
I.J. Modern Education and Computer Science, 2018, 4, 35-42
Published Online April 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.04.05

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 35-42

An Approach to Parallel Sorting Using Ternary

Search

Monica Maurya
Department of Computer Science and Engineering Kamla Nehru Institute of Technology

Sultanpur, Uttar Pradesh

Email: monicamaurya90@yahoo.co.in

Alka Singh
Assistant Professor

Department of Computer Science and Engineering Kamla Nehru Institute of Technology

Sultanpur, Uttar Pradesh

Email: alkasingh1980@gmail.com

Received: 01 December 2017; Accepted: 10 January 2018; Published: 08 April 2018

Abstract—This paper describe a parallel sorting

algorithm which is the combination of counting sort and

ternary search. The proposed algorithm is based on split

and concurrent selection strategy. First of all the data

sequence is distributed among the different processors

and are sorted in parallel using counting sort. Then it

applies ternary search to find the index position of all

elements globally to find the correct position of each

elements in data sequence. This paper analyses the

computational complexity of proposed parallel sorting

algorithm and compares it with some of existing

algorithms. The results of proposed algorithms shows that

it is better than existing parallel sorting algorithm like

parallel merge sort and binary search based sorting

algorithm.

Index Terms—Counting sort, Ternary search, Parallel

Merge sort, Binary search , Bitonic Sort.

I. INTRODUCTION

People wants improvements in productivity, security,

multitasking (running multiple application

simultaneously on your computer), data protection, and

many other capabilities. Performance of a processor can

be increased by increasing clock speed ,increasing bus

speed and by providing large cache memory. Given the

large number of parallel sorting algorithms and wide

variety of parallel architecture, it is a difficult task to

select the best algorithm for a particular machine and

problem instance. The main reason that the choice is

more difficult than in sequential machines is because

there is no known theoretical model that can be applied to

accurately predict an algorithm’s performance on

different architectures.

This paper present a new parallel sorting algorithm for

multi-core machine in most inexpensive rate. The

contribution of this paper are as follows:

 We piecemeal the original data based on cores of

the hardware , thereby reduce the time of

processing.

 We divide all of the data into processors averagely

to ensure load balance.

 Counting Sort is used for sorting every data

block.It provide stable sorting.

 We merge all processors using ternary search in

parallel, then got the global ordered data.

Proposed algorithm avoids the expensive

unaligned load/store operations.

It is our hope that our results can be extrapolated to

help select appropriate candidates for implementation on

machines with architecture similar to those that we have

studied.

A. Multi-Core Processor

A multi-core processor is a single computing

component with two or more independent actual

processing units, which can read and execute program

instructions. Multiple cores are able to execute two or

more programs at the same time so improving overall

speed to parallel computing. Manufacturers typically

integrate the cores onto a single integrated circuit die

(chip microprocessor or CMP), or multiple dies in a

single chip package.

B. Parallel Programming

The software world has been very active part of the

evolution of parallel computing. Parallel program are

hard to write than the sequential one. A program that is

divided into multiple concurrent task is difficult to

synchronization and communication that need to take

place between those tasks.

The computational problem should be able to

 Be broken apart into discrete of work that can be

solved simultaneously.

36 An Approach to Parallel Sorting Using Ternary Search

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 35-42

 Execute multiple program instructions at any

moment in time.

 Be solved in less time with multiple compute

resources than with single compute resources.

Fig.1. Logical view of multi-core processor

Fig.2. Parallel execution of instructions

The other sections of this paper presented are as

follows section 2 describes related work. Section 3

describe the MATLAB. Section 4 describes the proposed

algorithm. Section 5 describes the computational

complexity of proposed parallel sorting algorithm.

Section 6 represents the experimental results of propose

algorithm and comparisons with other algorithm. Section

7 concludes the paper with discussion of results and

scope for future work.

Parallel sorting Algorithm

C. Counting Sort

Counting sort is one of the linear sorting algorithms for

integers. It assumes that each of the n input elements is an

integer in the range 0 to k, for some integer k. When

k=O(n), the sort runs in T(n) time[1].

