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Abstract 
 
A Bayesian parameter inference problem is conducted to estimate the explosive yield of the first atomic 
explosion at Trinity in New Mexico. The first of its kind, the study advances understanding of fireball 
dynamics and provides an improved method for the determination of explosive yield. Using fireball radius-time 
data taken from archival film footage of the explosion and a physical model for the expansion characteristics of 
the resulting fireball, a yield estimate is made. Bayesian results from the Markov chain indicate that the 
estimated parameters are consistent with previous calculation except for the critical parameter that modifies the 
independent time variable. This unique result finds that this parameter deviates in a statistically significant way 
from previous predictions. Use of the Bayesian parameter estimates computed is found to greatly improve the 
ability of the fireball model to predict the observed data. In addition, parameter correlations are computed from 
the Markov chain and discussed. As a result, the method used increases basic understanding of fireball 
dynamics and provides an improved method for the determination of explosive yields. 
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1. Introduction 

G.I. Taylor famously estimated the classified yield, E, of the 1945 nuclear explosion at Trinity, New Mexico, 
using nothing but images publicly released by the U.S. Army into the open media [1] (Fig. 1). 

 

 

Fig. 1. A single movie frame showing the fireball created by the first nuclear explosion at Trinity, New Mexico, including time stamp and 
length scale. 

Published with both a time stamp and length scale, Taylor was able to use the images, in conjunction with 
his theoretical time-dependent model of the hydrodynamics fireball radius [2, 3], to provide an accurate 
estimate of the weapon’s explosive yield of 16.8 kT. His hydrodynamic model predicted the fireball radius, R, 
as a function of time, t, in terms of a non-dimensional constant he computed, S, the estimated undisturbed 
density of air at Trinity, ρ0, and the unknown explosive yield, E, 

𝑅(𝑡;𝐸) = 𝑆𝑡2 5⁄ 𝐸1 5⁄ 𝜌0
−1 5⁄   (1) 

This result, independently presented by other authors [4] established the unique dependence of the fireball’s 
radius on the 2/5th power of time. The approach pioneered by Taylor to estimate explosive yield has since been 
applied numerous times and validated using independent measurements of explosive yields. 

Taylor’s, and all subsequent analyses, considered the time-radius model to depend on only one parameter, E, 
assuming fixed values for the exponents and model parameters S and ρ0. In contrast to this one-parameter 
approach, the current study considers all of the parameter in equation 1, other than the measured values R, t and 
ρ0, as unknown parameters to be determined. In addition, this study employs a Bayesian approach to nonlinear 
regression for determination of the unknown parameters and provides a detailed Bayesian analysis of the 
Trinity data using Markov chain Monte Carlo (MCMC) techniques. These results are compared with the 
original model, equation 1. 

Ultimately, it is the objective of this Bayesian analysis is to determine the joint probability density function 
(pdf) of these free parameters, most specifically yield, E, so as to better match and interpret the experimental 
data available. Such an analysis will offer greater insight into the parameters values as well as their 
interdependence. The specific definitions chosen for these parameters are defined in equation 2,
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𝑅(𝑡) = 𝑆𝑡𝑎𝐸𝑏𝜌0−𝑐 (2) 

Well-known nonlinear regression techniques [5, 6] based on frequentist statistics exist are capable of 
determining these unknown parameters using the measured time-radius data. The frequentist approach, 
however, provides only a limited amount of information about the parameters. This is because traditional 
regression analysis assumes the parameters to be fixed, exact values, while the measured data are random 
variables dependent on these parameters. While useful, this statistical model of the data provides only limited 
information about the parameters. Specifically, this approach provides directly point estimates of the 
parameters. Higher order statistical moments of the parameters, such as standard deviations, allowing for the 
generation of confidence intervals, can also be computed but require further assumptions about the distribution 
of error in the data. In addition, no information is typically returned about inter-parameter relationships, such as 
statistical correlations, which would lend greater insight into the parameters and their effects on the fireball. 

In contrast, Bayesian regression assumes that both the parameters and the measured radii are random 
variables. In this study, the statistical model used for the data Ri assumes this randomness results from an 
additive noise term whose statistics can be determined by the Bayesian analysis. Consequently, the Bayesian 
model requires a sixth parameter to characterize the statistics of R, to which we will assign the random variable 
ϵ. For convenience the model parameters will be grouped in the parameter set 𝜽 = {𝑆,𝐸, 𝑎, 𝑏, 𝑐, 𝜖}.  

Assuming that the parameters are random variables, rather than fixed quantities, allows us now to ask 
directly about their statistics, not just mean values and confidence intervals. Specifically, we are now 
considering the joint statistics of the parameters, θ, conditioned on the measured data set, R. This is significant 
because the parameters’ resulting joint pdf contains all of the parameters’ statistical information including all 
higher order statistical moments and correlations. 

