Tree Algorithm 

To proficiently mine the sequential patterns, Lin et 

al.2008 proposed the FUSP-tree [6] structure and its 

maintenance algorithm. FUSP - tree consists of one root 

node labeled as ‘root’ and a set of prefix subtrees as the 

children of the root. Each node in the prefix subtrees 

contains item-name; which represents the node contains 

that item, count; the number of sequences represented by 

the portion of the path reaching the client, and node-link; 

links to the following node of that item in the next branch 

of the FUSP - tree. The FUSP - tree contains a Header-

Table which store frequent item, their count and the link 

of first occurrence node in the tree of that item. This table 

serves to find appropriate items or sequences in the tree. 

The construction process is similar to FP - tree [4] i.e. the 

construction process is executed tuple by tuple from first 

sequence to final. Only the conflict from the FP - tree is, 

the connection between two nodes is symbolized by‘s’ or 

‘i’ as like IncSpan [7]. Here, symbol‘s’ indicates the 

sequence relation (see Definition 12) between two 

different events in a sequence and symbol ‘i’ indicates 

the itemset relation (see Definition 12) between two items 

in an event. 

Mining process [5] of FUSP - tree [6] is similar to 

PrefixSpan [3] and FP-growth [4] algorithms. After the 

FUSP - tree is maintained, the final frequent sequences 

can then be found by a recursive method from the tree. 

This method determines the sequential patterns from the 

FUSP - tree structure by generating set of small projected 

trees from the large tree recursively. It generates no 

candidate sets, but it produces many projected trees for 

prefix sequences which suffer the same trouble defined in 

formula 2 (see Problem 2).  Figure 1 shows a FUSP - tree 

structure with its Header Table for the sequence database 

shown in Table 1. 

 

Fig. 1.  FUSP - Tree with Header Table 

 

IV. PROPOSED APPROACH 

We have described our mFUSP - tree structure and its 

mining approach to find frequent sequential patterns from 

sequence databases in this section. At first, our proposed 

approach constructs a modified fast updated sequential 

pattern tree (called a mFUSP - tree) structure to store 

only frequent items from the sequence database. Then, it 

generates the complete set of frequent subsequences from 

the mFUSP - tree structure without generating any 

intermediate projected tree. The algorithm for mFUSP - 

tree mining is given in Algorithm 2. 

Algorithm 2: (mFUSP - Tree Mining: mining frequent 

subsequences from sequence database) 

Input: Sequence Database and Minimum Support 

Threshold (min_sup). 

Output: The complete set of frequent sequential 

patterns. 

Method: 

1. Scan the sequence database to ascertain the length-1 

frequent sequential patterns and their counts. 

2. Scan again sequence database to construct mFUSP - 

tree and its corresponding Header Table only for 

frequent items which are originated from step 1 by 

using Algorithm 3. 

3. Then, recursively mines the original mFUSP - tree 

to find out frequent sequential patterns without 

generating intermediate trees by using Algorithm 4. 

A.  mFUSP - Tree Structure 

In our study, a modified fast updated sequential pattern 

tree   (called a mFUSP - tree) data structure along with 

Header Table is applied to store only frequent items from 

the sequence database. Each frequent item in the events 
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of a sequence is inserted into the tree based on the events 

arranged in each sequence. Each branch of the tree is a 

sequence of the sequence database. It requires only two 

scans of database to construct the tree which reduces the 

scans of large original database significantly. One scan is 

for detecting the length-1 sequential patterns and their 

counts; another scan is required to build the mFUSP - tree 

structure along with Header Table based on length-1 

patterns. 

A modified fast updated sequential pattern tree 

(mFUSP - tree) is defined as follows: 

1. The root of the tree is a special virtual node with a 

label as Root and all sequences of the database add 

as child nodes to root. 

2. Each node in a mFUSP - tree registers four pieces of 

information: label, support count, identification and 

child link (label: count: identification: child link). 

Every node is labeled by a frequent item from the 

events of a sequence. The count of a node 

determines the number of sequences that share this 

node in their paths. Identification in a node is used 

to indicate if there exists a sequence relation (s-

relation) or itemset relation (i-relation) between two 

nodes (see definition 12). If there exists s-relation, 

then set identification of the second node as “s” and 

if there exist i-relation, then place identification of 

the second node as “i”. Child link in a node is 

applied to connect the child nodes from this node. 

3. The mFUSP - tree structure maintains a Header 

Table, where each distinct frequent item with their 

support count is stored for sequential mining. 

