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Abstract: In this paper, A 6 (six) compartmental (S, IU, IS, IA, Q, R) model was presented to examine the dynamical 

behavior of disease transmission in the system with quarantine effect on the symptomatic infected, asymptomatic 

infected and Reproduction number R0 within a given population. The parameters model was analyzed and estimated 

experimentally using the real data of COVID-19 confirmed cases for Ethiopia via MATLAB 2021a. Reproduction 

number R0 which is a key indicator to whether a disease outbreak spread force will persist or die out within population.  

R0 was found using the next generation matrix with Gaussian elimination method to obtain the inverse of the transitive 

matrix.  The model also aims at reducing R0 owning to the fact that when the basic reproduction number is less than 1 

infected person, disease dies out and when the reproduction number is greater than 1 infected person, the disease 

persists. The facts about R0 geared us to mathematically check for the Routh-Hurwitz stability criteria and Lyapunov 

Functions to concisely establish the necessary and sufficient conditions for the Local and Global stability of model. 

results show that, when R0 < 1 and R0 > 1 the diseases free equilibrium and endemic equilibrium points are locally and 

globally asymptotically stable respectively. In order to interpret results and recommend possible control measure of 

disease, The dynamics of the Quarantine compartment in model was tested via sensitivity analysis to experimentally 

investigate transition/ transmission pattern. The effect of quarantine analysis on the model shows that preventive 

measures such as increase in quarantine with treatments during disease outbreak will significantly decrease the 

Reproduction number. Hence, increase in Quarantine compartment will flatten the curve of (S, IU, IS, IA, Q, R) dynamic 

model correspondingly.  
 

Index Terms: Epidemiology, Gaussian elimination, Routh-Hurwitz stability criteria, Reproduction number. 

 

 

1.  Introduction 

Infectious diseases have massive impact on human life and economy, millions of people have died from various 

diseases with similar mode of transmission and different basic reproduction numbers R0. 

On the 5 May, 2023 the World Health Organization WHO declared that COVID-19 epidemic is no more a "global 

health emergency"[1], while cautioning that it remains a global health threat. In other words, the Covid-19 outbreak 
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which was declared "Public health emergency of international concern" that lasted for about 3 years since January 30, 

2020 [2] still pose a deadlier threat on the globe. Within outbreak period, 7 million death cases have been reported to 

the organization. The head of organization [3] warned countries to be more vigilant and not collapse already set-up 

efforts to eradicate or cushion disease spread and added that the actual death toll at minimum is 20 million which 

approximately triples the COVID-19 official reported death cases recorded by the agency. He stated that "The worst 

thing any country could do now is to use this news as a reason to let down its guard, to dismantle the systems it has built, 

or to send the message to its people that COVID-19 is nothing to worry about". Although deaths of disease decreased 

since March 2020, even at that thousands of cases are reported to the agency per week, millions of people are dealing 

with the post effect of the prolonged disease infection. Thousands of cases are currently in the intensive care units being 

treated around the world.  

Mathematicians around the world formulated several models to understand the transmission dynamics of disease 

spread with the aim of proposing a disease control mechanism.  

For instance, in 1766, the earliest mathematical modelling of disease spread was conducted by Daniel Bernoulli [4] 

a trained physician who formulated a model to defend the inoculation against small pox. After Bernoulli, other 

researchers contributed to modern mathematical epidemiology. Amongst them are A. G. McKendrick and W. O. 

Kermack, who immensely contributed to the Mathematical Theory of Epidemics in 1927.  

Also, mathematical model of the spread of disease back in the early twentieth century [5] when Ronald Ross, 

William Hamer and other public health researchers developed the SIR model which denotes the (susceptible-infected-

removed). The model consists of three connected non-linear ordinary differential equations which allow us extract basic 

information about possible solution through calculus use. SIR model overtime, helped researchers to state theoretical 

foundation in the public health sector with possible intervention strategies. With the knowledge of basic reproduction 

number, it is easy to determine percentage of population that needs to be vaccinated. Since humans are the natural hosts 

of smallpox virus, the prevention intervention strategies of disease in 1967 by world health organization (WHO) was 

successful. Several other diseases like Dengue fever outbreak, classical swine fever outbreak in the Netherlands, 

Norovirus in Brussels, was studied/ tested using SIR model. 

