
I.J. Information Technology and Computer Science, 2016, 5, 81-87
Published Online May 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.05.09

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 81-87

Locating All Common Subsequences in Two

DNA Sequences

M. I. Khalil
Reactor Physics Dept., Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt

Currently in a sabbatical leave as an Associate Prof. at Princess Nora Bent Abdurrahman University, Faculty of

Computer and Information Sciences, Networking and Communication Dept., Riyadh, Kingdom of Saudi Arabia

E-mail: magdi_nrc@hotmail.com, mikhalil@pnu.edu.sa

Abstract—Biological sequence comparison is one of the

most important and basic problems in computational

biology. Due to its high demands for computational

power and memory, it is a very challenging task. The

well-known algorithm proposed by Smith-Waterman

obtains the best local alignments at the expense of very

high computing power and huge memory requirements.

This paper introduces a new efficient algorithm to locate

the longest common subsequences (LCS) in two different

DNA sequences. It is based on the convolution between

the two DNA sequences: The major sequence is

represented in the linked-list X while the minor one is

represented in circular linked-list Y. An array of linked

lists is established where each linked list is corresponding

to an element of the linked-list X and a new node is

added to it for each match between the two sequences. If

two or more matches in different locations in string Y

share the same location in string X, the corresponding

nodes will construct a unique linked-list. Accordingly, by

the end of processing, we obtain a group of linked-lists

containing nodes that reflect all possible matches between

the two sequences X and Y. The proposed algorithm has

been implemented and tested using C# language. The

benchmark test shows very good speedups and indicated

that impressive improvements has been achieved.

Index Terms—DNA similarity algorithms, DNA

sequence comparison, DNA analysis, pattern recognition,

Longest Common Sequence, Longest Common

Subsequence.

I. INTRODUCTION

In a DNA sequence, or a molecule of DNA, there are

four nucleotide bases: Adenine, Guanine, Cytosine, and

Thymine (Fig.1). The knowledge of a DNA sequence and

gene analysis can be used in several biological, medicine

and agriculture research fields such as: possible disease

or abnormality diagnoses, forensics, pattern matching,

biotechnology, etc [1-5,7,8,22]. It can be also used to

predict the function of a particular gene and compare it

with other “similar” genes from same or different

organisms. The analysis and comparison studies for DNA

sequences connected information technology tools and

methods to accelerate findings and knowledge in

biological related sciences.

Fig.1. DNA structure

In comparative genomics, comparing genome

sequences is one of the main tasks because sequence

similarities strongly reflect the evolutionary relationships

between the corresponding species. In addition, with the

introduction of next-generation sequencing technologies,

the demand for rapid comparisons of massive amounts of

long sequences has increased in recent years. For years,

DNA comparison has been used in biology and forensics

to discriminate and compares genes or genomes. Those

tools vary in size, complexity and functionality based on

several factors. Some small tools or websites are

developed as free or open source for research or

experimental purposes. Examples of such small size

limited purpose tools or applications are: Double Act

(http://www.hpa-

bioinfotools.org.uk/pise/double_act.html), Genomatix

(http://www.genomatix.de), Mobyle

(http://mobyle.pasteur.fr), ALIGN, FASTA, etc. BLAST:

(Basic Local Alignment Search Tool)[4] is an example of

a larger scale. Most of these algorithms uses Smith–

Waterman algorithm for performing sequence alignment

[6-10,21-25]. This algorithm which is also used in crimes’

forensic investigation does not use full DNA to DNA

82 Locating All Common Subsequences in Two DNA Sequences

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 81-87

sequence comparison. It rather selects several segments

(e.g. eight segments) selected from the different locations

of the DNA. BLAST uses also dynamic programming

and “seeding” to find starts of possible matches[11-15].

The goal is to accelerate the process of finding matches

between DNA sequences as this can take a significant

amount of time and resources.

Another process that can be different from one tool to

another is the ranking of the different matches. This can

particularly occur when more than a match is in the same

size.

This paper addresses the problem of finding the best

match between two given DNA sequences or protein

strings. The algorithm suggested in this paper aims to

minimize both the time of processing and the size of

allocated memory. The algorithm detects not only the

longest common subsequence but finds all possible

common subsequences. The major DNA sequence is

represented in the linked-list X while the minor one is

represented in circular linked-list Y. An array of linked

lists Z is established where each linked list is

corresponding to an element of the linked-list X and a

new node is added to it for each match between the two

DNA sequences. If two or more matches (with same or

different length) at different locations in sequence Y

share the same location in sequence X, then the

corresponding nodes will construct a unique linked-list in

Z. Accordingly, by the end of processing, we obtain

multiple linked-lists containing nodes that reflect all

possible matches between the two sequences X and Y.