Construction process of mFUSP - tree is similar to 

FUSP - tree structure which executes tuple by tuple from 

first sequence to final.  The algorithm for constructing a 

mFUSP - tree from sequence database is given in 

Algorithm 3. 

Algorithm 3: (Construction of mFUSP - Tree from 

Sequence Database) 

Input: Sequence Database and Minimum Support 

Threshold (min_sup). 

Output: mFUSP - Tree, T. 

Method: 

1. Scan (first scan) the sequence database and get 

length-1 sequential patterns with their support counts.  

Keep frequent length-1 patterns (those support count ≥ 

min_sup) to the Header Table. 

2. Create the root node of a tree T and label it as "Root". 

Initially current _node = root. 

3. for each sequence Si till the end of database (second 

scan) 

3.1 for each event ej in Si 

3.1.1 for each item I in the ej 

3.1.1.1 if support of I  ≥ min_sup, then 

3.1.1.1.1 if item I is sequence related ( see 

Definition 11  & 12) to 

current_node’s label, then   

3.1.1.1.1.1 if current_node has a child node 

c which c.label = I and 

c.identification = s, then set 

c.count += 1 and current_node 

= c. 

3.1.1.1.1.2 Otherwise, 

       3.1.1.1.1.2.1 Create a New node label with I. 

       3.1.1.1.1.2.2   New node.count = 1. 

       3.1.1.1.1.2.3   New node.identification = s. 

       3.1.1.1.1.2.4    Store New node in the 

current_node's successor link. 

      3.1.1.1.1.2.5    Set current_node = New node 

3.1.1.1.1.3 end if 

3.1.1.1.2 end if 

3.1.1.1.3 if item I is itemset related (see 

Definition 11 & 12) to 

current_node’s label, then   

3.1.1.1.3.1 if current_node has a child node 

c which c.label = I and 

c.identification = i, then set 

c.count += 1 and current_node 

= c. 

3.1.1.1.3.2 Otherwise, 

       3.1.1.1.3.2.1 Create a New node label with I 

       3.1.1.1.3.2.2 New node.count = 1. 

       3.1.1.1.3.2.3 New node.identification = i. 

       3.1.1.1.3.2.4   Store New node in the 

current_node's successor link. 

3.1.1.1.3.2.5 Set current_node = New node 

3.1.1.1.3.3 end if  

3.1.1.1.4 end if  

3.1.1.2 end if  

3.1.2 end for 

3.2 end for 

4 current_node = root. 

5 end for 
 

a. Example of mFUSP - Tree Structure 

In this fragment, we will try to describe the 

construction algorithm of mFUSP - tree by using an 

example. As input our algorithm just takes a sequence 

database and a minimum support threshold. 

In our example, we have used the sequence database 

which is shown in Table 1 and let the minimum support 

is 50% or 2 (4*50% = 2). 

The mFUSP - tree for the sequence database presented 

in Table 1 is constructed as follows: Scan the database to 

find the length-1 frequent sequential patterns with their 

support counts and keep them in the Table 2.  Scan yet 

again the database and get the first sequence p(pqr)(pr). 

Insert this sequence into the initial tree with only one 

Root node. It creates a new node (p: 1: s) (i.e. labeled as p, 

with count set to 1 and identification to s) as the child of 

the Root node, and then derives the p-branch "(p: 1: s) → 

(p: 1: s) → (q: 1: i) → (r: 1: i) → (p: 1: s) → (r: 1: i)", in 

which arrows point from parent nodes to children nodes. 

Now, insert the second sequence (pt)r(pu). It starts from 

the Root again. Since the Root node has a child labeled 

with "p" and identification of this node is also s, then, p's 

count is just increased by 1, i.e., (p: 2: s) immediately. 

But, next item, t in first event of second sequence does 

not match with the existing child node of node (p: 2: s). 

So, create a new child node (t: 1: i) of node (p: 2: s) and 

then, derives the branch "(p: 2: s) → (t: 1: i) → (r: 1: s) 
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→ (p: 1: s)", but it ignores to insert item u as item u is 

infrequent according to the Table 2. Third sequence is 

most alike to the first sequence. So, just increment the 

count of nodes of the first branch and also, it does not 

insert the node (v: 1: i) as the child node of (p: 2: s) since 

item v is not frequent. This operation goes on until there 

is no sequence in the sequence database. Header Table 

stores p, q, r, and t with their support count because they 

are frequent. The complete mFUSP - tree along with its 

Header Table is shown in Figure 2. 