[6,11,13,16], studied the effects of different intervention strategies via optimal control analysis of disease outbreak.  

 Recently, [6] developed the SEIAHR transmission dynamics model of COVID-19 in Ethiopia for 140 days from 13th 

March - 31st July, 2020 some of the parameters used was calculated and estimated via model fitting, while others were 

assumed or cited from related literature. The Basic reproduction number R0 = 1.5085 is the sum of transmission 

contribution on susceptible class by the symptomatic and asymptomatic infection cases and which was calculated to be 

R0 = 0.6788 and R0 = 0.8297 respectively. R0 is within Range 1.4 to 2.5 [7] as suggested by WHO.  

The Jacobian matrix and eigenvalues was found with model’s parameter values at the Endemic Equilibrium point 

and result shows all negative values which implies that the endemic equilibrium point is locally asymptotically stable. 

The influence of each parameter in R0 was calculated using the normalized sensitivity index analysis in order to design 

the best control measures that can suppress R0. It was observed that, decrease in the rate of transmission from 

asymptotically infected cases to suspected individuals will entail reducing the parameter to a minimum of ∝ = 0.47.  

Pontryagin maximum principle was used to establish the necessary and sufficient conditions for an optimal control 

existence. Three COVID-19 intervention control strategy was applied based on model analysis and Ethiopia day to day 

living, which includes; strategy 1; public health education of the disease, strategy 2; personal protective control 

measures which includes the use of face mask, constant hand wash, social distancing and strategy 3; Treatment of 

patients in hospitals or isolation centers. Also, parameter sensitivity results [6] suggest that the Ethiopian Government 

and other countries can input the optimization control policy or focus on suppressing the value of R0.  

[8-10,12,14], Investigated non pharmaceutical control measures on transmittable diseases. [8] Studied the impact of fear 

of covid-19. The reproduction number was derived and numerical simulation results reveal that when an outbreak 

occurs coupled with the fear of contagion, then the disease is most likely to continue for two months, there-afterwards, 

it will start to slow down. A second wave of infection is triggered the next month as more individuals recover from fear, 

they become susceptible. Therefore, in order to reduce R0 of Covid-19, fear and the transmission of disease must be 

controlled simultaneously. [9] proposed a non-linear mathematical model on the effect of face mask on R0. using the 

real-life data of Bangkok, Thailand, the results shows that constant and appropriate face masks usage can prevent the 

spread of COVID-19.  [10] Studied the Global Properties using the linear and non-linear Lyapunov function of Goh-

Volterra on the epidemic model. [11] formulated an 11-Dimensional mathematical model for Ebola and its optimal 

control was analyzed. The impact of socio-economic status in the transmission treatment of the deadly Ebola infection 

was analyzed using tri-linear control functions. The classical Pontryagin’s maximum principle was employed to analyze 

model.  Numerical solutions shows that early modern media campaign about disease, prevention strategies and using 

the most effective control design will help eradicate Ebola outbreak within population. [12] designed a mathematical 

model with non-pharmaceutical control measures to examine the transmission of COVID-19 infection in Plateau State 

Nigeria, the reproduction number was estimated to be approximately R0 = 2.3 which suggests that COVID-19 in plateau 

state tends towards endemic state if no disease control measures is employed. [13] Considered the optimal control of 

covid-19 with non-clinical strategy.  a seven compartmental model was formulated (S, E, I1, Iv, I2, R, W) with vent Bol 

class for critically infected persons and the class of contaminated surfaces were considered, Sensitivity analysis was 

carried out on model’s parameters where the most active transmission parameter was analyzed and interposed with 

control variables. Hamilton and Lagrange principle were used to check for the existence of optimal control strategy. The 
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key functions were to design a model that will simultaneal decrease infection and intervention strategy cost. [14] used 

the Routh-Hurwitz stability criterion to study transmission dynamics of tuberculosis at the disease-free equilibrium 

while the Stability of endemic equilibrium point was analyzed using the bifurcation, Numerical simulations followed. 