The objectives of this analysis are to provide improved estimates of the parameters which impact the fireball 
radius model (equation 2) and their interdependencies, through which an improved understanding of fireball 
dynamics can be developed as well as an improved method for the determination of explosive yields. Model 
parameter estimates and their complete statistics will be determined using a Markov chain Monte Carlo 
(MCMC) simulation whose output provides an estimate of the parameter’s joint pdf. MCMC simulations 
provide this estimate by individually sampling numerous parameter sets from the space of all possible 
parameter combinations in proportion to their likelihood of occurrence using Bayes Theorem. 

2. Nonlinear Regression 

Parameter inference, and regression analysis in particular, represents a core application of statistical science 
[7, 8, 9]. Its development using a frequentist approach is described below and, importantly, its similarities and 
differences with Bayesian regression are discussed. Despite their similarities, the differences between 
frequentist and Bayesian regression are significant and important to understand. 

The objective of all regression analysis is, given a system model with unknown parameter 𝜽 =  �𝜃1, … ,𝜃𝑝�, 
𝚯 ⊂ ℝ𝑝, and often noisy observations, is to determine estimates of the model parameters, 𝜽� = �𝜃�1, … , 𝜃�𝑝�, as 
well as statistical information about their expected variation and possible interdependence. This primarily 
occurs for one of two reasons: to develop a model relationship between a dependent variable 𝒚 = (𝑦1 … 𝑦𝑛) ⊂
ℝ𝑛, and an independent variable, 𝒙 = (𝑥1 … 𝑥𝑛), 𝑥 ⊂ ℝ𝑛, for the purpose of predicting system behavior for 
other, unobserved, dependent variable values, or; to gain insight into the characteristics of the observed system 
through interpretation of the determined parameter values and their statistical characteristics.  

The inference of the parameters 𝜽 using regression techniques is based on either a frequentist or Bayesian 
statistical foundation [10]. In the frequentist approach probabilities are thought of as limiting frequencies based 
on a hypothetical, infinite or asymptotic sample. In contrast, the Bayesian approach views probabilities as
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subjective and are interpreted as conditioned on the information available [11]. In either approach, often the 
primary aim is to provide point estimates or “best guesses” for the unknown parameters, 𝜽�, and corresponding 
interval estimates that provide reasonable ranges for the unknown parameters given the data. 

While having similar objectives, the frequentist and Bayesian approaches to regression are fundamentally 
dissimilar. The frequentist framework for regression assumes the model parameters, 𝜽, are unknown but fixed, 
nonrandom quantities. Consequently, no probabilistic conclusions can be drawn about frequentist parameters. 
The estimated parameter values are still uncertain but this uncertainty arises from the random nature of the 
observations, 𝒚.  Probabilistically, the frequentist approach models the observations, y, as elements of a random 
variable 𝑌, dependent on the model parameters 𝜽, a relationship which can be defined by the conditional 
probability density function, 𝑝(𝒚|𝜽) . While useful, this statistical model of the data is limited in the 
information it can provide. Treating the unknown parameters as fixed constants masks much of the information 
about their variability and interdependence. 

In contrast to the frequentist approach, Bayesian regression assumes that both the parameters, 𝜽, and the 
measured observations, y, are random variables. This assumption allows us to naturally ask directly about the 
statistics of the parameters, not point and interval estimates. Statistically, we are now considering the joint 
statistics of the parameters, 𝜽 , conditioned on the observations, y, represented by the joint conditional 
probability density function, 𝑝(𝜽|𝒚). This is significant because the probability density function., 𝑝(𝜽|𝒚), 
contains all of the parameters’ statistical information including all higher order statistical moments and 
interdependences. 

Several formulations of both the frequentist and Bayesian approach to regression are available, however, the 
most encountered techniques employ likelihood functions. Likelihood functions are functions of the model 
parameters, given specific observed data, that measure the plausibility that a system with the specified 
parameters generated the observed data. It is functionally identical to the frequentist description of the data, 
𝑝(𝒚|𝜽), with the important difference that the likelihood, 𝐿, is a function of the random variable 𝜽 not the 
observed data 𝒚. To emphasize this dependence the likelihood is written as an explicit function of 𝜽 

𝐿(𝜽) = 𝑝(𝒚|𝜽)  

or, for both computational and mathematical convenience, as the log likelihood, 

𝑙(𝜽) = 𝑙𝑜𝑔 �𝐿(𝜽)�  

Development of the likelihood function is identical for both the frequentist and Bayesian approaches. Consider 
a nonlinear regression model 

𝑦𝑖 = 𝑔(𝑥𝑖, 𝜽) + 𝑒𝑖       𝑖 = 1 … 𝑛  

where 𝑔 is a known function of the known, nonrandom, independent variable, 𝒙 = (𝑥1, … , 𝑥𝑛) and the random 
model parameter 𝜽 = �𝜃1, … , 𝜃𝑝� . In addition, 𝒚 = (𝑦, … ,𝑦𝑛)  is the dependent random variable and 𝒆 =
(𝑒1, … , 𝑒𝑛)  is the random error associated with the observations, 𝒚 . If the random errors are assumed 
independent and identically distributed (i.i.d.) as Normal, N(0,𝜎2) 