The array Z of linked lists is then traversed horizontally

and vertically retrieving all matches between sequences X

and Y.

The rest of the paper is organized as follows: Section 2

demonstrate some of interesting facts about DNA.

Section 3 illustrates the suggested algorithm, and the

implementation and experimental results are discussed in

Section 4. I conclude the paper in Section 5.

II. INTERESTING DNA FACTS

DNA or deoxyribonucleic acid codes for your genetic

make-up. There are lots of facts about DNA, but here are

some that are particularly interesting, important, or fun

[16-20].

• Even though it codes for all the information that

makes up an organism, DNA is built using only

four building blocks, the nucleotides adenine,

guanine, thymine, and cytosine.

• Every human being shares 99% of their DNA with

every other human.

• If you put all the DNA molecules in your body end

to end, the DNA would reach from the Earth to the

Sun and back over 600 times (100 trillion times

six feet divided by 92 million miles).

• A parent and child share 99.5% of the same DNA.

• You have 98% of your DNA in common with a

chimpanzee.

• Humans share 50% of their DNA with bananas.

• Cells can contain 6-9 feet of DNA. If all the DNA

in your body was put end to end, it would reach to

the sun and back over 600 times.

• DNA in all humans is 99.9 percent identical. It is

about one tenth of one percent that makes us all

unique, or about 3 million nucleotides difference.

• DNA can store 25 gigabytes of information per

inch and is the most efficient storage system

known to human. So, humans are better than

computers!!

• In an average meal, you eat approximately

55,000,000 cells or between 63,000 to 93,000

miles of DNA.

• It would take a person typing 60 words per minute,

eight hours a day, around 50 years to type the

human genome.

DNA sequence analysis can be used to identify

possible errors or abnormality in a DNA sequence (e.g. in

comparison with a normal one). It can be also used to

expect the function of a particular gene and compare it

with other “similar” genes from same or different

organisms.

If a new DNA sequence is discovered its functionality

is specified depending on its similarity with other known

DNA sequences. Such technique is used in several

medical applications and research studies.

DNA is composed of units called NUCLEOTIDES,

which are composed of three sub-molecules:

1. Pentose Sugar (deoxyribose)

2. Phosphate

3. Nitrogen Base (purine or pyrimidine)

DNA is composed of two complimentary strands of

nucleotides joined by hydrogen bonds:

Adenine with Thymine (A-T or T-A) They join with 2

hydrogen bonds Cytosine with Guanine (C-G or G-C)

They join with 3 hydrogen bonds. DNA twists into a

double helix, and conformity of style throughout a

conference proceedings. Margins, column widths, line

spacing, and type styles are built-in; examples of the type

styles are provided throughout this document and are

identified in italic type, within parentheses, following the

example. Some components, such as multi-leveled

equations, graphics, and tables are not prescribed,

although the various table text styles are provided. The

formatter will need to create these components,

incorporating the applicable criteria that follow.

III. THE SUGGESTED ALGORITHM

Given two DNA sequences X and Y of length n and m

respectively:

X= x_1 x_2 x_3 ……. x_n (1)

Y= y_1 y_2 x_3 ……. y_m (2)

Where x_i and y_i are chosen from a finite alphabet,

 Locating All Common Subsequences in Two DNA Sequences 83

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 81-87

e.g.{A,C,G,T}:

x_i ∈ {A,C,G,T}, y_i ∈ {A,C,G,T} (3)

The goal is to determine the location and length of all

similar subsequences in both X and Y. Achieving this

goal, the suggested approach has been divided into two

consecutive algorithms:

3.1 The matching algorithm

The matching algorithm compares two DNA sequences

for all possible identical matches. The data structure

required for the suggested algorithm is shown in Fig.2.

The major DNA sequence string is represented in the

linked-list X while the minor one is represented in

circular linked-list Y. Each element of the linked-list Y

contains a data filed along with a single directional

pointer to the next element in a circular manner. Each

data field of Y holds one of the minor DNA sequence

characters (y_i). Each element of the linked-list X

consists of three fields described as follows. The first one

is a data field holding one of the major DNA sequence

characters (x_i), the second field is a pointer to an

independent linked-list, where the collection of those

independent linked lists are clustered and considered as

array of linked-list Z. The array Z will be used to hold the

resultant of the matching algorithm as will be illustrated

later. The third filed is simply a pointer to the next

element of the linked-list X.