The basic idea of counting sort is to determine, for

each input element x, the number of elements less than x.

This information can be used to place elements x directly

into its position in the output array. e.g. if there are 17

elements less than x, then x belongs in output position 18.

Counting sort beats lower bound of Ω(n lg n) because

it is not a comparison sort. Counting sort uses actual

values of elements to index into an array.

EXAMPLE

Unsorted list:

 1 2 3 4 5 6 7 8

 A 2 5 3 0 2 3 0 3

 0 1 2 3 4 5

C 2 0 2 3 0 1

 0 1 2 3 4 5

C 2 2 4 7 7 8

 1 2 3 4 5 6 7 8

B 3

So, After all steps Final sorted list

 1 2 3 4 5 6 7 8

B 0 0 2 2 3 3 3 5

In practice, we usually use counting sort when we have

k=O(n), in which case the running time is T(n).

D. Ternary Search

Suppose we are given an array of records that is

sorted(ascending order). The implementing ternary search

require to split the data sequence into three parts. After

that data is compared with two mid points based on the

comparison data is searched in particular parts[2].

Example: sorted list

A 2 4 6 8 13 15 19 21 24

 Mid1=(9/3)=3

Mid2=Mid1*2=6

Now key to search is 6 A(Mid1)==6

In this way searching is done.
Time complexity of algorithm is O(log3 n) in average

and worst case. In best case it is O(1).

So due to the complexity of Ternary Search it gives the

better performance than Binary Search an any other

Linear Search.

Result shows that proposed algorithm is better than

others for large data sequence.

The propose algorithm takes less time than other

sorting algorithms.

 An Approach to Parallel Sorting Using Ternary Search 37

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 35-42

Table 1. Execution Time Of Binary Search And Ternary Search

Number of input

values(n)

Binary Search(time

in seconds)

Ternary

Search(time in

seconds)

 10 2.64 1.73

 20 2.90 2.02

 30 3.03 2.25

 40 3.10 2.42

 50 3.44 2.90

 75 3.69 3.11

 100 3.71 3.02

 500 3.92 3.20

 1000 4.02 3.22

 10000 4.84 3.46

The table I shows the execution time for Binary Search

and Ternary Search. From the above table it is clear that

Binary Search takes more time than the Ternary Search

for any size of input. Here Ternary Search takes less time

because it gives three attempt to search for a value in

single iteration.

Fig.3. Execution time of binary search and ternary search

E. Parallel Merge Sort

First of all split data set in half. Sort each half

recursively. Merge them back together to a sorted list.

The merge sort algorithm can be parallelized by

distributing (n/p) processors to each processor. Each

processor sequentially sorts the sublist and then return to

final sorted list.

Fig.4. Example of Parallel Merge Sort

Parallel merge sort time complexity:

1. In sequential environment O(nlogn).

2. In parallel environment O((n/p)log(n/p)).

F. Odd Even Sort

In this sorting algorithm datasets are distributed into p

processors. After this all processors sort data locally.

Now in even phase all even numbered processors are
communicating with their right neighbour processor

whereas in odd phase all odd numbered processors are

communicating with next processors.

Fig.5. Example of Parallel Odd Even Sort

G. Bitonic Sort

In this sort first of all divide the list into two halves.

Compare and exchange each item in each item in first

half with the second half.

If number of steps(P=n)

In oreder to form a sorted sequence of length n from

two sorted sequence of length n/2, there is log(n)

comparator stages required.

T(n)=log(n)+T(n/2)

The solution of this recurrence equation is,

T(n)=log(n)+log(n)-

1+log(n)=2+….+1=log(n).(log(n)+1)/2

Each stage of sorting network consists of n/2

comparators. On the whole, these are θ(n.log2(n))

comparators.

For P=n, T(n)=θ(n.log2(n))/n=θ(log2(n))

II. RELATED WORK

There has been little work done to parallelize the

search algorithms, using different strategies and parallel

architectures. Some other parallel sorting algorithm has

been in area. Efforts has been put in various algorithms

0

1

2

3

4

5

6

0 10002000300040005000600070008000900010000

E
x
ec

u
ti

o
n

 t
im

e
in

 (
se

c)

number of input(n)

Binary search vs. Ternary search

Binary Search

Ternary Search

38 An Approach to Parallel Sorting Using Ternary Search

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 35-42

specially sorting algorithms to reduce execution time,

speed up , making utilization of cores on its maximum.