𝐿(𝜽) = �
1

√2𝜋𝜎

𝑛

𝑖=1

𝑒𝑥𝑝 �−
�𝑌𝑖 − 𝑔(𝑥𝑖 ,𝜽)�2

2𝜎2
� = �

1
√2𝜋𝜎

�
𝑛

𝑒𝑥𝑝 �−�
�𝑌𝑖 − 𝑔(𝑥𝑖 ,𝜽)�2

2𝜎2

𝑛

𝑖=1

�  

and the log likelihood is,
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𝑙(𝜽) = −𝑛𝑙𝑜𝑔(𝜎) −
1

2𝜎2
��𝑌𝑖 − 𝑔(𝑥𝑖 ,𝜽)�2
𝑛

𝑖=1

 (3) 

From equation 3 it can be seen that maximizing the likelihood is the same as minimizing the residual square 
error or 𝑅𝑆𝐸(𝜽), 

𝑅𝑆𝐸(𝜽) = ��𝑌𝑖 − 𝑔(𝑥𝑖 ,𝜽)�2
𝑛

𝑖=1

 (4) 

So, under the i.i.d. Normality assumption, the frequentist maximum likelihood estimator (MLE) is the same 
as the frequentist least square estimator (LS). Depending on the form 𝑔 takes values for the best estimate, 
𝜽� = 𝜽�𝑀𝐿𝐸 = 𝜽�𝐿𝑆, can then be determined analytically or numerically. For a Bayesian regression the same 
likelihood function is minimized (equation 3) which, as with the frequentist approach, is identical to 
maximizing the RSE (equation 4). 

3. Bayesian Regression 

Bayesian regression differs from maximum likelihood regression. Its objective is to determine the 
parameters’ conditional pdf, 𝑝(𝜽|𝑦), which can be expressed using Bayes Law [13] 

𝑝(𝜽|𝒚) =
𝑝(𝒚|𝜽)𝑝(𝜽)

𝑝(𝒚)
 (5) 

where our desired distribution, 𝑝(𝜽|𝒚), is the posterior distribution, 𝑝(𝒚|𝜽) is the likelihood distribution, 𝑝(𝜽) 
is the prior distribution, and 𝑝(𝒚) is a normalization factor [14], effectively the marginal distribution of y 
computed by integrating the numerator over the model parameter space, 𝜽 ∈ 𝚯 [14]. The posterior distribution 
is significant in that it provides a complete description of the model parameter statistics conditioned on the 
given data 𝒚 including all moments and correlations. The likelihood distribution characterizes the probability 
that parameter set 𝜽 generated the observed data set 𝒚 . Existing knowledge about the parameters can be 
incorporated into the model through the prior distribution, 𝑝(𝜽), which characterizes the probability that a 
particular parameter set 𝜽 will occur. 

Analytical, closed form representations for the posterior distribution can be determined most directly when 
the posterior and prior are in the same probability distribution family [14]. Termed conjugate distributions or a 
conjugate prior, this choice is often driven by analytical convenience rather than modeling accuracy. The 
simplest example of conjugacy would be the scenario where the prior distribution, likelihood and therefore the 
posterior distribution are Normally distributed. Unfortunately, in nonlinear regression, conjugate distributions 
are rarely available beyond the linear model. 

In most common regression situations, the posterior distribution is estimated numerically by sampling sets 
𝜽𝑗  from the distribution 𝑝(𝒚|𝜽)𝑝(𝜽)  after statistical models for the likelihood and prior distributions are 
defined. The parameter values drawn from the joint probability density function are typically determined using 
a Markov Chain Monte Carlo (MCMC) simulation employing the Metropolis algorithm [15] or its variant the 
Metropolis-Hastings algorithm [16]. The algorithm works by exploring the parameter space, computing 
posterior values, while randomly sampling more and more likely parameter sets. The result is an overall 
movement of the parameter choices toward the peak of the distribution and an ultimate estimate of the most
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likely parameters termed the maximum a-posteriori (MAP) parameters, 𝜽�𝑀𝐴𝑃 . Essentially the mode of the 
distribution, the MAP is the parameter set most representative of the best fit parameters.  

4. Markov Chain Monte Carlo 

The objective of Bayesian regression is to determine the posterior distribution of the parameters 𝜽 (equation 
5). This is possible analytically in only rare cases. Consequently, it is customary to resort to numerical methods 
to approximate the posterior distribution. The most common method for accomplishing this is the Markov 
chain Monte Carlo method (MCMC) which provides point estimates of the posterior distribution through a 
random Markov sampling process. The method works by computing the posterior distribution at random 
locations in the parameter space 𝚯. This is accomplished by randomly selecting locations in the parameter 
space 𝜽𝑖  and computing the values of the likelihood function and prior distribution at those locations. The 
corresponding value of the posterior distribution can then be simply calculated by multiplying the two together 
(equation 5). The result of the sampling is a list, or chain, of parameter sets 𝜽𝑖 whose termination is determined 
by one of several convergence criteria. 