 
Table 2. Length-1 Patterns and Their Support Counts 

Length-1 Sequential Patterns Support Count 

p 4 

q 3 

r 3 

t 2 

u 1 

v 1 

 

 

Fig. 2.  mFUSP - Tree with Header Table 

 

b. Characteristics of mFUSP - Tree 

The key design points behind the mFUSP - tree are 

summarized as follows: 

1. mFUSP - tree is used to store each sequence of a 

sequence database in a compact data structure. 

Because, same sequences will share the same branch 

of the tree, only counts of the corresponding nodes 

increment. So, the size of the mFUSP - tree is much 

smaller than the size of the sequence database. The 

height of the tree is one plus the maximum length of 

the sequences in the database (one for root). The 

number of leave nodes of the tree, i.e., tree width is 

the number of distinct sequences in the database. 

2. Each node stores the corresponding counts of the 

items, so that, the mining algorithm can avoid the 

tedious support counting during mining. That means, 

it can lessen the repeated scanning of large database 

during mining. 

3. Identification store in each node is used to easily 

specify the sequence relation or itemset relation 

between nodes. 

4. Compared with the FUSP - tree [6], links stored in 

the FUSP - tree [6] to find the next node of same 

item from the next branch help us to locate the 

frequent items easily without scanning each 

projected trees during mining. Our proposed tree 

structure avoid this extra burden  by not storing link 

information in the  tree, as our proposed mining 

algorithm is efficient enough to discover frequent 

sequential patterns without these link information. 

Our tree structure only links the children nodes from 

the parent. 

Definition 13: For any node labeled as ei, all the nodes 

in the path from the root (excluded root) of the tree to this 

node form a prefix sequence of ei. 

For instance, in the Figure 2, for node (q: 2: i) in the 

first branch, the prefix sequence is (p)(pq). 

Definition 14:  for any node labeled as ei, all the nodes 

in the path from ei (itself excluded) to leave node form a 

suffix sequence of ei. There are several children of ei in 

the tree, and each branch from a child to a leaf node will 

represent as a suffix sequence and all these suffix 

sequences are called the suffix tree of ei. 

For example, in the Figure 2, for node (q: 2: i) in the 

first branch, the suffix sequence is (r)(pr). Again, in the 

Figure 2, node (p: 4: s) has three suffix sequences 

(pqr)(pr), (t)(r)(p), and (q)(pt). All these suffix sequences 

are called the suffix tree of node (p: 4: s) and node (p: 4: s) 

is the root of this suffix tree. 

Lemma 1:  Given a sequence database S, the support 

count of each sequential pattern can be obtained from the 

count of each node corresponding to this sequential 

pattern. 

Justification: Based on the mFUSP - tree construction 

process, each sequence in S is mapped to one path in the 

mFUSP - tree. And all frequent items in each sequence 

are completely stored in the mFUSP - tree. Given a 

sequential pattern α = (α1, α2, . . . , αn). Following the 

child link of each item, we can traverse the suffix trees of 

these nodes. Assume that P denotes a complete set of 

paths that sequence α occurs in the suffix trees. Let n 

denote the last node in a path p (p € P), the support count 

of α in p is equal to the count of n node. Therefore, for 

each p in P, we can accumulate the count of each last 

node of each p to get the complete support count of 

sequence α. 

Based on this lemma, we can conclude that our 

algorithm can avoid multiple scanning of large database 

during mining since we can get the support count of each 

sequential pattern from the mFUSP - tree. Because 

monotonous multiple scanning is required to get the 

support count of each pattern from the large database. 

Our algorithm requires only twice scans of database 

owing to construct the mFUSP - tree. 

B.  Mining Algorithm of mFUSP - Tree 

mFUSP - tree mining algorithm is designed for 

efficiently mining sequential patterns from the mFUSP - 

tree structure. During mining, this algorithm utilizes the 

original mFUSP - tree for the entire mining and does not 

rebuild intermediate trees for projection databases like 

PrefixSpan [3] and FUSP - tree [5]. Moreover, it does not 

scan the original database multiple times during mining 

that GSP [2] does. 
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Lemma 2:  Given a mFUSP - tree T of a sequence 

database S, each frequent sequential pattern can be 

derived from the original mFUSP - tree structure, T 

without generating any intermediate projected tree. 