[15] formulated a mathematical model for diphtheria transmission with asymptomatic infection, logistic growth, and 

vaccination. The global dynamical features of disease were analyzed. A deterministic compartmental model was 

presented for covid-19 transmission dynamics, [16] Conducted a quantitative and qualitative analysis on the local and 

global stability of the disease-free and endemic equilibrium points. Lyapunov function was also constructed to derive 

global stability of the disease-free and endemic equilibrium. The theoretical solutions suit the numerical results. Three 

intervention strategies were looked into, it was observed that implementation and combination of control treatment rate 

u2 and u3 is more effective and efficient in covid-19 disease control implementation.  

2.  Mathematical Model Formulation 

In this study, the mathematical model used for the Stability Analysis (S, IU, IS, IA, Q, R) Model was motivated by 

the study of [6], The total human population in this research is divided into six compartments: The total human 

population at any time t is represented by N and classed into six: Susceptible class S, infected unknown class Iu, 

Symptomatic infected class IS, Asymptomatic infected class IA, Quarantine class Q and Recovered class R, respectively, 

so that 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )U S AN t S t I t I t I t Q t R t          (1) 

 

Humans are recruited into the Susceptible compartment S(t) at a constant rate of Γ. The susceptible compartment 

decreases after contact with either symptomatic IS(t) or asymptomatic IA(t) infectious individuals with force of infection.  

  

( )i S AI I S

N

  
                                                                            (2) 

 

the susceptible class decreases by  . Therefore, the susceptible compartment can be mathematically written as 

 

( )i S AI I S
S S

N

 



                                                                      (3) 

 

These new individuals become exposed or infected unknown to corona virus and are placed in infected unknown 

class IU(t). The infected unknown class increases by the infection force Π from the susceptible (3). A proportion ρ of the 

population IU(t) flows to the asymptomatically infected compartment IA(t) at the rate ϕ and the remaining proportion 

1−ρ moves to the class of infected symptomatically individuals IS(t) The infected unknown class decreases gradually by 

the rate of incubation and natural death rate.  

 

 
( )i

U U
S AI I S

N
I I

 
  


                                                              (4) 

 

A proportion of infected unknown who exhibits clinical symptoms flows to the Symptomatic Infected class after 

disease incubation period by (1−ρ) ϕIU. Also, the symptomatic infected class decreases by the individual’s natural 

immunity rate, or recovery by other means at rate γS, decreases by admission to quarantine compartment for intensive 

health care at rate ψ and dies by natural rate μ of the infected with symptom. ˙ 

 

     1 -  S U S SI I I                                                                 (5) 

 

The Asymptomatic infected class increases by a proportion ρϕ of infected individuals from infected unknown class 

that is infected individuals without clinical symptoms after incubation period. Also, the Asymptomatic infected class 

decrease with natural recovery rate γA due to strong immunity, natural death rate µ and by quarantined individuals 

without symptoms of COVID-19 but yielded self to be quarantined and treated at rate θ.  

 

 A U A AI I I                                                                        (6) 

 

We assume that the Quarantine/Isolation class increases by some of the infected individuals who shows clinical 

symptoms and the asymptomatic class without clinical symptom for treatments and their immune boosted during this 
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period at quarantine rates ψ and θ respectively. The class decreases by cure rate of covid−19 Disease Ω due to positive 

treatment response, covid−19 induced death and natural mortality death at rates σ and µ.  

 

   S AQ I I Q      Ω                                                              (7) 

 

 we assume that as a result of other self-treatments and natural immunity, The Recovered class is increased by the cure 

rate of symptomatic and asymptomatic infected individual at the rates γS and γA respectively. The recovered class also 

increases by the cure rate of individuals in the quarantined class and covid 19 induced death rate (σ + Ω) and decreases 

by natural death rate µ.  

 

    S S A AR I I Q R      Ω                                                          (8) 

 

based on the model description and assumptions above, the model of the covid− 19 infection transmission dynamics is 

giving by the systems of non-linear differential equations. 
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Let, 
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                                            (10) 

2.1.  Schematic Diagram of (S, IU, IS, IA, Q, R) Model and Parameter Description 

The Dynamic flow of the model is presented diagrammatically in fig.1. Below 

 

 

Fig. 1. Schematic Diagram of COVID-19 Model. 

The parameter description of the model is listed in the Table 1. 
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Table 1. Model Parameters and Descriptions. 