MCMC sampling is done sequentially with the statistical distribution of the next parameter set 𝜽𝑗+1 only 
dependent on the current value 𝜽𝑗 resulting in the sequence’s Markov characteristics. Generation of a Markov 
chain representative of the posterior distribution, 𝑝(𝜽|𝒚) , is accomplished using the Metropolis-Hastings 
algorithm. The algorithm works by first generating a proposal parameter set, 𝜽𝑗+1 , by adding a random 
displacement, or jump, in the parameter space, 𝚯, to the current parameter set 𝜽𝑗 using a proposal distribution. 
If the ratio of the proposed posterior value to the current posterior value is greater than the value of a uniformly 
distributed random number between 0 and 1, the parameter set 𝜽𝑗+1 is added to the Markov chain. If lower, the 
proposed parameter set is rejected and the current parameter set 𝜽𝑗 is added again to the end of the chain. 

In addition to its simplicity, the Metropolis-Hastings algorithm is valuable because it avoids the need to 
calculate the Bayesian normalization factor in equation 5. This is because when deciding whether or not the 
magnitude of the posterior distribution of one parameter set is greater than another, the ratio of the posterior 
values is considered rather than their difference. This is significant because the normalization factor can be 
difficult to compute in problems with many parameters, even numerically. In addition, this allows for great 
flexibility when defining the likelihood and prior distributions because their normalization is not required. 

5. Bayesian Parameter Estimation 

A Bayesian analysis of the Trinity time-radius data used by Taylor (App. A) has been conducted to estimate 
the parameters in the time-radius fireball expansion model and their interdependence. In this Bayesian 
regression application [15, 16] the likelihood distribution is chosen to be the negative of the residual square 
error, 𝑅𝑆𝐸(𝜽). Specific to this application, 

𝑅𝑆𝐸(𝜽) = ��𝑅𝑖 − 𝑅(𝑡𝑖 ,𝜽)�2
𝑛

𝑖=1

  

where 𝑅𝑖 is the measured fireball radius at time 𝑡𝑖 and 𝑅(𝑡𝑖;𝜽) is the radius predicted by the model, equation 2, 
at time ti using parameter set 𝜽. Because θ is a random variable so is the residual sum of the square error, RSE. 
For this study the likelihood is assumed to be Normally distributed with zero mean and standard deviation 𝜖,
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𝑅𝑆𝐸~𝑁(0, 𝜖2) 

peaking when the fit is perfect, S = 0, and decreasing from there. Strictly speaking this is not a valid p.d.f. 
because the residual square error is never negative and therefore the distribution is not properly normalized. 
This is, however, acceptable because neither of the Metropolis algorithms require the normalization of the 
posterior distribution for the computation of the Markov chain and, consequently, neither do the parameter’s 
pdfs. 

For the prior distributions it is argued that the individual parameter values will be distributed smoothly and 
symmetrically about their mean value. As a result, the parameters are assumed to be distributed as a 
multivariate Normal distribution with mean, 𝜽�𝑝𝑟 where the subscript pr indicates prior information, 

𝜽�𝑝𝑟 = �𝑆�𝑝𝑟, 𝑎�𝑝𝑟, 𝑏�𝑝𝑟 , �̅�𝑝𝑟, 𝐸�𝑝𝑟, �̅�𝑝𝑟� (6) 

Because few details are known about the statistical relationship between the parameters a priori, their 
distributions are assumed to be statistically independent of one another and, consequently, uncorrelated, 
resulting in an assumed, diagonal, prior covariance matrix, Σ𝑝𝑟 , 

𝛴𝑝𝑟 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝑝𝑟𝑆

2 0 0 0 0 0

0 𝜎𝑝𝑟𝑎
2 0 0 0 0

0 0 𝜎𝑝𝑟𝑏
2 0 0 0

0 0 0 𝜎𝑝𝑟𝑐
2 0 0

0 0 0 0 𝜎𝑝𝑟𝐸
2 0

0 0 0 0 0 𝜎𝑝𝑟𝜖
2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (7) 

As with the statistical model of the residual square error, RSE, the prior distribution is also defined for 
unrealistic negative values.  This inconsistency is unimportant, however, for the same reason given for RSE. 

6. Markov Chain Monte Carlo Computations 

The Markov chain simulations presented were generated using MATLAB and some elementary functions 
from its Statistics and Machine Learning Toolbox. All computations took no more than a few minutes when 
performed on a standard desktop computer. The algorithms employed are straight forward and required no 
special software or hardware beyond that listed above. While MATLAB was used, the calculations could be 
easily executed using any number of other software packages or applications. The details of the Metropolis-
Hastings algorithm and its implementation are discussed below. 