Rationale: We can find any node from the suffix tree 

of a node labeled as ei by using the links of the children 

node of ei. If we store only the prefix node labeled as ei, 

then, using the links of the child nodes, we can discover 

the frequent events from the suffix tree of ei. For this 

reason, we employ suffix rootsets that store only the 

prefix node labeled as ei. Rootsets are used to virtually 

represent the suffix trees without the need to physically 

store each suffix tree. The main idea is, find frequent 

events from the suffix trees of the last frequent event in a 

m-prefix sequence and add these frequent events to m - 

prefix sequence to enlarge this subsequence to m+1 - 

prefix sequence recursively. In closing, our algorithm can 

avoid generating any projected tree during mining by 

storing just the prefix nodes (roots) of the suffix trees 

physically instead of storing whole suffix trees. 

The algorithm for mining sequential patterns from the 

mFUSP - tree is described in Algorithm 4. This algorithm 

begins from the Header Table. For each frequent item α 

in the Header Table, it always tries to get the first-

occurrence node with labeled α from each branch of the 

original tree and stores these nodes in the rootset. The 

first-occurrence nodes of a symbol are found using depth-

first-search of the tree. The algorithm of detecting the 

first-occurrence node is given in Algorithm 5. 

This algorithm applies two rootsets, one to store the s-

relation nodes and another to store the i-relation nodes 

related to an item, α. If the sum of the counts of all nodes 

in the rootset for s-relation nodes related to α is greater 

than or equal to the minimum support threshold, then α is 

appended to the sequential pattern list. Next, using this 

rootset, find the next frequent prefix subsequence (α)(α1) 

or (αα1) or both from the α-suffix tree. The same attitude 

is employed for the rootset that stores i-relation nodes. 

This process goes along for each prefix subsequence until 

there is no suffix tree for that prefix subsequence for 

search. This method is carried out for each frequent item 

in the Header Table to retrieve all frequent sequential 

patterns. 

Algorithm 4: (mFUSP - tree Mine (Rootset, p): 

Mining Sequential Patterns from mFUSP - tree) 

Input: mFUSP - tree with Header Table and Minimum 

Support Threshold (min_sup). 

Output: The Complete Set of Frequent Sequential 

Patterns. 

Global Variable: Rootset_s to store s-relation nodes, 

Rootset_i to store i-relation nodes, Track to store each 

root node. 

Other Variable: F to store frequent sequential patterns 

list and p to store each pattern. 

Initial: Initially, Rootset_s stores Root of the original 

tree and set both F and p as null. At first, call the mFUSP 

- tree Mine () of Algorithm 4 by passing Rootset_s and p. 

Method: 

1. F → € 

2. for each frequent item α in the Header Table 

2.1 Rootset_s = new Rootset() 

2.2 Rootset_i = new Rootset() 

2.3 for each root node R of the Rootset 

2.3.1 Track = R 

2.3.2 for each child node N of R 

2.3.2.1 First-Occurrence-

Node(α,N,0,0) [Describe 

in Algorithm 5] 

2.3.3 end for 

2.4 end for 

2.5 if (the sum of the counts of root nodes in the 

Rootset_s  ≥  min_sup), then 

2.5.1 q ← (p) U (α) 

2.5.2 F → F U q 

2.5.3 F → F U Call mFUSP-tree Mine 

(Rootset_s, q) 

2.6 end if 

2.7 if (the sum of the counts of root nodes in the 

Rootset_i  ≥  min_sup) ,then 

2.7.1 q ← (p U α) 

2.7.2 F → F U q 

2.7.3 F → F U Call mFUSP-tree Mine 

(Rootset_i, q) 

2.8 end if 

3. end for 

4. return F 

 

Algorithm 5: (First-Occurrence-Node (α, N, Mark_s, 

Mark_i): To Find First Occurrence Node that Labeled as 

α in the mFUSP- tree). 

Input: Frequent Item, α and child node N of Root node 

R from Rootset, Mark_s variable is used to find only one 

s-relation node labeled as α from a branch and Mark_i 

variable is used to find only one i-relation node labeled as 

α from a branch. 

Output: The First Occurrence nodes those Labeled as 

α. 

Global Variable: Mark variable is used to keep track 

if the parent node's label of a node equal to the root 

node's label. Initially, Mark set as 0. 