Few approaches [14] are given to make the utilization

of cores by turning serial to parallel algorithms on

different underlying operating system and tools.

In our proposed work we have improve the

performance of algorithm making it to work with other

algorithms so that time to execution is reduced and all the

available cores are utilized.

III. MATLAB

It allows you to solve computationally data-intensive

problems using multi-core processors, MATLAB-PCT

and computer clusters. High level constructs- parallel for-

loops, special array types and parallelized numerical

algorithms lets you parallelize MATLAB applications

without CUDA or MPI programming

PCT allows us to convert the applications to take

advantage of computer equipped with multicore

processors and MATLAB-PCT. Now we can run the

same application on a variety of computing resources

without reprogramming it. The parallel constructs

function in the same way, regardless of the resource on

which your application runs- a multicore desktop or on a

larger resource.

A. Spmd

It executes code in parallel on a worker of parallel pool.

Syntax

spmd ,statements, end

spmd(n), statements, end

spmd(m,n), statements, end

The general form of spmd(single program multiple data)

statement is:

spmd

statements

end

The spmd statement can be used if you have PCT. To

execute statements in parallel you must open a pool of

MATLAB workers using parpool or having parallel

preferences allow automatic start of a pool.

Inside body of spmd statement, each MATLAB worker

has a unique value of labindex, while numlabs denotes

the total number of workers executing the block in

parallel. Within the body of the spmd statement,

communication functions for communicating jobs(like

labSend, LabReceive) workers.

When there are no MATLAB workers available,

MATLAB executes block body locally and creates

Composite objects as necessary.

B. Example

spmd(4)

A= magic(3)

end

worker 1 worker 2 worker 3

worker 4

8 1 6 8 1 6 8 1 6 8

1 6

3 5 7 3 5 7 3 5 7 3

5 7

4 9 2 4 9 2 4 9 2 4

9 2

C. Codistributed

It creates codistributed array from replicated local data.

Syntax

C=codistributed(X)

C=codistributed (X, codist)

C=codistributed(X, lab, codist)

C=codistributed(C1,codist)

C=codistributed(X) distributes a replicated array X

using the default codistributor, creating a codistributor

array C as a result. X must be a replicated array, that is, it

must have the same value on all

workers.C=codistributed(X,codist)distributes a

replicated array, X using the distribution scheme defined

by codistributor codist. X must be a replicated array

means it must have same value on all workers. Size(C) is

same as size(X). C=codistributed(X,lab,codist) distributes

a local array X that resides on the worker identified by

lab, using the codistributor codist. Local array X must be

defined on all workers, but only the value from lab is

used to construct C. C= codistributed(C1,codist) accepts

an array C1 that is already codistriduted and redistributes

it according to the distribution scheme defined by the

codistributor codist.

D. Example

Creating a 10-by-10 codistributed array using default

distribution scheme.

spmd(4)

A=100;

B=magic(A); % Replicating over workers

C=codistributed(B); % Distributing among workers

End

 An Approach to Parallel Sorting Using Ternary Search 39

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 35-42

IV. PROPOSED WORK

Our proposed parallel sort is a hybrid algorithm, the

combination of Counting sort and Ternary search.

First it split the data sequence into several groups then

apply counting sort concurrently on all the groups at

individual processors. After that it uses ternary search to

find the correct position of each element in the global list

concurrently. Then copy the elements of the data

sequence to corresponding position to obtain the final

sorted data sequence.

Let us suppose a shared memory multiprocessor with n

processors, represented by P1,P2,…Pn. Let us given

another data sequence D of size S which is initially

unsorted and one more data sequence of d of size S which

is initially empty. The proposed algorithm first of all split

the data sequence into n subsequences of size Sn. Each

subsequence is denoted by Di and given to processor to

Pi where i is ranging from 1 to n.After getting

subsequence Di of size Sn to all the n processors every

processors Pi start sorting it parallely using counting sort.