The fundamental objective of the algorithm is to sample the model’s parameter space 𝚯 and compute the 
posterior distribution. Each sample of 𝜽 ∈ 𝚯 drawn from the parameter space contains six values, one for each 
parameter in the set. Individually, the values of the parameters 𝜽𝑗  drawn occur with the statistical 
characteristics of the underling joint conditional density function (posterior distribution) 𝑝(𝜽|𝑅). This includes 
the frequency with which individual values are observed as well as any correlations that exist between them. 
Therefore, drawing samples, 𝑗 = 1 … 𝐿, provides an estimate of the underlying joint probability density. Theory 
predicts that as the number of samples approaches infinity, 𝐿 → ∞, the estimated parameter distribution will
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converge to the theoretical distribution, 𝑝(𝜽|𝑅). Consequently, the result of the sampling is an estimate of 𝜽’s 
six-dimensional joint pdf for the parameters S, E, a, b, c, and 𝜖. 

In this study, the proposal distribution is assumed to be a six-dimensional, multivariate, Normal distribution 
with the mean value being the current parameter set 𝜽𝑗  and with covariance matrix, Σ𝑝 , characterizing the 
parameter jump statistics and their correlations. As with the prior distribution, the proposal’s covariance is 
unknown. Therefore, out of necessity, the individual parameters are assumed to be statistically independent, 
resulting in a diagonal proposal covariance matrix, where the subscript p indicates proposal information, 

𝛴𝑝 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝑝𝑆

2 0 0 0 0 0

0 𝜎𝑝𝑎
2 0 0 0 0

0 0 𝜎𝑝𝑏
2 0 0 0

0 0 0 𝜎𝑝𝑐
2 0 0

0 0 0 0 𝜎𝑝𝐸
2 0

0 0 0 0 0 𝜎𝑝𝜖
2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (8) 

This deficiency is improved upon by updating the proposal covariance adaptively using a portion of the 
Markov chain itself, as described below. Updating in this way results in a fully populated proposal covariance 
matrix during the later stage of the Markov chain. As a result, parameter proposals are more likely to be 
accepted, improving the efficiency of the algorithm’s search for the peak of the posterior distribution. 

In total, the Markov chain can be displayed as a series of staircase traces, each tracking the values of a single 
parameter in the chain. The result at each step in the Markov chain is a series of six numbers, one for each of 
the parameters. An example of the initial 6000 steps of a posterior distribution’s Markov chain is shown in Fig. 
2. Accepted proposal parameter sets are indicated by horizontal steps while retained current parameter sets 
results in vertical steps. 

 

Fig. 2. Initial 6000 steps of Markov chain.
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In principle, the chain shown contains all of the statistical information about the parameters including mean 
values and correlations. This information is very difficult to ascertain from the Markov chain directly so 
typically the statistics of the individual parameters are displayed using their marginal distributions in the form 
of histograms. The marginal distribution histograms for the 6000 step Markov chain in Fig. 2 are shown in Fig. 
3. 

 

Fig. 3. Marginal distribution histograms of the 6000 step Markov chain. 

Correlation information, is even more difficult to ascertain from a visual inspection of the Markov chain and 
is better understood through inspection of the chain’s covariance and correlation matrices.  

7. Metropolis Algorithm Implementation 

The technique outlined above has, with great consistency, been used to estimate the posterior distribution of 
the parameter set, 𝜽 = {𝑆,𝐸, 𝑎, 𝑏, 𝑐, 𝜖}, and therefore Taylor’s model parameters (2), using the fireball data 
associated with a number of nuclear explosions. To demonstrate the technique the results for the analysis of the 
Trinity explosion are presented. The total radius-time data set available is composed of 25 radius-time pairs 
(App. A). 

Implementing the technique first required the selection of mean values and variances for each of the prior 
and proposal Normal distributions. Because of the known accuracy of Taylor’s prediction, the selection of 
mean values for the explosion-independent parameters in the prior model, S, a, b, c, can be accurately estimated 
using Taylor’s theory,  (equations 1, 2) while an estimate of the explosive yield can use Taylor’s original 
estimate of 16.8 kT (Table 1). The prior means have additional importance. Being our best guess for the 
parameter values they are used to initialize the Metropolis algorithm. 

Table 1. Taylor’s parameter predictions used as prior means 

𝑆�̅�𝑟 𝑎�𝑝𝑟 𝑏�𝑝𝑟 𝑐�̅�𝑟 𝐸�𝑝𝑟 𝜖�̅�𝑟 
21 0.4 0.2 0.2 16.8 50 
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Unlike mean values, little is known about the parameter’s variances and correlations. For this reason, the 
parameters are assumed initially statistically independent and therefore uncorrelated. In addition, as in many 
instances, prior variance values were chosen based on intuition (Table 2).  

Table 2. Prior variances. 

 𝜎𝑝𝑟𝑆2  𝜎𝑝𝑟𝑎2  𝜎𝑝𝑟𝑏2  𝜎𝑝𝑟𝑐2  𝜎𝑝𝑟𝐸2  𝜎prϵ2  
1.0E0 1.0E-4 2.5E-5 1.0E-4 4.0E0 2.5E1 

 
While the mean value of the proposal distribution is known, chosen as the current parameter set, the 

proposal variances were determined using scientific judgement and trial and error (Table 3). Realistically, each 
proposed parameter set should be reasonably “near” the current parameter set. For this reason, a trial set of 
proposal variances were chosen then varied systematically until a usable, stable, Markov chain was produced. 
The final proposal variances used in the MCMC simulation were, 

Table 3. Proposal variances. 