S/N Parameter  Description 

1 Г Influx 

2 β Transmission rate from IA to S 

3 εi Transmission rate from IS to S 

4 ρ The Proportion of Asymptomatic infected population. 

5 ϕ The incubation period of Corona Virus 

6 ѱ Quarantine rate of symptomatically infected Population 

7 γS Recovery/cure rate of symptomatically infected Population 

8 γA Recovery/cure rate of asymptomatically infected Population  

9 μ Natural death rate 

10 θ Quarantined rate of asymptomatically infected Population 

11 Ω Cure rate of Quarantined cases 

12 σ Covid 19 death rate 

3.  Positivity of Solution 

For COVID−19 model to be epidemiological and mathematically well posed, we will show that all state variables 

are non-negative for all t > 0.  

3.1.  Invariant Region 

Since the model formulated deals with the living population, it is assumed that the parameters and state variables 

used are all positive. so that  

 

   ,    t N t



    

 

 \Now, adding all the equations in the model (9) gives,  

 

          U s A
dI dI dIdS dQ dR

N
dt dt dt dt dt dt

                                                     (11) 

 

From Equation (11) The rate of change in total population at initial time t = 0 is,  

 

              U S AN S I I I Q R                                                     (12) 

substituting equation (1) into (12) gives 

 

      N N                                                                          (13) 

 

Therefore, Equation (14) is the positive invariant region for model (1) 

 

* 6 ( )?          U S AB S I I I Q R





                                               (14) 

Therefore if 
0N




 then either the solution of (1) enters 

*B  or ( )N t



   asymptomatically. 

Hence the region *B  attracts all solutions of Equation (1) in 6


. 

3.2.  Positivity and Boundedness 

To show the positivity and boundedness, firstly let the initial value for model Equation (9) be 

         0 0,  0 0,  0 0,  0 0, 0 0,  U S AS I I I Q     and  0 0R  , then, the solutions of the system (9) with positive 

initial value will remain positive   time t > 0. From the Equation (2), 

 

S S S    

           
dS dS

S dt
dt dt

         
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 
0 0

    

S t
dS

Sdt
S

      

ln | ( ) | ( ) ( )S t S t C     

 

Therefore, 

     
  

S t
S t Ce

 
  

 

at time t = 0,        
  0

S t
S t Ce

 
  ,  since −(Π + µ) > 0, similarly, it can be shown that  

 

           0   0,   0   0,  0   0,  0   0,  0   0,  0   0U S AS I I I Q R      . 

 

hence all the solutions of the model system in Equation (9) remain positive [11] for all non-negative initial conditions as 

required at all time t > 0. hence prove completed. 

3.3.  Existence and Uniqueness 

In model Equation (9) considering its initial conditions  

 

           0   0,   0   0,  0   0,  0   0,  0   0,  0   0U S AS I I I Q R      , 

 

and 0 0t  , then ∀ t  the solutions  
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                                                      (15) 

 

Since f has a continuous first derivative in 
6

 then it is locally Lipschitz [6], therefore, ∃ a unique, positive and 

bounded solution for the system of differential equation (9) in 
6

 . by fundamental existence and uniqueness theorem 

proves Equation (15). 

3.4.  Equilibrium Point Analysis 

Simplifying Equation (9) can produce many equilibria points or solutions, however in this subsection, two 

equilibrium points is considered which are the disease-free equilibrium and endemic equilibrium points using the 

approach of [9].  At the Disease-Free Equilibrium Point denoted as DFEP it is assumed that there is no infection 

initially, so to determine the disease-free equilibrium point, each equation in (9) must be equal to zero. Therefore, 
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
                                 (16) 

 

Endemic Equilibrium Point, 

 

 * * * * * * *   ,   ,  ,  ,   ,   U S AN S I I I Q R                                                         (17) 

 

Denoted as, 
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3.5.  Next Generation Matrix NGM 

The local and global stability can be obtained by using the next generation operator method on the model system 

Equation (9) to obtain the reproduction number. The Basic reproduction number denoted as R0 is defined as disease 

spread capacity from a single infected individual to secondary infections. It provides the key conditions for the stability 

of the system. The method gives insight on the transmission and transition matrices R0 is obtained by establishing the 

next generation matrix 
1FV 

 using the approach in [6,16]. the infective compartments are: 
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                                                                   (18) 

