Revisited Quantum Protocols

Full Text (PDF, 521KB), PP.11-21

Views: 0 Downloads: 0

Author(s)

Shyam Sihare 1,* Dr. V V Nath 2

1. Gujarat University, Dr. APJ Abdul Kalam Govt. College, Silvassa-396235, India

2. Nirma University of Institute of Management, Ahmedabad-380001, India

* Corresponding author.

DOI: https://doi.org/10.5815/ijmsc.2017.02.02

Received: 1 Jan. 2017 / Revised: 2 Feb. 2017 / Accepted: 4 Mar. 2017 / Published: 8 Apr. 2017

Index Terms

BB84 (Bennett and Brassard Protocol), Cryptography, Entanglement, Quantum Protocols, Superposition

Abstract

Quantum cryptography is marches towards secure communication by using quantum protocols. Number of quantum protocols has been evolved based on an entanglement in three decades; similarly during this meanwhile non-entanglement based protocols have been evolved within the same period also. Among number of different protocols a torch bearer was BB84 protocol. Even though different quantum communication protocols exist, the BB84 protocol proved its application by initial experiments whereas most of the other protocols are theoretical which marches towards the practical application yet. But in quantum mechanics principle, cryptography based on an entanglement and superposition of entangled particle. Furthermore, challenges ahead are development and design high sensitive equipments for measurement of an entangled particle position at output end. Particle entanglements open a new door for computation worlds such as speedup, security. In this article, we discuss quantum protocols, their challenges, and applications based on above discussion.

Cite This Paper

Shyam Sihare, V V Nath,"Revisited Quantum Protocols", International Journal of Mathematical Sciences and Computing(IJMSC), Vol.3, No.2, pp.11-21, 2017.DOI: 10.5815/ijmsc.2017.02.02

Reference

[1]C. H. Bennett, G. Brassard: Quantum cryptography: Public key distribution and coin tossing. In Proceeding of IEEE International Conference on Computers, Systems, and Signal Processing, volume 175, page 60-111, New York, 1984.

[2]Ekert. A, Phys. Rev. Lett. 67, pp. 661-663 (1991).

[3]Chaung I., Nielson M.:Quantum Computation Information. 2000.

[4]C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an Unknown Quantum State via Dual Classical and Einstein–Podolsky–Rosen Channels. Phys. Rev. Lett. 70, pp. 1895–1899, 1993.

[5]Einstein A., B. Podolsky, N. Rosen: Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review 47 (10), pp. 777–780, 1935.

[6]Bennett C., Wiesner S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters 69 (20), 1992.

[7]Noson S. Yanofsky, Mirco A. Mannucci: Quantum Computing for Computer Scientists. Cambridge University Press, 2008.

[8]Brassard Gilles, Claude Crépeau, Jozsa Richard, Langlois Denis: A Quantum Bit Commitment Scheme Provably Unbreakable by both Parties. IEEE, pp.362–371, 1993.

[9]Branciard Cyril, Gisin Nicolas, Kraus Barbara, Scarani Valerio: Security of two quantum cryptography protocols using the same four qubit states. Physical Review A 72 (3), 2005.

[10]Gerhardt I. et al.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Communications, 2011.

[11]C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin: Experimental Quantum Cryptography. Journal of Cryptology vol.5, no.1, pp. 3-28, 1992.

[12]Z. Zhang, J. Liu, D. Wang, S. Shi: Quantum direct communication with authentication. Phys. Rev. A 75, 026301, 2007.

[13]G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders: Limitations on practical quantum cryptography. Physical Review Letters, 85(6):1330+, 2000.

[14]Meyer, D. A. Quantum strategies, Phys. Rev. Lett., 1999; 82(5):1052.

[15]Younis A. Shah, Irshad.A. Mir, Uzair M. Rathea, "Quantum Mechanics Analysis: Modeling and Simulation of some simple systems", International Journal of Mathematical Sciences and Computing (IJMSC), Vol.2, No.1, pp.23-40, 2016.DOI: 10.5815/ijmsc.2016.01.03.