Fig.2. The data structures used in the suggested approach

The suggested algorithm begins by creating and then

initializing the prescribed data structure. The linked list X

and Y are created with lengths equal to the lengths of the

major and minor DNA sequences respectively. The major

DNA sequence (the longer one) is streamed and each

character is inserted sequentially in the data filed of a cell

of linked-list X. The same thing is done with the minor

DNA sequence (the shorter one) where its characters are

inserted sequentially in the linked-list Y. The linked lists

of the array Z is left without creation as they will be

created during the matching process.

The matching algorithm aims to determine both the

location and length of all possible common subsequences

between the two DNA sequences represented in X and Y

linked lists respectively. For each match, the location and

length will be added to the corresponding node in the

array of linked lists Z. The main matching algorithm and

its subroutines are listed in List. 1 through List.3.

List.1: Pseudo code of Matching Algorithm

As illustrated in List.1, when the two variables x and y

are equal, the process named

Get_substring_until_no_match (List 2) will be

performed continuously reading new pair of characters as

long as the new pair of characters x and y are equal

otherwise the process terminates. The length and location

of the obtained substring are considered as input to the

process named Add_obtained_substring_to_Z (List 3).

The Add_obtained_substring_to_Z process is

responsible of adding information related to the obtained

substring to the array of linked lists Z. Each character of

the major DNA sequence, which is represented by X[I],

points to a separate linked list in the array Z. The

initialization process does not create the linked lists in

array Z but leave this task for process

Add_obtained_substring_to_Z to create only the actually

needed linked lists to save the allocated memory space.

Each separate linked list Z[I] should hold information

about all common substrings between sequence X,

starting at position I, and sequence Y. Accordingly, the

process adds a new node to the corresponding linked list

Z[I] writing both the length of the substring (Length), and

its location (J) in the second sequence Y to the

corresponding fields of this node.

By the end of the matching process, some characters of

the DNA sequence X have linked lists in the array Z and

C G T A T C C

 A C G G A T T C

G

Circular linked list

(Y)

Linked list

(X)

Array of linked lists

(Z)

Location

, Length.

Location

, Length.

Location

, Length.

Location

, Length.

Location

, Length.

Location

, Length.

Location

, Length.

null

null

null

// Input : DNA1 and DNA2 sequences
Get Length_of_DNA1;
Get Length_of_DNA2;

For I = 0; I < Length_of_DNA1
 For j = 0; J < length_of_DNA2
 x = read character from DNA1[I]
 y = read character from DNA2[J]

 if (x == y)
 {
 Perform Get_substring_until_no_match(I,J);
 // L = length of the obtained substring
 Add_ obtained_substring_to_Z(I,J, L);
 }

 Next J;
Next I;

84 Locating All Common Subsequences in Two DNA Sequences

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 81-87

the others do not have.

List.2: Pseudo code Get_substring_until_no_match

List.3 :Add_obtained_substring_to_Z

The following example illustrates the matching process

of the suggested algorithm:

Input: two sequences:

 DNA-1 sequence = “ATCAGTTACGT”

 DNA-2 sequence = “TATCATG”

The two sequences are placed in linked lists X and Y

respectively. The matching process yields the common

subsequences and place their locations and lengths in

array Z of the linked lists (Red boxes in Fig.3). For

example, the first character at position 0 of the first

sequence (“A”) has two matches with the second

sequence at locations 1 and 4 with lengths 4 and 2

respectively. The first matching has length of 4 where the

subsequence “ATCA”exists in both sequences. The

second matching has length of 2 where the substring “AT”

exists in both sequences.

Fig.3. Illustration example of the matching process

Inspecting the linked lists produced by the matching

process leads to finding that the longest common

substring is “ATCA” at location 0 of the first sequence

and location 1 of the second sequence.