Let     ,  ,  ,  U S Ax I I I Q  represent the state variables of systems of Equation (18) then (9) can be rewritten as 

 

      i ix
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t
                                                                        (19) 

 

where  i x  represents the rate of new infection and  i x  represents the input and output rate of infection transfer 

into compartment. given by 
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The Jacobian matrices of  i x and  i x at 
0

N  which are the transition and transmission matrix respectively, 

gives, 
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Using Gaussian Elimination method to find the inverse matrix of V. 
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                                                     (22) 

 

We obtain  
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 
 
 
 
 
 

                                                         (23) 

 

Now, 1FV  becomes, 
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 
 

                                          (24) 

 

4

1 2 1 3 2 3

1

0

0 0 0 0

0 0 0 0

0 0 0 0

i im

m m m m m m

FV

  



 
 

 
 
 
 
  

                                                           (25) 

 

The eigenvalues λ of 1FV  can be computed from the characteristic equation or determinants the Basic 

reproduction number is the largest of first eigenvalue [9] 

 
1| | 0FV                                                                           (26) 

 

4

1 2 1 3 2 3

1

( ) 0

0 0 0 0

0 0 0 0

0 0 0 0

i im

m m m m m m

FV

  










 
  

 
  
 

 
  

                                                  (27) 

 

Therefore,  

 

4
0 1

1 2 1 3

( )imR
m m m m

 
    and 

1 2 3 0      

 

can also be rewritten as 
0 1 2R R R   therefore  
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4
0

1 2 1 3

imR
m m m m

 
                                                                            (28) 

4.  Stability Analysis 

This section deals with the local stability analysis of the disease free and the endemic equilibrium points. 

4.1.  Local Stability Analysis of DFEP and EEP 

i. The Local stability of DFE is derived by proving the following theorem. 

Theorem 1: The diseases free equilibrium point is locally asymptomatic stable if 
0R  < 1 and unstable if 0R  > 1,  

Proof: The Jacobian matrix 
dfeJ of the model (9) was evaluated at the disease-free equilibrium which yields 
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

 
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  
 

 
 
 
 








 
 

 

                                                     (29) 

 

using the approach of [16] to find the eigenvalues at the 
dfeJ , Then characteristic equation | |dfeJ I  = 0 is expanded 

and simplified as follows: 

 

1
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3

5

6

*

0 0 0

0 0 0

0 0 0 0
0

0 0 0 0

0 0 0

0 0

i

A

e

i

f

S

d

m

m
J

m

m

m

m

   

  



 

  

   

   
 

  
 
  

 
  

  
 

  





                               (30) 

 

From the Jacobian matrix of (30), we obtained a characteristic polynomial:  

 

      1 2 3 5 6 0m m m m m                   

 

Thus, from equation (30) it is obvious that the eigenvalues  

 

1 2 1 3 2 4 3 5 5 6 6,  ,  ,  ,  ,  m m m m m                    

 

1 2 3 4 5, , , ,      and 6 are all negative quantities. 

To obtain the necessary and sufficient conditions of the negative real parts, we use the approach of [6]. Since it 

was observed that the first, fifth and sixth [9] columns give the first three (3) eigenvalues which are
5   m    Ω   

and −   (repeated roots). The rest is obtained by the (3 × 3) sub matrix formed by excluding the first, fifth and sixth 

rows and columns of system (30) we get. 

 

1

*

4 2

3

0

0

i

dfe

m

J m m

m

 



 
 

 
 
  

                                                                     (31) 

 

we take the determinants of the three negative eigenvalues to determine if they have negative part or not, therefore the 

determinants yield: | |dfeJ I  = 0 
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2 4 4 2

1

3 3
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0
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i
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m

m m

 
  

   

   
    

   
 

1 2 3 4 3 2( )( ) ( ( ) ( ) 0im m m m m m                    

1 2 3 1 2 2 3 1 3 4

1 2 3 3 4 2

3 2     )         )

     ) 0

( ( ( i

i

m m m m m m m m m m

m m m m m m

  

 

        

  






                        (32) 

 