𝜎𝑝𝑆2  𝜎𝑝𝑎2  𝜎𝑝𝑏2  𝜎𝑝𝑐2  𝜎𝑝𝐸2  𝜎pϵ2  
1.0E0 1.6E-3 4.0E-4 4.0E-4 4.0E0 1.0E0 

 
Uncertainty in these parameters, and their effect on simulation results, was of concern. For this reason, the 

sensitivity of the posterior distribution to changes in the Metropolis algorithm’s starting point was investigated. 
In the study, the Metropolis algorithm’s initial parameter set was randomly perturbed a maximum of 50% from 
their initial values. The resulting Markov chains were recorded and shown to converge. An example from the 
study, for parameter a is shown in Fig. 4 with the red dots at step zero indicating ten randomly chosen initial 
parameter values. In every instance, each similarly perturbed Markov chain parameter converged to a common 
distribution. The dramatic change in the character of Markov chain component at step 100,000 is due to an 
adaptive change in the proposal covariance matrix which is discussed in more detail below. 

 

Fig. 4. Parameter convergence example.
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8. Results 

Using fireball radius-time data from the Trinity explosion, and the prior and proposal data defined above, an 
estimate of the parameter’s posterior distribution was generated.  To accomplish this three 200,000 step 
Markov chains were independently generated. During the simulation, each chain was divided into four 
segments. The first three segments were discarded and were only executed to improve the quality of the fourth 
segment which was retained for analysis. 

The first segment, conservatively chosen and accounting for 25% of the chain (50,000 steps), termed “burn-
in,” was a series of steps within which the chain was allowed to stabilize and reach some approximate 
equilibrium. The second segment (tune-in), accounting for 24.5% of the chain (49,000 steps), was used to 
generate an estimate of the chain’s covariance. The estimated covariance was then used as the Metropolis 
algorithm’s proposal covariance during the third and fourth segments of the chain. The third segment was a 
short 0.5% (1000 step) delay to allow any transients in the chain resulting from the covariance switch to 
dissipate. The fourth segment, accounting for the remaining 50% of the chain (collection), used the estimated 
covariance from the tune-in segment to generate improved, correlated steps. The three separate collection 
segments, one from each of the chains, were then combined to produce a composite Markov chain. The 
combination of the individual chain segments was justified by comparing their consistency within and across 
each chain, confirming that each chain had converged to the same distribution. The consistency check was 
performed by computing the chain segments’ Gelman-Rubin statistic [14], which indicated convergence. 

An example of a complete 200,000 step chain showing the burn-in, tune-in and collection segments 
separated by dashed lines is shown in Fig. 5. Early segments in several of the parameter’s chain contributions 
show significant variation, indicating the utility of the burn-in period, while the change in the characteristics of 
the Markov chain resulting from the updated covariance matrix segment are dramatic and improve the Markov 
chain’s exploration of the parameter space. 

 

Fig. 5. One complete 200,000 step Markov chain showing burn-in, up to red dashed line, tune-in, between the red and green dashed lines, and 
collection, from the green dashed line until the end of the chain segment. 

An example of a composite Markov chain constructed from three converged collection segments is shown in 
Fig. 6. Each parameter’s contribution to the composite Markov chain was then used to generate their marginal
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distribution histogram, also shown in Fig. 6. Superimposed in red on the marginal distribution histograms are 
the parameters’ prior distributions. 

 

 
Fig. 6. Composite, 300,000 step Markov chain and their marginal distribution histograms. The red lines show the prior distribution proposed 
for each of the parameters. 

A summary of the parameter statistics for the composite Markov chain, determined from the marginal 
distribution histograms, and their existing prior/estimated values, are shown in Table 4. A maximum a-
posteriori (MAP) set is provided as well. The MAP set is the parameter set whose values occur in combination 
to maximize the posterior. Because of the large data set the 95% confidence intervals for the different 
parameters, determined from the Markov chain, are essentially zero to the precision shown. 
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Table 4. Parameter statistics 

Parameter Average St. Dev. MAP Prior Estimate 
S 21.0±0.000 1.99E-1 21.0 21.0 
a 0.390±0.000 1.30E-2 0.391 0.4 
b 0.202±0.000 1.40E-2 0.199 0.2 
c 0.200±0.000 1.00E-2 0.200 0.2 
E 16.8±0.00 2.51E-1 16.8 16.8 
𝜖 7.72±0.000 8.74E-1 7.76 10 

 
While mean values and confidence intervals are of interest most unique to the analysis are the covariance 

and correlation matrices of the composite Markov chain’s parameters, examples of which are shown in Tables 
5 and 6.  

The covariance matrix, Table 5, is of interest because the magnitude of the off-diagonal terms quantifies the 
degree of dependence of one parameter on another. The magnitude of each correlation term is, however, scaled 
by the general magnitude of the parameters considered.  