3.2 Information retrieving algorithm

List.4: Pseudo code Information_retrieving

Performing the matching algorithm yields a massive

amount of linked lists in array Z. Every cell of each

linked list includes information (location and length) for a

single match between the two DNA sequences. To

retrieve this information, there is a need for a search

// Input : DNA1 and DNA2 sequences
// I, J
m =I;
n = J;
Length =0;
 x = read character from DNA1[m]
 y = read character from DNA2[n]

while (x == y)
{
 Length ++;
 m++;
 n++;
 x = read character from DNA1[m]
 y = read character from DNA2[n]
 }

Return Length

Input : I, J, Length
m =I;
n = J;

l = Length;

if X[m].pointer == null
 {

 create new linked_list Z[m]
 add new cell with (n, l)

 // n = location of substring in DNA2 sequence
 // l = length of substring

 }
Else

 Add new cell to linked_list Z[m]

// Input : linked list X where each cell consists of:
// X.P_to_Z (pointer to a linked list in Z)
// X.value (data)
// Input : linked list array Z where each cell consists
of:
// Z.Loc_in_Y (location in DNA2 sequence)
// Z.length (length of matching string)

Set pointer P to the first cell of linked_list X

 For I = 0; I < Length_of_DNA1
 {
Read cell from linked list X
 Get from this cell pointer P_to_Z
//which points to the corresponding linked list in array
Z

 While (P_to_Z != null)
 {
 Read from Z the cell pointed to by P_to_Z
pointer
 L = Z.Loc_in_Y (Get length of matching string)
 y = Get location of matching string in linked list
Y
 Display retrieved information
 P_to_Z = P_to_Z.next
 }

P = P.next (point to next cell in X)
}

 Locating All Common Subsequences in Two DNA Sequences 85

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 81-87

algorithm to crawl through the linked lists included in

array Z. The algorithm begins reading the cells of linked

list X sequentially where each cell contains a pointer (or

null if there is no match at this position) to a single linked

list in Z. Each linked list in array Z has number of cells,

where each cell holds the length and location of common

matching subsequence between the pair of DNA

sequences. The algorithm is more clearly explained in

List. 4.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Table 1. Relation between DNA sequence length and time of processing
(both the major and minor sequences are of the same length)

DNA

sequence

length
(Bytes)

First time

component

(Seconds)

Second time

component

(Seconds)

Total

processing

time
(Seconds)

100 0.014 1.115 1.129

150 0.03 2.383 2.413

200 0.04 4.137 4.177

300 0.118 9.25 9.368

400 0.267 16.76 17.027

500 0.482 25.845 26.327

600 0.697 39.124 39.821

700 0.932 49.29 50.222

800 1.683 67.447 69.13

900 1.853 81.893 83.746

1000 2.425 107.085 109.51

1200 4.136 144.045 148.181

1400 7.266 195.367 202.633

1500 8.496 227.435 235.931

1600 9.268 258.286 267.554

1700 12.158 289.917 302.075

1800 13.26 326.128 339.388

1900 15.209 360.33 375.539

2000 18.443 399.903 418.346

2500 34.252 633.684 667.936

The suggested algorithm has been implemented using

C# language to perform comparison between two input

long DNA sequences and display all possible common

subsequences in suitable manner. In the first stage, two

DNA sequences with the desired lengths are randomly

generated for the test purpose and located in the

corresponding linked lists X and Y respectively. The

matching algorithm is performed in the second stage of

the program. The obtained results are retrieved from the

array of linked lists Z and displayed in suitable user

interface in the last stage. The program has been applied

to several DNA sequences with different lengths and the

time of processing is computed and then recorded in each

case. The time of processing has been studied in more

deep: the total time of processing consists of two

components; the first one is consumed in comparing the

two DNA sequences, constructing and inserting data in

the array of linked lists corresponding to each position in

the major sequence. The other time component is

consumed in traversing the linked lists to retrieve the

locations and lengths of the common subsequences. It has

been found that the first time component is trivial

compared to the second one (Table-1). The relation

between time of processing and its dependence on the

length of the major string is considered and is represented

in Fig.9.

Applying the Matlab fit function to fit polynomials to

the obtained data yields the following polynomial

equation:

Fig.4. Relation between time consumed in constructing linked lists and
time consumed in traversing them in the suggested approach

𝒕 = 𝟔. 𝟐𝟎𝟓 𝒙 𝟏𝟎−𝟗 𝑺𝟑 + 𝟖. 𝟓𝟑𝟕 𝒙 𝟏𝟎−𝟓 𝑺𝟐 + 𝟎. 𝟎𝟏𝟓𝟓𝟖 𝑺 − 𝟐. 𝟑𝟕𝟗

Where t is the time consumed in seconds and S is the

DNA sequence size in bytes.