Now comparing Equations (32) and (33), by applying Routh-Hurwitz Stability criteria gives: 

 
3 2

2 1 0( )f a a a                                                                       (33) 

 

Then, 

 

 2 1 2 3

1 1 2 2 3 1 3 4

0 1 2 3 2 4 3

       

           

      

i

i

a m m m

a m m m m m m m

a m m m m m m

 

 

   

    

   

 

 

The necessary condition is established using the approach of [6]. The reproduction number 0R  derived is positive 

Since both 1R and 2R  are positive then from the characteristic’s Equation (30)  

 

2   0a   and    1 1 2 1 1 3 2 2 31 1 0a m m R m m R m m       

 

Then,  

 

 1 2 3 2 4 3 1 2 3 0 0       1   0   1im m m m m m m m m R R         . 

 

Also, the sufficient condition for 
0 1R  , 

1 1R  , 
2 1R  , then by Routh-Hurwitz stability criteria all the 

eigenvalues of the characteristic Equation (30) have a negative real part. hence the necessary and sufficient conditions 

of the disease-free equilibrium point 
0

N is locally asymptotically stable ⇔
0 1R  . 

ii. The Local stability of EEP is derived by proving the following theorem 

Theorem 2: The Endemic equilibrium points of (9),  
* * * * * * *( )         U S AN S I I I Q R      is locally asymptomatically stable ⇔ 

0 1R   

Proof: The Jacobian matrix 
*

eepJ  of system (1) at EEP is 
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 

  
 
 
 

  

                                                (34) 

 

Let, 
* **

7 8, i S AI IS
m m

N N

 
   



Stability Analysis of COVID-19 Model with Quarantine 

36                                                                                                                                                                         Volume 9 (2023), Issue 3 

8 7 7

8 1 7 7*

4 2

3

0

0 0

0 0

i

i

eep

m m m

m m m m
J

m m

m

 





    
 


 
 
 

 

                                                         (35) 

The Determinant | |dfeJ I  = 0 gives 
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            (36) 

 

Similarly, the two negative eigenvalues of the Jacobian matrix 
*

eepJ  are µ  and 5m . the sign of the remaining 

part is determined from characteristics equation by Routh-Hurwitz stability criteria: 
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Necessary condition: The coefficient 3b is positive and 2b , 1b , 0b  can be shown to be positive as follows: 

 

1 2 2 1 3 1
2 2 3 1 8 2 8 3 8 1 2 3
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2 1
1 1 2 1 3 2 3 1 2 3 1 2 8 1 3 8 2 3 8

0 0

0 2 7 1 2 3 1 2 3 8 4 3 7 1 2 3 8

        

           2        0. 

           0. i

m m R m m R
b m m m m m m m m m m m

R

R R
b m m m m m m m m m m m m m m m m m m

R R

b m m m m m m m m m m m m m m m m

 

 



  

  


       

       

      

 

 

Sufficient condition: Furthermore, by Routh-Hurwitz stability criteria all the eigenvalues of the characteristic 

equation of (34) have negative real part since it can be shown that 2 2

0 3 1 1 2 3     0b b b bb b   

Hence, EEP  

 
* * * * * * * ,   ( ),   ,  ,  ,  U S AN S I I I Q R  

 

is locally asymptotically stable 
0 0R  . 

4.2.  Global Stability Analysis of DFEP and EEP  

In this subsection, we show the global asymptotic stability of the DFE and EEP using the Lyapunov function to 

prove the following theorem.  

i. Global Asymptotic Stability of the DFEP is obtained by proving the following theorem below 
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Theorem 3: That the DFE is globally asymptotically stable if 
0 0R   and 

0 1R  , Then the DFE given by 

0
N ( ,0,0,0,0,0)




 we show that equation (14) is globally asymptotically stable in the positive invariant region *B . 