Method: 

1. if (N. label = Track. label) 

1.1 set Mark as 1 

2. end if 

3. if ( N. label = α), then 

3.1 if (Track. label  = root) 

3.1.1 Append N to Rootset_s 

3.1.2 Mark_s set as 1 

3.2 else if (N. identification =  “i” && Mark = 0 

&&  Mark_i = 0 ) 

3.2.1 Append N to Rootset_i 

3.2.2 Mark_i set as 1 

3.3 else if (N. identification = “i” && Mark = 1 

&&  Mark_i = 0) 

3.3.1 Append N to Rootset_i 

3.3.2 Append N to Rootset_s 

3.3.3 Mark_i set as 1 

3.3.4 Mark_s set as 1 

3.4 else if (N. identification = “s” &&  Mark_s = 0) 

3.4.1 Append N to Rootset_s 
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3.4.2 Mark_s set as 1 

3.5 end if 

4. end if 

5. for each child node, n of node N 

5.1 First-Occurrence-Node (α, n, Mark_s, Mark_i) 

6. end for 

 

a. Example of Mining Algorithm of mFUSP - Tree 

For proper understanding of our proposed mining 

approach, in this section, we will try to illustrate our 

algorithm step by step with the aid of an example. As for 

input, our mining algorithm just takes mFUSP-tree with 

Header Table and minimum support threshold (min_sup). 

The algorithm’s steps are keyed out below using the 

mFUSP - tree structure established in Figure 2: 

Step 1: The first item in the Header Table is 'p'. From 

the Root node of the mFUSP - tree shown in Figure 2 

determines the first-occurrence nodes labeled as 'p' using 

depth-first-search. The first-occurrence node of item 'p' is 

(p: 4: s) node. The count of this node is 4 ≥ minimum 

support threshold and Identification of node (p: 4: s) is 

“s”.  So, the frequent sequential pattern is (p) and now the 

list of mined frequent sequential patterns is {(p): 4}. The 

mining of frequent 2-sequences that start with item 'p' 

would continue with the suffix tree rooted at node (p: 4: s) 

pictured in Figure 3 [colored portion]. Again, for item 'p' 

in the Header Table, initiates exploring to obtain first-

occurrence nodes labeled as 'p' from the root node (p: 4: 

s). The first-occurrence nodes labeled as 'p' from root 

node (p: 4: s) are (p: 2: s), (p: 1: s) and (p: 1: s). The sum 

of counts of these nodes is 4 ≥ minimum support 

threshold. Identification of these nodes is “s”, so that, the 

frequent sequential pattern is (p)(p) and at this moment 

the list of mined frequent sequential patterns is {(p): 4, 

(p)(p): 4}. Yet again, for item 'p' in the Header Table, 

finds a first-occurrence node (p: 2: s) labeled as 'p' from 

the suffix trees rooted at nodes (p: 2: s), (p: 1: s) and (p: 1: 

s) depicted in Figure 4 [colored portion]. The count of 

node (p: 2: s) is 2 ≥ minimum support threshold. As 

identification of this node is “s”, appends it  to (p)(p) 

sequence  as a s-relation item to create frequent 3-

sequence (p)(p)(p) and at this time the list of mined 

frequent sequential patterns is {(p): 4, (p)(p): 4, (p)(p)(p): 

2}. At that point is, no suffix tree rooted at node (p: 2: s) 

for search described in Figure 5 [colored portion]. So, no 

frequent 4-sequences exist for (p)(p)(p) sequence and  

stop here. 

 
Fig. 3. Suffix tree rooted at node (p: 4: s) for prefix sequence "(p)" 

 
Fig. 4. Suffix trees rooted at (p: 2: s) and (p: 1: s) for prefix sequence 

"(p)(p)" 
 

 
Fig. 5. Suffix tree rooted at node (p: 2: s) for prefix sequence "(p)(p)(p)" 

 

 
Fig. 6. Suffix tree rooted at node (q: 2: i) for prefix sequence "(p)(pq)” 

 

Backtrack and go again for item 'q' on the Header 

Table and discovers a first-occurrence node (q: 2: i) 

labeled as 'q' from the suffix tree of node (p: 2: s) and 

there is no node labeled as “q” in the suffix tree rooted at 

node (p: 1: s) illustrated in Figure 4 [colored portion]. 

The count of this node is 2 ≥ minimum support threshold. 

Identification of node (q: 2: i) is “i”. So, node (q: 2: i) is 

considered as a i-relation node. So, the frequent 

sequential pattern is (p)(pq) and currently, the list of 

mined frequent sequential patterns is {(p): 4, (p)(p): 4, 

(p)(p)(p): 2, (p)(pq): 2}. 