V. CONCLUSION

DNA patterns matching is a fundamental and

upcoming area in computational molecular biology. The

algorithm proposed in this paper addressed not only the

problem of locating the longest common subsequences

(LCS) in two different sequences but also finds exactly

all common subsequences along with their locations and

lengths. It is based on the convolution between the two

sequences (named major sequence X and minor one Y)

and creating a node in the corresponding linked list in

array Z for each match between the two sequences. If

two or more matches share the same location in sequence

X, the corresponding nodes are clustered constructing a

single linked-list. The matching process yields a group of

linked-lists containing nodes arranged in certain manner

representing all possible matches between sequences X

and Y. The obtained results, compared with another

algorithms [22] presented very good speedups and

indicated that impressive improvements has been

achieved. The proposed algorithm can be more

developed to locate the longest common subsequences

between the major DNA sequence and multiple minor

sequences. Also, it can be modified to perform the

process of alignment between two DNA sequences.

Moreover, the algorithm needs to be developed to be able

86 Locating All Common Subsequences in Two DNA Sequences

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 81-87

to run in parallel computing manner to cope with the long

time processing problem.

REFERENCES

[1] O. Gotoh, “An Improved Algorithm for Matching

Biological Sequences,” Journal of Molecular Biology, 162,

pp:705~708, 1982.J. Clerk Maxwell, A Treatise on

Electricity and Magnetism, 3rd ed., vol. 2. Oxford:

Clarendon, 1892, pp.68-73.

[2] S. Grier, “A tool that detects plagiarism in Pascal

programs”, ACM SIGCSE Bulletin, vol. 13, no. 1, (1981),

pp. 15-20.

[3] J. A. W. Faidhi and S. K. Robinson, “An empirical

approach for detecting program similarity within a

university programming environment”, Computers &

Education, vol. 11, no. 1, (1987), pp. 11-19.

[4] U. Manber, “Finding similar files in a large file

system[C/OL]”, In: Proceedings of the Winter USENIX

Conference, (1994), pp. 1-10.

[5] BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi, (2011)

September.

[6] C. Yu, S.-Y. Cheng, R. L. He and S. S. -T. Yau, “Protein

map: An alignment-free sequence comparison method

based on various properties of amino acids”, Gene, vol.

486, (2011), pp. 110-118.

[7] Y. Guo and T. -m. Wang, “A new method to analyze the

similarity of the DNA sequences”, Journal of Molecular

Structure: THEOCHEM, vol. 853, (2008), pp. 62–67.

[8] S. B. Needleman and C. D. Wunsch, “A general method

applicable to the search for similarities in the amino acid

sequence of two proteins”, Journal of Molecular Biology,

vol. 48, no. 3, (1970), pp. 443–53. doi:10.1016/0022-

2836(70)90057-4. PMID 5420325,

http://linkinghub.elsevier.com/retrieve/pii/0022-

2836(70)90057-4.

[9] C. S. Iliopoulos and M. S. Rahman, “Algorithms for

Computing Variants of the Longest Common

Subsequence Problem”, Theoretical Computer Science

archive Journal, vol. 395, no. 2-3, (2008), pp. 255-267.

[10] C. -P. P. Wu, N. -F. Law and W. -C. Siu, “Cross

chromosomal similarity for DNA sequence compression”,

Bioinformation, vol. 2, no. 9, (2008), pp. 412-416.

[11] C. S. Iliopoulos and M. S. Rahman, “New Efficient

Algorithms for LCS and Constrained LCS Problem”, In

Proceedings of the Third ACiD Workshop Durham, UK,

vol. 9 of Texts in Algorithmics. King's College London,

(2007), pp. 83-94.

[12] A. F. Klaib, Z. Zainol, N. H. Ahamed, R. Ahmad and W.

Hussin, “Application of Exact String Matching

Algorithms towards SMILES Representation of Chemical

Structure”, International journal of computer and

information science and engineering, (2007), pp. 497-501.

[13] K. Rieck, P. Laskov and K. -R. M¨uller, “Efficient

Algorithms for Similarity Measures over Sequential Data:

A Look Beyond Kernels”, DAGM 2006, LNCS 4174,

(2006), pp. 374–383.

[14] G. Fox, X. Qiu, S. Beason, J. Y. Choi, M. Rho, H. Tang,

N. Devadasan and G. Liu, “Case Studies in Data Intensive

Computing”, Large Scale DNA Sequence Analysis as the

Million Sequence Challenge and Biomedical Computing,

(2009).