Then we use ternary search to find the global index of

each element of Di in global sorted list D . For indexing

every element of Pi[k] of Di is searched in Do on all

processors where o=1 to n.

If this first element Pi[k] is less than first element of

Do will contribute in the indexing of Pi[k]. If last element

of Do is less than the Pi[k] then all the elements of Do

will contribute indexing of Pi[k], otherwise we apply

ternary search to find the global index [Mo] of the

element Pi[k] in Do. In this way global index of all

elements on individual processors are calculated and

using this index final sorted list is achieved.

Algorithm:

Data sequence D, Size of the array S, FE: First element

of corresponding processor, LE: Last element of

corresponding processor.

Start

1- For all processors Pi do parallel.

2- Apply Counting sort on Di. End.

3- For j=1 to n

4- For k=1 to S/n

5- For 0=1 to n

6- If(Pi[k]<Po[FE])

7- break;

8- else (Pi[k]>P0[LE) then

9- break;

10- elseif apply Ternary Search to find the number

of elements Mo are smaller than Pi[k] in Po.

11- End if.

12- Xi[k]=Xi[k]+Mo

13- Copy the elements of data sequence D to

corresponding position in data sequence.

14- Final sorted data sequence is achieved.

End

A. Example

Unsorted list

12, 10, 34, 52, 37, 65, 54, 90, 27, 48, 69,

87

Step-1 Distribute all elements on corresponding

processors.

 P0 P1 P2 P3

{12,10,34}

{52,37,65} {54,90,27} {48,69,87}

Step-2 Apply Counting Sort at individual processor

locally.

 P0 P1 P2 P3

{10,12,34}

{37,52,65} {27,54,90} {48,69,87}

Step-3 Find out sorted index of element using ternary

search.

 P0 P1 P2 P3

 {1,2,4} {5,7,9} {3,8,12} {6,10,11}

Step-4 Copy elements to index position to get sorted data

sequence.

 10, 12, 27, 34, 37, 48, 52, 54, 65, 69, 87,

90

In the above example we have taken unsorted list of 12

elements and the system is having 4 processors.

Step-1 In this we have distributed the elements to all

processors in equal amount.

Step-2 In this we have sorted the elements using

counting sort on each processors. In this all processors

will work.

Step-3 In this index of elements are achieved.

For example 10 in P0 will compared with FE of P1.If

FE of P1 is greater than 10 than it will not contribute in

indexing of 10. If LE of P1 is less than 10 than all

elements of P1 will contribute in indexing of 10. If FE of

P1 is less than 10 but LE of P1 is greater than 10, in this

case we apply ternary search to find the index of 10 in the

list.

Step-4 Here we copy the elements to their index

position in the final data sequence.

40 An Approach to Parallel Sorting Using Ternary Search

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 35-42

V. COMPUTATIONAL COMPLEXITY

The complexity of algorithm is divided into two parts:

First counting sort phase complexity and second ternary

search phase complexity.

In our propose algorithm counting sort is use in

parallel to sort the each subsequence of size S, so that

computational complexity of first phase is O(S/n).Ternary

search phase complexity: The second phase is used to

find the index of each sorted element using ternary search.

The complexity of ternary search for n elements in best

case is O(1) and in worst case it is O(log3 n). In the

proposed algorithm ternary search is used to find out the

sorted position of an element in subsequences of size Sn

and find the position in all S subsequences. So

complexity of second phase is O(n* log3 S/n).

Proposed algorithm complexity: Based on above

analysis the computational complexity of proposed

parallel sorting algorithm is O(S/n) + O(n log3 S/n).

VI. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

To implement this algorithm, MATLAB R2010a, we

distribute all the elements on respective labs and sort each

subsequence through by using sequential counting sort

locally. Now we use the result of each lab. On each labs

applies ternary search to find the index of each element of

data sequence D. After that copy elements to the

corresponding position in data sequence D. So doing this

we get the sorted data sequence.

We have one an experimental evaluation of our

proposed algorithm using MATLAB R2010a. And we are

using windows 7 as operating system with RAM 4 GB

and Intel(R) core (TM) i3-4005U CPU @ 1.70 GHz as

processor.