Table 5. Parameters’ covariance matrix. 

 S a b c E 𝜖 

S 3.97E-02 -1.13E-04 -5.45E-04 4.94E-06 4.13E-04 -3.29E-04 

a  1.56E-04 -1.51E-04 1.95E-08 -4.98E-05 2.53E-04 

b   2.04E-04 6.77E-07 -2.17E-04 -2.71E-04 

c    9.92E-05 -1.68E-05 -3.71E-05 

E     6.29E-02 -1.31E-03 

𝜖      7.64E-01 

Table 6. Parameters’ correlation matrix.  The largest off-diagonal terms (>1x10-1) are shown in red. 

 S a b c E 𝜖 

S 1.00E+00 -4.55E-02 -1.91E-01 2.49E-03 8.29E-03 -1.89E-03 

a  1.00E+00 -8.46E-01 1.57E-04 -1.59E-02 2.31E-02 

b   1.00E+00 4.75E-03 -6.05E-02 -2.17E-02 

c    1.00E+00 -6.73E-03 -4.26E-03 

E     1.00E+00 -5.98E-03 

𝜖      1.00E+00 

 
As a result, comparison between covariance terms for the purpose of determining the relative strengths of 

their effects from one parameter to another is difficult. For this reason, the correlation matrix, Table 6, is 
considered because it more directly shows the relative influence of each parameter on the others as each 
correlation coefficient has been normalized. The largest off-diagonal correlation term (>1x10-1) is shown in red. 
Consequently, the exponents a and b and the parameters b and S are most strongly correlated. Of particular 
interest is the lack of a strong correlation between E and b. Strictly speaking parameters E and b are potentially 
unidentifiable, in combination producing a single value. For this reason, it was expected that there would be an 
anti-correlation between the two parameters which was not observed.
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9. Discussion 

In general, the Bayesian MAP parameter values (Table 4) are consistent with Taylor’s theoretical 
predictions (Table 1) except for the parameter a which is found to different significantly from Taylor’s 
prediction. With a value of 𝑎𝑀𝐴𝑃 = 0.391 the Bayesian estimate differs from Taylor’s prediction of 0.4 by 
0.009 (2.3%). While not large in absolute terms or relative to the parameter’s Markov chain standard deviation 
𝜎 (0.692𝜎) the value is estimated with considerable precision strongly supporting the observed difference. 

The significance of a’s deviation from Taylor’s model prediction is most dramatically demonstrated by 
plotting the theoretical model predictions for R vs. t (equation 2) using both Taylor’s parameter predictions 
(Table 1) and the Bayesian MAP values (Table 4) versus the observed data (App A). The resulting plot (Fig. 7) 
shows a good match between both models and the observed data at early times but significant deviations 
between Taylor’s model and the observed data at late times. In contrast, the model using the MAP parameter 
values much more closely follows the observed data for all times. This deviation is not unexpected as the 
parameter a is the exponent of the independent time variable, t. 

 

Fig. 7. Radius versus time data and model predictions showing both the MAP and mean fit (nearly indistinguishable). 

This indicates the importance of the parameter a in the radius-time model and shows the dramatically 
improved fit to the measured data provided by the model using 𝑎𝑀𝐴𝑃 . This difference is also significant in that 
the value for a, traditionally assumed to be 0.4, is the basis for the most commonly used methods for explosive 
yield determination. In addition, the lower value predicted for 𝑎𝑀𝐴𝑃 is supported by the more detailed fireball 
expansion theory of Porzel [19] which predicts a to be 0.372. 

While the point-wise MAP estimates provide insight into the optimum parameter values, Bayesian 
parameter variation is still present due to the expected variation in the parameter set along the Markov chain. 
An indication of this variability is shown in Fig. 8 where 50 radius-time model predictions, generated using 50 
parameter sets chosen randomly from the composite Markov chain, are shown, Fig. 8. This plot, while showing 
considerable variation is centered around the MAP model prediction and observed Trinity data set analyzed.



15                               Bayesian Parameter Inference of Explosive Yields Using Markov Chain Monte Carlo Techniques  

 

Fig. 8. Radius versus time data and model predictions for 50 random parameter sets chosen from the composite Markov chain. 

Parameter’s covariance and correlation matrices, as derived from the Markov chain, are presented in Table 5 
and Table 6. In general, correlation coefficients are low, typically less than ±10-2. Two correlation coefficients 
are, however, considerably larger in magnitude than the others (shown in red in Table 6). The values indicate 
unusually large anti-correlations between parameters b and the parameters S and a. The anti-correlation 
between b and S seems the less interesting of the two as the parameter b is the exponent of E (equation 2), 
combining to produce what is effectively a multiplicative constant, as is the parameter S. They vary inversely 
with respect to each other in effect canceling each other out. The more provocative anti-correlation is the one 
between parameters a and b. The parameter a, as previously discussed, is particularly important as the exponent 
of the independent time variable, t. The significance of its anti-correlation with b is, however, unclear at this 
time. 