Persist in this operation for the frequent 4-sequences 

that begin with the (p)(pq) sequence from suffix tree 
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rooted at  node (q: 2: i) demonstrated in Figure 6 [colored 

portion] and come up only one frequent pattern (p)(pq)(p): 

2. No suffix tree left to search rooted at node (p: 2: s) 

provided in Figure 5 [colored portion]. 

Applying this same methodology, we can find the 

complete set of frequent sequential patterns starting with 

item 'p' and the frequent sequential patterns are {(p): 4, 

(p)(p): 4, (p)(p)(p): 2, (p)(pq):, (pt): 22, (p)(pq)(p): 2, 

(p)(pqr): 2, (p)(pqr)(p): 2, (p)(pr): 2, (p)(pr)(p): 2, (p)(q): 

2, (p)(q)(p): 2, (p)(qr): 2, (p)(qr)(p): 2, (pq): 3, (pq)(p): 3, 

(pqr): 2, (pqr)(p): 2, (p)(r): 3, (p)(r)(p): 3, (pr): 2, (pr)(p): 

2}. 

Step 2: This same procedure will be repeated for the 

frequent items q, r, and t; those are stored in the Header 

Table. Finally, the complete set of frequent sequential 

patterns are {(p): 4, (p)(p): 4, (p)(p)(p): 2, (p)(pq): 2, 

(p)(pq)(p): 2, (p)(pqr): 2, (p)(pqr)(p): 2, (p)(pr): 2, 

(p)(pr)(p): 2, (p)(q): 2, (p)(q)(p): 2, (p)(qr): 2, (p)(qr)(p): 

2, (pq): 3, (pq)(p): 3, (pqr): 2, (pqr)(p): 2, (p)(r): 3, 

(p)(r)(p): 3, (pr): 2, (pr)(p): 2, (pt): 2, (q): 3, (q)(p): 3, (qr): 

2, (qr)(p): 2, (r): 3, (r)(p): 3, (t): 2}. 

 

C. Completeness and Correctness – Theoretical Proof 

The primary purpose of all kinds of mining algorithms 

is to determine the perfect set of frequent patterns for the 

specified minimum support threshold. When an algorithm 

can get those patterns without losing anyone, then we can 

suppose that the algorithm is complete. On the other hand, 

the correctness of an algorithm is to determine the correct 

patterns with accurate frequency which are interesting for 

the given minimum support threshold. When an 

algorithm has both of these standards, then the algorithm 

is complete and correct. Like other existing sequential 

pattern mining algorithms, our proposed mining 

algorithm is also complete and correct that we have 

theoretical demonstrated in this fragment. 

Let T denote the complete mFUSP - tree and Lk the 

complete set of k-sequential patterns. Before giving the 

proof, we briefly summarized the major steps of the 

mFUSP - tree mining algorithm. These steps will help us 

to ignore the details of algorithm that not related to the 

proof. 

1. Find all L1 patterns in the construction of the 

mFUSP - tree. 

2. For each patterns α in Lk-1 (k ≥ 2). 

2.1 Traverse α’s suffix mFUSP - tree in T, denoted 

as T|α, and calculate the count of each item in L1 

from T|α by using Lemma 1. 

2.2 Obtain a k-sequential pattern, denoted as α', by 

appending either an item in the last itemset of α 

or a new itemset after the last itemset of α if the 

support count of α' satisfies minimum support 

threshold. 

2.3 Put all those patterns α' into Lk if their support 

counts satisfy minimum support threshold. 

3. Recursively find Lk+1 sequential patterns with prefix 

α' in T|α'. 

 

Theorem 1:  Every sequential pattern must be 

obtained by the mFUSP - tree mining algorithm. 

Proof:   For each item i in L1, we traverse i’s suffix 

mFUSP - tree, denoted as T|i, from T. This theorem can 

be proved by induction. 

Basis: If k = 1, meaning that there is only one item in 

each pattern, then all patterns in L1 can be found by the 

step 1 of the mFUSP - tree mining algorithm. 

