[1]P. Wen, J. Zhou, and L. Zheng, “A modified hybrid method of spatial credibilistic clustering and particle swarm optimization,” Soft Comput., vol. 15, no. 5, pp. 855–865, 2011.
[2]A. Proceedings, A. F. Shapiro, and M. Koissi, “Credibility Theory in a Fuzzy Environment,” 2013.
[3]R. Krishnapuram and J. M. Keller, “A Possibilistic Approach to Clustering,” IEEE Trans. Fuzzy Syst., vol. 1, no. 2, pp. 98–110, 1993.
[4]M. S. Yang and K. L. Wu, “Unsupervised possibilistic clustering,” Pattern Recognit., vol. 39, no. 1, pp. 5–21, 2006.
[5]M. Rostam Niakan Kalhori, M. H. Fazel Zarandi, and I. B. Turksen, “A new credibilistic clustering algorithm,” Inf. Sci. (Ny)., vol. 279, pp. 105–122, 2014.
[6]L. Wang, Y. Liu, X. Zhao, and Y. Xu, “Particle Swarm Optimization for Fuzzy c-Means Clustering,” Sixth World Congr. Intell. Control Autom. 2006. WCICA 2006, pp. 6055–6058, 2006.
[7]B. Liu, “A survey of credibility theory,” Fuzzy Optim. Decis. Mak., vol. 5, no. 4, pp. 387–408, 2006.
[8]J. Zhou, Q. Wang, C.-C. Hung, and X. Yi, “Credibilistic Clustering: The Model and Algorithms,” Int. J. Uncertainty, Fuzziness Knowledge-Based Syst., vol. 23, no. 04, pp. 545–564, 2015.
[9]D. Wang, B. Han, and M. Huang, “Application of Fuzzy C-Means Clustering Algorithm Based on Particle Swarm Optimization in Computer Forensics,” Phys. Procedia, vol. 24, pp. 1186–1191, 2012.
[10]H. Izakian and A. Abraham, “Optimization,” pp. 1690–1694, 2009.
[11]Z. Shi, “A Fuzzy Model of Scenario Planning Based on the Credibility Theory And Fuzzy Programming,” no. Isora, pp. 211–218, 2011.
[12]J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,” Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, 1984.
[13]T. a. Runkler and C. Katz, “Fuzzy Clustering by Particle Swarm Optimization,” 2006 IEEE Int. Conf. Fuzzy Syst., no. 3, pp. 601–608, 2006.
[14]N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, “A possibilistic fuzzy c-means clustering algorithm,” IEEE Trans. Fuzzy Syst., vol. 13, no. 4, pp. 517–530, 2005.
[15]H. Izakian and A. Abraham, “Fuzzy C-means and fuzzy swarm for fuzzy clustering problem,” Expert Syst. Appl., vol. 38, no. 3, pp. 1835–1838, 2011.
[16]K. E. Permana and S. Z. M. Hashim, “Fuzzy membership function generation using particle swarm optimization,” Int. J. Open Probl. Compt. Math, vol. 3, no. 1, 2010.
[17]W. Pedrycz, Conditional fuzzy C-means, Patt. Recogn. Lett. 17 (1996) 625–631.
[18]W. Pedrycz, J. Waletzky, Fuzzy clustering with partial supervision, IEEE Trans. Syst. Man Cybernet. B: Cybernet. 27 (1997) 787–795.
[19]W. Pedrycz, Collaborative and knowledge-based fuzzy clustering, Int. J. Innov. Comput. 3 (2007) 1–12.
[20]L. Liu, S. Z. Sun, H. Yu, X. Yue, and D. Zhang, “A modified Fuzzy C-Means (FCM) Clustering algorithm and its application on carbonate fluid identification,” J. Appl. Geophys., 2016.
[21]C. Hai-peng, S. Xuan-jing, L. Ying-da, and L. Jian-wu, “A novel automatic fuzzy clustering algorithm based on soft partition and membership information,” Neurocomputing, no. September, pp. 1–9, 2016.
[22]N. Lekhi, M. Mahajan, “Outlier Reduction using Hybrid Approach in Data Mining,” I.J. Modern Education and Computer Science, 2015, 5, 43-49.
[23]Z. Hu, Y. V. Bodyanskiy, Oleksii K. Tyshchenko and Vitalii M. Tkachov, “Fuzzy Clustering Data Arrays with Omitted Observations,” I.J. Modern Education and Computer Science, 2017, 6, 24-32.