Also, of interest, and interpretable from the data provided, is the degree to which the data, versus the prior 
distribution, influences the Markov chain. This interplay can be observed by comparing each parameter’s 
marginal distribution histogram to the assumed prior distribution. Looking at Fig. 6 it can be concluded that the 
posterior marginal distributions of parameters S, c and E are dominated by the prior information because of the 
excellent match between the MCMC parameter marginal histograms and the prior distributions (red lines). The 
opposite is true of a, b and 𝜖 where the Fig. 6 shows that the final posterior marginal distributions differ 
significantly from the assumed prior distribution. This indicates that the data had a strong influence on these 
elements of the Markov chain. That a and b are strongly influenced by the data and strongly anti-correlated is 
intriguing but any connection is impossible to infer given the data at hand. 

10. Conclusion 

The Bayesian MAP parameter estimates computed support Taylor’s radius-time model prediction except for 
significant deviations in the parameter a. While the deviation is small, its impact is found to be significant for 
the prediction of fireball radii at late times. This is largely due to a’s role as the exponent of the independent 
time variable, t. In addition, parameters a and b were found to be significantly anti-correlated and, as indicated
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by the Markov chain, strongly influenced by the data set analyzed. The implication of these results in unclear 
and will require addition analysis to explain. 

Acknowledgement 

The author would like to acknowledge the support of the Defense Threat Reduction Agency/ Nuclear 
Science and Engineering Research Center under MIPR HDTRA1929144. 

References 

[1] Mack JE. U.S. Atomic Energy Commission. Semi-popular motion-picture record of the Trinity explosion. 
Oak Ridge, TN: Atomic Energy Commission; 1946. 

[2] Taylor GI. The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion 
Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 1950; 201:159-
174. 

[3] Taylor GI. The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945 
Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 1950; 201:175-
186. 

[4] Bethe HA and Fuchs K. Measurement of Nuclear Bomb Efficiency by Observation of the Ball of Fire at 
Early Stages Los Alamos Scientific Laboratory, Tech. Rep. LA-516; 1946. 

[5] Gallant AR. Nonlinear regression. The American Statistician 1975; 29:73-81. 
[6] Kass RE. Nonlinear regression analysis and its applications. Journal of the American Statistical Association 

1990; 85:594-596. 
[7] Casella G., and Berger R. Statistical inference. Belmont, CA: Brooks/Cole Cengage Learning; 2017. 
[8] Boos D., and Stefanski L. Essential statistical inference: Theory and methods (Springer texts in statistics, v. 

120). Dordrecht: Springer; 2012. 
[9] Wasserman L. All of statistics: A concise course in statistical inference (Corrected second print. ed., 

Springer texts in statistics). New York: Springer; 2010. 
[10] Fahrmeir L. Kneib T, Lang S, and Marx,B. Regression. Berlin: Springer-Verlag; 2007. 
[11] Wakefield J. Bayesian and frequentist regression methods (Springer series in statistics). New York: 

Springer; 2013. 
[12] Seber G.A, and Wild CJ. Nonlinear regression analysis. New York: John Wiley and Sons; 1989. 
[13] Bernardo JM, and Smith AF. Bayesian theory. New York: John Wiley and Sons; 2009. 
[14] Gelman,A, Carlin JB, Stern HS, and Rubin DB. Bayesian data analysis. Chapman and Hall/CRC; 2013. 
[15] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, and Teller E. Equation of state calculations by 

fast computing machines. The Journal of Chemical Physics 1953; 21, 1087. 
[16] Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 

1970; 57:97-109. 
[17] Box GE, and Tiao GC. Bayesian inference in statistical analysis (Vol. 40). New York: John Wiley & Sons; 

2011. 
[18] Denison DG, Holmes CC., Mallick BK., and Smith AF. Bayesian methods for nonlinear classification and 

regression (Vol. 386). New York: John Wiley and Sons; 2002. 
[19] Porzel FB, Rate of Growth of Atomic Fireballs Los Alamos Scientific Laboratory, Tech. Rep. LA-1214, 

Unclassified, Distribution Unlimited; 1951. 
 
 
 



17                               Bayesian Parameter Inference of Explosive Yields Using Markov Chain Monte Carlo Techniques  

Authors’ Profiles 
 

John Burkhardt is a Mechanical Engineering Professor at the U.S. Naval Academy in 
Annapolis, Maryland. He received his Ph.D. and M.S. degrees in Theoretical and Applied 
Mechanics from the University of Illinois, Urbana-Champaign. His bachelor of engineering 
degree in Civil Engineering was awarded by The Cooper Union in New York City. 
 
 
 
 
 

 
 
 
How to cite this paper: John Burkhardt." Bayesian Parameter Inference of Explosive Yields Using Markov 
Chain Monte Carlo Techniques", International Journal of Mathematical Sciences and Computing(IJMSC), 
Vol.6, No.2, pp.1-17, 2020. DOI: 10.5815/ijmsc.2020.02.01 
 