Inductive step: We consider algorithm can find all Lk 

sequential patterns. Suppose we are given an Lk 

sequential pattern denoted as x = {i1, i2,…, ik}. This 

means step 2.1 of the algorithm will traverse < i1, i2,…, ik-

1 >’s suffix mFUSP - tree T|< i1, i2,…, ik-1 >. Based on the 

Lemma 1, the support count of each sequential pattern 

can be derived from the mFUSP - tree. Hence, all the 

pattern information related to ik-1 will be kept in T|< i1, 

i2,…, ik-1 >. Thus, step 2.2 of the algorithm can find x' = 

{i1, i2,…, ik-1} from T|< i1, i2,…, ik-1 >. Finally, ik can be 

appended after x' to form pattern x. Then, we can find all 

sequential patterns of Lk by checking if a pattern in Lk 

satisfies minimum support threshold. We did this in step 

2.3. Therefore, the mFUSP - tree mining algorithm can 

find all sequential patterns. 

Theorem 2: The sequential patterns obtained by the 

mFUSP - tree mining algorithm are correct. 

Proof:  Because of the examination done in steps 1, 

2.2, and 2.3, every sequential pattern in L1 and Lk (k ≥ 2) 

must be frequent (i.e. satisfy minimum support threshold). 

Based on these theorems above, we have concluded 

that the mFUSP - tree mining algorithm is complete and 

correct. 

 

V. PERFORMANCE ANALYSIS 

We have evaluated the performance of our proposed 

mFUSP - tree mining approach with other three existing 

approaches GSP [2], PrefixSpan [3] and FUSP-Tree 

Based mining [5] for two real datasets and a synthetic 

dataset. All the experiments were conducted on a 2.80-

GHz Intel(R) Pentium(R) D processor with 1.5GB main 

memory, running on Microsoft Windows 7. All the 

programs were written in NetBeans IDE 6.8 with JDK 6. 

A. Datasets 

We have used three datasets, two real-datasets, BMS-

WebView-1 [8], and BMS-POS [8], as well as a 

Synthetic dataset T10I4D100K [8] for evaluation of 

experimental results. We use these datasets by 

considering each transaction as a sequence and each item 

of the transaction as a single item element in that 

sequence. Obviously, while considering these datasets for 

sequential pattern mining, they will also generate long 

sequential patterns. The properties of these datasets, in 

terms of the number of distinct items, the number of 

sequences, the maximum sequence size, the average 

sequence size, and type are shown below by a Table 3. 

B.  Experimental Result 

Execution times after running four algorithms for 

different minimum support thresholds by using three 

datasets (T10I4D100K, BMS-WebView-1, and BMS-

POS) are presented at this juncture. 
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Table 3. Properties of Experimental Datasets 

Dataset Distinct Items No. of Sequences Max Size Avg. Size Type 

T10I4D100K 870 100000 29 10.1 Synthetic 

BMS-WebView-1 497 59602 267 2.5 Real 

BMS-POS 1657 515597 164 6.5 real 

 

a. The Comparison Between GSP and mFUSP - Tree 

Three datasets, including a synthetic dataset (i.e. 

T10I4D100K) and two real datasets (i.e. BMS-WebView-

1 and BMS-POS), were used to examine the execution 

time of both GSP and mFUSP - tree with respect to 

minimum support threshold. Figure 7 shows the 

execution time results for T10I4D100K, BMS-WebView-

1 and BMS-POS, respectively. The results indicate that 

the mFUSP - tree mining algorithm is much faster than 

GSP.  The results are as expected; because GSP needs 

scanning these datasets multiple times to find the support 

count of each sequential pattern. When the number of 

sequences in each dataset increases, the amount of scans 

increases as well and as a consequence, the execution 

times of GSP algorithm raise. On the contrary, mFUSP - 

tree mining method can determine the support count of 

each pattern from the node’s count of the mFUSP - tree 

structure effortlessly and moreover, it calls for only twice 

scans of these datasets to build the mFUSP - tree from 

these datasets. 

 

 
 

 

 

 

Fig. 7. Execution Time vs. Minimum Support between GSP and mFUSP 

- Tree 

 

b. The Comparison Between PrefixSpan and mFUSP - 

Tree 

Figure 8 demonstrates the execution time results for 

T10I4D100K, BMS-WebView-1 and BMS-POS, 

respectively due to compare the execution time of both 

PrefixSpan and mFUSP - tree with respect to minimum 

support threshold.  The result is quite encouraging; 

because PrefixSpan produces projected intermediate tree 

from these datasets for each sequential pattern. We know 

that number of sequential pattern generation increases 

when the size of the database increases and hence, the 

number of intermediate tree generation increases as well. 

This similar dilemma influences PrefixSpan algorithm. 