Proof: Consider a Lyapunov function candidate (   )U S AV S I I I Q R  according to the approach of [16] we have,  
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V S I I I Q R S S S ln I I I Q R
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 
 
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

                                 (38) 

 

differentiating (   )U S AV S I I I Q R with respect to time in the direction of the solution of (8) gives: 

 

0

1 U S A

S
S I I I Q RV

S

 
  





                                                            (39) 

 

substituting back the values of 1m  , 2m , 3m , 4m , 5m , 6m  into (9) and plug in (39) the appropriate values of (9) and 

0S



  gives 
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Simplifying, 
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from Equation (2)    
  

i S AI I

N

  
  since 0 

S

S
 is non-negative we have 
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By the inequality of arithmetic and geometric means we have, 

 

 
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2 2
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0
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
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thus, we have proved that V is a Lyapunov function and 0V   when 0V  ⇔  =  =  = 0U S AI I I Q R  . therefore, it 

follows that the largest invariant set in 
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  *     U S AI I I Q R B    : 0V  is 
0

N   ,0,0,0,0,0





 
 
 

. 

 

Thus, by Lasalle’s invariance principle [6] the DFE, is globally asymptotically stable.  

ii. Global Stability Analysis of EEP is obtained by proving the theorem using constructed Lyapunov function  

Theorem 4: If R0 > 1, then the Equation (9) is globally asymptotically stable if  

 
* * * * * *, , , , ,U U S S A AS S I I I I I I Q Q R R       

 

and 1 2   Also, unstable when R0 ≤ 1. 

Proof: Applying the constructed Lyapunov function, suppose the basic reproductive number R0 > 1, then the EEP. 

constructing a Lyapunov function candidate L defined by,  
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Differentiating L in the direction of the solution of Equation (9). 
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can be rewritten as 
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Re-arranging the positive terms and negative terms in the form, 
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Hence, if 
1 2  , then 0.

dL

dt
  Vital to note that at * * * * * *0 , , , , ,U U S S A A
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S S I I I I I I Q Q R R
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        .  

Thus, by LaSalle’s invariance principle the Endemic Equilibrium Point EEP is globally asymptotically stable. 
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5.  Numerical Simulations 

Numerical Simulation was performed by the help of MATLAB 2021a software. The set of parameters used is 

based on [6] real data of COVID-19 confirmed cases of Ethiopia. 

Table 2. Value of The Model Parameters Corresponding to the COVID −19 case in Ethiopia. 

S/N Parameter  Value Source 

1 Г 4576/day [6] 

2 β 1 fitted 

3 εi 1 fitted 

4 ρ 0.83 Assumed 

5 ϕ 1/7 = 0.143/day [6] 

6 ѱ 0.06813/day fitted 

7 γS 0.18219/day fitted 

8 γA 1 day  assumed 

9 μ 4.11 x 10 -5/ Day [6] 

10 θ 0.00001/day [6] 

11 Ω 0.00273/day fitted 

12 σ 0.00011/day [6] 

5.1.  Sensitivity Analysis of Quarantine rate 

In this subsection, we study the influence of parameters of quarantine rate (symptomatic and Asymptomatic) on the 

basic reproduction number, which are parameters ψ and θ respectively. The sensitivity analysis of the basic 

reproductive number gives us insight on how to design a control strategy to cushion the spread of the pandemic by 

reducing 0R . Sensitivity analysis of the basic reproductive number helps us to know the strength and weakness of each 

parameter on 0R , hence such tangible parameters can help in building a disease control strategy. 

Definition 1 according to [6] Normalized forward sensitivity index of R0 differentiable with respect to a given 

parameter ψ is defined as 
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Manually calculated as, 
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Therefore Equation (51) becomes,  
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furthermore, we calculate the sensitivity of   on the reproduction number 0R which gives.  
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Therefore Equation (52) gives, 
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6.  Discussion of Results and Conclusion 

The Stability Analysis of (S, IU, IS, IA, Q, R) Model was carried out, Reproduction number was derived and used to 

determining the stability of the equilibrium points. Also, Eigenvalues of the Jacobian matrix was studied at equilibrium 

points which infer that the equilibrium point is stable whenever all Eigenvalues have negative real parts and unstable if 

any Eigenvalues has a positive real part. The local and global stability of the model equilibria was examined using 

Routh-Horwitz stability criteria and constructed Lyapunov function. The Stability analysis shows that the free and the 

endemic equilibria are locally and globally asymptotically stable whenever the associated basic reproduction number is 

R0 < 1 and endemic equilibrium R0 > 1. The theoretical solutions suit the numerical results which imply that the 

developed model can be considered epidemiologically and mathematically well posed.   