Here we have computed the execution time of

proposed algorithm on MATLAB with existing parallel

merge sort algorithm and Binary Search Based Sorting

algorithm .We have calculated performance of all

algorithms on a large data sequence having number of

elements from 1K to 100K.

Table 4. Execution Time For Binary Search Based Sort Vs. Proposed

Sort

No of Inputs(n) Binary Search

Based Sort

Proposed Sort

1K 1.27 1.16

10K 10.23 9.61

30K 12.31 11.87

60K 13.16 12.10

90K 15.66 14.06

100K 16.43 15.16

In the table IV the execution time for Binary Search

Base Sort and Proposed Sort is shown. For any type of

input time taken in binary search based sort is always

greater than the proposed sort. So the proposed sort takes

less time for the data and gives the performance

improvement.

Fig.6. Execution time for binary search based sort vs. proposed sort

Table 5. Execution Time For Parallel Merge Sort Vs. Proposed Sort

No of Inputs(n) Parallel Merge

Sort

Proposed Sort

1K 1.68 1.16

10K 11.87 9.61

30K 13.77 11.87

60K 16.37 12.10

90K 21.76 14.06

100K 23.88 15.16

In the table V we have shown the execution time for

Parallel Merge Sort and Propose Sort. After analyzing the

execution time for both sorting we can say that for any

type of input proposed sort takes less time in all cases.

And in this way proposed sort gives better performance.

A. Performance view on the basis of core utilization

Normally in parallel sorting algorithm all the

processors are not used at every instance of time but in

0

2

4

6

8

10

12

14

16

18

1K 10K 30K 60K 90K 100K

E
x

ec
u

ti
o

n
 T

im
e

in
 (

in
 s

ec
)

No of Inputs(n)

Complexity analysis for Binary Search Based Sort Vs. Proposed Sort

Binary Search

Based sorting

Proposed sort

 An Approach to Parallel Sorting Using Ternary Search 41

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 35-42

our propose algorithm all processor are utilized at all. It

gives speed up of almost two times for parallel sort

algorithms on a MATLAB-PCT based machine. Time

taken in few cases was less than one-fourth. Percentage

will increases many times as number of input increases.

Fig.7. Execution time for parallel merge sort vs. proposed sort

Case 1 When no load applied on processors

Fig.8. CPU Performance when no load applied

Case 2 When proposed algorithm runs on processors

Fig.9. CPU Performance when proposed algorithm runs

VII. CONCLUSIONS

In this dissertation work a new parallel sorting

algorithm that we say Ternary Search: An Approach to

Parallel Sorting is given. The proposed algorithm takes

less time for execution. It gives speed up of almost two

times for parallel sort algorithms on a MATLAB-PCT

based machine. Normally in parallel sorting algorithm all

the processors are not used at every instance of time but

in our propose algorithm all processor are utilized at all.

Parallel programming provide great performance

improvement. Time taken in few cases was less than one-

fourth. Percentage will increases many times as number

of input increases.

REFERENCES

[1] Olabiyisi S.O, Adetunji A. B, Oyeyinka F. I. “An

Evaluation of Factors Affecting the Efficiency of Some

Sorting Techniques”, IJMECS, vol.5,no.2,pp 25-

33,2013.DOI:10.5815/ijmecs.2013.02.04.

[2] Sherin W. Hijazi, Mohammad Qatawneh ‘Study of

Prformance Evaluationof Binary Search on Merge Sorted

Array Using Different Strategies, IJMECS, vol. 9, no. 12,

pp.1-8,2017. DOI:10.5815/ijmecs.2017.12.01.

[3] Cormen, Thomas H, Leiserson, Charles E., Rivest,Ronald

L.(1990). ʻʻIntroduction to Algorithms(1st Ed.) ʼʼ. MIT

Press and McGraw-Hill. ISBN 0-262-0141-8.

[4] Manpreet Singh Bajwa, Arun Prakash Agarwal, Sumanti

Manhana.ʻʻTernary Search Algorithm: Improvement of

Binary Searchʼʼ, 2nd International Conference on

Computing for Sustainable Global

Development(INDIAcom), (2015).

