Pseudo-Complemented Semigroups

PDF (446KB), PP.55-61

Views: 0 Downloads: 0

Author(s)

G. Sujatha 1,* Ch. Santhi Sundar Raj 2 U. M. Swamy 3

1. Department of Mathematics, Jawaharlal Nehru Technological University Kakinada, JNTUK, A.P., India

2. Department of Engineering Mathematics, Andhra University, Visakhapatnam-530003, A.P., India

3. Department of Mathematics, Andhra University, Visakhapatnam-530003, A.P., India

* Corresponding author.

DOI: https://doi.org/10.5815/ijmsc.2025.01.04

Received: 10 Nov. 2024 / Revised: 20 Dec. 2024 / Accepted: 11 Jan. 2025 / Published: 8 Apr. 2025

Index Terms

Semigroup, Pseudo-Complemented Semigroup, Baer-Stone Semigroup

Abstract

We shall introduce the notion of pseudo – complemented semigroup, which is a natural generalization of the notion of pseudo- complemented semi-lattices, and give certain properties of such semi-groups. We also introduced the notion of Baer- Stone semigroup, which is Pseudo complimented semigroup satisfy certain additional properties.

Cite This Paper

G. Sujatha, Ch. Santhi Sundar Raj, U. M. Swamy, "Pseudo-Complemented Semigroups", International Journal of Mathematical Sciences and Computing(IJMSC), Vol.11, No.1, pp. 55-61, 2025. DOI: 10.5815/ijmsc.2025.01.04

Reference

[1]C. C. Chen and G. Gratzer, Stone lattices: I: construction theorems, Canadian journal of Mathematics, 21(1969), 884-894.
[2]C. C. Chen and G. Gratzer, Stone lattices II. Structure Theorems, 21(1969), 895-903.
[3]G. Birkhoff, Lattice Theory, (revised edition), American Mathematical Society Colloquium Publications, Vol.25, New York, 1948.
[4]G. Gatzer, Lattice Theory: First concepts and distributive lattices, W.H. Freeman, (1971).
[5]J. E. Kist, Two characterizations of commutative Baer rings, Pacific journal of Mathematics, 50(1974), 125-134
[6]J. Varlet, On the Characterization of Stone lattices, Acta sci. Math., 27(1966), 81-84.
[7]K. B. Lee, Equational class of distributive pseudo-complemented lattices, Canadian J. Math., Vol.22(1970), 881- 891.
[8]M. H. Stone, Topological representation of distributive lattices and Brouwerian logic, casopis Pest.Math. Figs., 67(1938).
[9]O. Frink, Pseudo-complements in semi-lattices, Duke. Math J., Vol. 29(1961), 505-514.
[10]P. V. R. Murthy and V. V. R. Rao, characterization of certain classes of pseudo-complemented semi lattices, Algebra Universities, 4(1974), 289-300.
[11]T. P. Speed and M. W. Evans, A note on commutative Baer rings, J. Austral, Math. Soc., 13(1972), 1-6.
[12]T. S. Blyth, Ideals and filters of pseudo-complemented semilattices, Proc. of the Edinburgh Mathematical soc., 23(1980), 301-316.
[13]U. M. Swamy, Baer-Stone semigroups, Semigroup Forum, 19(1980), 385-386.
[14]V. Glivenko, Sur quelque points de la logique de Brouwer, Bulletin Academie des Sciences de Belgique, Vol.15(1929) pp. 183-188.
[15]W. H. Cornish, congruences on distributive pseudo-complemented lattices, Bull. Austral .Math. Soc.,  8(1973), 161-179.