For this reason, PrefixSpan requires more times than 

mFUSP - tree mining to uncover frequent sequential 

patterns from these large datasets (T10I4D100K, BMS-

WebView-1, and BMS-POS) as our proposed method 

does not generate intermediate trees during mining. 
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Fig. 8. Execution Time vs. Minimum Support between PrefixSpan and 
mFUSP - Tree 

 

c. The Comparison Between FUSP - Tree and mFUSP - 

tree 

Figure 9 is employed for evaluating the performance of 

both FUSP - tree and mFUSP - tree mining with respect 

to minimum support threshold by using three datasets, 

T10I4D100K, BMS-WebView-1 and BMS-POS, 

respectively. FUSP - tree almost similar to the mFUSP - 

tree except that it generates intermediate trees for each 

sequential pattern from these datasets and it stores 

additional linking information in its node. The results 

shown in Figure 9 point out that as an effect of 

intermediate trees generation and link updating procedure 

of each projected tree, FUSP - tree entails supplementary 

times during mining than mFUSP - tree mining for these 

large datasets. 

 
 

 
 

 

Fig. 9. Execution Time vs. Minimum Support between FUSP - Tree and 

mFUSP - Tree 

 

C.  Completeness and Correctness 

In this section, we have substantial demonstrated that 

the proposed algorithm is complete and correct. 

The completeness of the proposed algorithm can be 

verified by comparing the total numbers of patterns 

generated for various minimum support thresholds. From 

Figure 10, we can perceive that the proposed algorithm 

produces the same number of patterns as GSP [2], 

PrefixSpan [3] and FUSP - tree [5] mining generate for 

datasets T10I4D100K, BMS-WebView-1 and BMS-POS 

respectively. From this figure, we can also observe that 

the total number of frequent patterns generation inversely 

proportional to the minimum support threshold.  That 

implies, if the values of the minimum support thresholds 

decrease, then the total number of frequent patterns 

generation increases and vice versa. Since for all datasets, 

the proposed algorithm has generated complete set of 

frequent sequential patterns as existing algorithms 

generate, so it proves the completeness of the algorithm 

presented in this paper. 

Table 4 has presented the sequential patterns obtained 

from the four algorithms for the sequences which are 

shown in Table 1. We can realize from this table that, 

these four algorithms generate the same frequent 

sequential patterns with the same frequencies for the 

same minimum support threshold. In other word, we can 

state that, the proposed algorithm gives the same result as 

GSP [2], PrefixSpan [3] and FUSP - tree [5] mining 

methods produce that demonstrates the correctness of the 

algorithm given in this paper. 
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Thus, based on the exceeding discussion, it can be said 

that the proposed mFUSP - tree mining algorithm is 

complete and correct. 

 
Table 4. Sequential Patterns Obtained from Four Algorithms for 

Database Shown in Table 1 

 
 

 
 

 
 

 

Fig. 10. Comparison between No. of Sequential Patterns and Minimum 
Support 

VI. CONCLUSION 

To achieve efficient mining sequential patterns, a 

compact data structure, called a mFUSP - tree, is 

proposed to store and compress entire sequence database 

and a mining algorithm, named mFUSP - tree mining, is 

developed to ascertain the complete set of frequent 

patterns from the mFUSP - tree. Because of this tree 

structure, we can resolve many problems that have other 

existing algorithms like GSP, PrefixSpan and FUSP - tree 

mining.  First of all, we can compact larger sequence 

database into smaller tree structure because of partaking 

the same branch of the tree for the similar sequence of 

database and as well, for storing frequent items. 

Subsequently, our mining algorithm can avoid the 

multiple scanning of large database attributable to storage 

of counts in the tree’s node; only require twice scans of 

database to build the mFUSP - tree. Next, the link 

information is not stored in the mFUSP - tree structure 

then that our proposed mining algorithm can pay no 

attention to the link updating process. Ultimately, the 

mFUSP - tree structure is too efficient for incremental 

mining that we will describe in our future study. In order 

that, the performance of our proposed mining method 

enhances in favor of these gains of the mFUSP - tree 

structure. Likewise, we want to point out that mFUSP - 

tree mining algorithm does not scan the large database 

numerous times as well as does not generate intermediate 

projected trees as a result of depth first search from 

parent node to child nodes that shrinks the time 

complexity of the algorithm and our experimental results 

provide evidence for performance enhancement of the 

method that has demonstrated in this paper. 
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