[5] G. Koch, ʻʻMulti-core Introductionʼʼ, Intel Developer

Zone, http://software.intel. com/ensus/articles/ multi-core

introduction, (2013).

[6] Kalim Qureshi and Haroon Rashid,ʻʻA Practical

Performance comparison of Parallel Matrix

Multiplication Algorithms on network of workstations.ʼʼ,I

Transaction Japan, Vl. 125, N 3, 2005.

[7] A. Sohnans and Y. Kodama,ʻʻLoad Balanced Radix sortʼʼ

In Proceedings of the 12th International Conference on

Supercomputing,(1998), pp.305-312.

[8] D. R. Helman, D. D. Bader and J. Jaja.ʻʻA Randomized

Parallel Sort Algorithm with an Expermental studyʼʼ,

Journal of Parallel an Distribute Computing vol.53(1998),

pp.1-23.

[9] X.-j. Qian, J. –b. Xu ʻʻOptimization an Implementation of

Sorting Algorithm based Multi-Core an Multi-Thread ʼʼ,

IEEE 3rd International Conference on Communciation

Software and Networks,(2011),pp.29-32.

0

5

10

15

20

25

30

1K 10K 30K 60K 90K 100K

E
x
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
)

No of Inputs(n)

Execution Time for Parallel Merge sort Vs. Proposed sort

Parallel Merge sort

Proposed sort

42 An Approach to Parallel Sorting Using Ternary Search

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 35-42

[10] S Nadathur, M. Harris and M. Garland,ʻʻ Designing

Efficient Sorting Algorithms for many Core GPU’sʼʼ,IEEE

International Symposism on Parallel an Distributed

Processing ,(2009),pp. 23-29.

[11] E. Sintroon and U. Assarsson,ʻʻFast Parallel GPU

Sorting using a Hybrid Algorithm.ʼʼ Journal of Parallel

and Distributed Computing,vol.66.(2008),pp.1381-1388.

[12] G.S. Almasi an A. Gottieb,ʻʻHighly Parallel Computingʼʼ,

Benjamin Cummings Publishers, CA,USA,(1989).

[13] E. Masato, ʻʻ Parallelizing Fundamental Algorithms such

as Sorting on Multi-core Processors for EDA

Acceleration ʼʼ,Proceedings of the 2009 Asia and South

Pacific Design Automation Conference.(2009),pp.230-233.

[14] Sweta Kumari and Dhirendra Pratap Singh “A Parallel

Selection Sorting Algorithm on GPUs Using Binary

Search”, IEEE International Conference on Advances in

Engineering and Technology and Research(ICAETR-

2014).

Authors’ Profiles

Monica Maurya is pursuing M.Tech

(CSE) from Kamla Nehru Institute Of

Technology, Sultanpur, India. She has

completed her graduation in B.Tech

(CSE) from IIMT College Of

Engineering, Greater Noida affiliated to

Gautam Buddh Technical University,

Lucknow, India in 2011.

After that she has worked as a Guest Lecturer in Department Of

Computer Science and Engineering in Kamla Nehru Institute Of

Technology, Sultanpur, India from the duration July 2012 to

May 2014. After this period of teaching she has worked as a

Guest Lecturer in Department Of Information Technology in

Rajkiya Engineering college, Ambedkar Nagar, India from

July2014 to January 2016.

Her areas of interest is towards algorithms, programming.

She will do her best to continue practice and improving her

knowledge and experiences in her areas. Hoping to do the better

works in future.

Alka Singh is an Assistant professor at

Kamla Nehru Institute of Technology

Sultanpur, India. She has been in

teaching profe0ssion for the last 14 years.

Her areas of interest are parallel

computing, advance computer

Architecture an computer algorithms.

How to cite this paper: Monica Maurya, Alka Singh, " An Approach to Parallel Sorting Using Ternary Search",

International Journal of Modern Education and Computer Science(IJMECS), Vol.10, No.4, pp. 35-42, 2018.DOI:

10.5815/ijmecs.2018.04.05