 

 

Fig. 2. Quarantine Effect on Symptomatic and Asymptomatic compartments 

Furthermore, Quarantine effect and influence on model and reproduction number was numerically simulated using 

MATLAB 2021a via equation (9). The initial conditions used in the simulations are based on the initial conditions in [2] 

of Ethiopia covid−19 outbreak in 2020 which was approximately S (0) =110000000, IU (0) = 200, IS (0) =1, IA (0) =0, Q 

(0) = 0, R (0) and N (0) = 110000201. Parameter values are indicated in table 2. At the COVID-19 initial state of 

outbreak, the population of infected symptomatically i.e., individuals who shows clinically disease symptom of 
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COVID−19 and the infected asymptomatically i.e., infected/infective who do not show clinical symptom IS (0) =1, IA (0) 

= 0 respectively. The six (6) compartmental model formulated seeks to gain insight on the effect of Quarantine rates of 

symptomatic and asymptomatic compartment, the quarantine effect was studied for 100 days during outbreak.  

For instance, Fig.2. Shows the initial influence of quarantine intervention on model, that is ψ = 0.06813 and θ = 

0.00001. It was observed that after 30 days the susceptible compartment reduces by 109547000 and so is other 

compartments in the model; S (30) = 109547000, IU (60) = 39217200, IS (63) = 3345660, IA (65) = 31843800, R (100) = 

10276000. Quarantine parameter was increased simultaneously by 0.05, It was observed that at the initial Quarantine 

implementation, the other (5) compartments got to their peak in different days and decreased gradually. 

Fig.3. shows the results when quarantine compartments were increased by 0.05 ⇒ ψ = 0.11813 and θ = 0.05001 at 

these points at day 67 the peak of infected with symptom decreased to IS (67) = 2645890, S (35) = 109478000, IU (65) = 

35469200, IA (70) = 22731990, R (100) = 78626600.  

 

 

Fig. 3. Quarantine Effect on Symptomatic and Asymptomatic compartments 

Fig.4. shows the dynamical behavior of the model when the quarantine rate was further increased by 0.05. that is ψ 

= 0.16813 and θ = 0.10001 respectively. 

 

 

Fig. 4. Quarantine Effect Symptomatic and Asymptomatic compartments 

Fig.5. Effect of Quarantine ψ = 0.21813 and θ = 0.15001 was again increased to ψ = 0.16813 and θ = 0.10001 the 

infected symptomatically compartment decreased to a new apex and almost died out, it was noticed that after 73 days 

the infected with clinical symptoms drastically decreased to 2089770 i.e., IS (73) = 2089770, IA (76) = 16633600 as the 

quarantine rate increases the remaining compartment decreases respectively. 
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Fig. 5. Quarantine Effect Symptomatic and Asymptomatic compartments 

The experimental results suggest that increase in Quarantine interventions with health care is a key factor in 

flattening the disease spread curve within a given population.  

Furthermore, sensitivity test was carried out, to examine the dynamics of the quarantine parameters on 

reproduction number. The Quarantine parameters on symptomatic and asymptomatic infected were also increased by 

0.05. 

Fig. 6. Shows the sensitivity of Quarantine parameters at ψ = 0.06813 and θ = 0.00001 on the Reproduction 

number R0. 

 

 

Fig. 6. Quarantine Effect on the Reproduction number R0 

 

Fig. 7. Quarantine Effect on the Reproduction number R0 
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Fig. 7. Sensitivity of Quarantine parameters ψ = 0.11813 and θ = 0.05001 on the Reproduction number R0 

Fig. 8. Effect of Quarantine ψ = 0.21813 and θ = 0.15001 on the Reproduction number R0 

 

 

Fig. 8. Quarantine Effect on the Reproduction number R0 

The Experimental results of quarantine influence on R0 shows that increase in Quarantine measures will 

significantly and correspondingly reduce disease spread. The implication is that Diseases like covid-19 will re-institute 

itself in the society whenever R0 > 1 regardless of the initial size of infectious individuals in the population.  

Therefore, it is important for countries to adhere to the warning of the public Health Expert WHO head [3] who 

emphasized on countries to be more vigilant and not collapse already set-up efforts to eradicate or cushion disease 

spread. 
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