[15] K. Derouiche and D. A. Nicole, “Semantically Resolving

Type Mismatches in Scientific Workflows”, OTM 2007

Workshops, Part I, LNCS 4805, (2007), pp. 125–135,

Springer-Verlag Berlin Heidelberg 2007.

[16] DIALIGN, http://dialign.gobics.de/, (2011) September.

[17] D. Rose, J. Hertel, K. Reiche, P. F. Stadler and J.

Hackermüller, “NcDNAlign: Plausible multiple

alignments of non-protein-coding genomic Sequences”,

Genomics, vol. 92, no. 1, (2008), pp. 65-74.

[18] E. Dong, J. Smith, S. Heinze, N. Alexander and J. Meiler,

“BCL::Align—Sequence alignment and fold recognition

with a custom scoring function online”, Gene, vol. 422, no.

1-2, (2008), pp. 41-46.

[19] B. Vishnepolsky and M. Pirtskhalava, “ALIGN MTX—

An optimal pairwise textual sequence alignment program,

adapted for using in sequence-structure alignment”,

Computational Biology and Chemistry, vol. 33, no. 3,

(2009), pp. 235-238.

[20] P. Kalsi, H. Peltola and J. Tarhio, “Comparison of Exact

String Matching Algorithms for Biological Sequences”, In:

Proc. BIRD ’08, 2nd International Conference on

Bioinformatics Research and Development (ed. M.

Elloumi et al.). Communications in Computer and

Information Science 13, Springer (2008), pp. 417-426.

[21] G. Huang, H. Zhou, Y. Li and L. Xu, “Alignment-free

comparison of genome sequences by a new numerical

characterization”, Journal of Theoretical Biology, vol. 281,

no. 1, (2011), pp. 107-112.

[22] Izzat Alsmadi, Maryam Nuser, “String Matching

Evaluation Methods for DNA Comparison,” International

Journal of Advanced Science and Technology Vol. 47,

October, 2012, p. 13-32.

[23] J. K. Me, M. R. Panigrahi, G. N. Dash and P. K. Meher,

Wavelet Based Lossless DNA Sequence Compression for

Faster Detection of Eukaryotic Protein Coding Regions,

IJIGSP Vol.4, No.7, July 2012.

[24] Mohammed Abo-Zahhad, Sabah M. Ahmed and Shimaa

A. Abd-Elrahman. A Novel Circular Mapping Technique

for Spectral Classification of Exons and Introns in Human

DNA Sequences, IJITCS Vol. 6, No. 4, March 2014,

PP.19-29.

[25] G. Sethuraman,Kavitha Joseph, Star Coloring Problem:

The DNA Solution, IJITCS Vol. 4, No. 3, April 2012,

PP.31-37.

[26] M.I.Khalil, M.A.Hadi, Finding Longest Common

Substrings in Documents, IJIGSP Vol. 7, No. 9, 2015, 9,

27-33.

Authors’ Profiles

M.I. Khalil: Egyptian, male, has obtained

his B.Sc degree in Computer and

Automatic Control Engineering from

Faculty of Engineering, Ain Shams

University, Cairo, Egypt, in 1983, M.Sc

degree in Computer Engineering from

Faculty of Engineering, Tanta

University,Tanta, Egypt, in 2003 and

Ph.D degree in Computer Systems

Engineering from Faculty of Engineering, Benha University,

Cairo, Egypt, in 2005. He is currently working as Associate

Professor in Department of Networking and Communication

systems at the Faculty of Computer and Information Sciences,

Princess Noura Bent Abdulrahman University, Riyadh, KSA.

He has 15 years of previous experience at the Reactor Physics

Department, Nuclear Research Center (NRC), Egyptian Atomic

Energy Authority Cairo (EAEA), Egypt in the field of Data

Acquisition and Interface Design. His main research interests

focus on: Digital Signal Processing, Wireless Sensor Networks,

 Locating All Common Subsequences in Two DNA Sequences 87

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 81-87

Personal and Mobile Communications. So far, he has twelve

years of teaching experience and has published more than

twenty-five papers in repute journals and proceedings of

conferences in fields of the data acquisition, digital signal

processing, image processing and neural networks.

How to cite this paper: M. I. Khalil,"Locating All Common

Subsequences in Two DNA Sequences", International Journal

of Information Technology and Computer Science(IJITCS),

Vol.8, No.5, pp.81-87, 2016. DOI: 10.5815/ijitcs.2016.05.09

