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Abstract 

Multi-stage attacks are attacks executed in phases where each phase of the attack solely relies on the 

completion of the preceding phase.  These attacks are so intelligently designed that they are able to elude 

detection from most network instruction detection systems and they are capable of penetrating sophisticated 

defenses.  In this paper, we proposed and simulated a Bayesian Belief Network Model to predict Multi-stage 

Attacks with Malicious IP.  The model was designed using Bayes Server and tested with data collected from 

cyber security repository.  The model had 99% prediction accuracy.  
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1. Introduction 

Over the years, there has been an increased threat to network security and network security experts have 

struggled to combat these rising threats by developing sophisticated intrusion detection system. Of these threats, 

the multi stage attack is most difficult attack to detect because they are so intelligently designed, that they are 

capable of eluding detection and penetrating sophisticated defenses [1].  The multi stage attacks are attacks 

perpetrated by hackers in stages to exploit vulnerabilities of the system or network.  They are carried out in 

different stages or steps by the attacker, where each stage of the attack solely relies on the completion of the 

preceding stage [2].  The steps usually involved in this type of attack are; scanning of the network, breaking 

into a host (computing device) on a network, installation of tool that aids execution of an attack on the 

compromised host and an inside scan initiated from the target host [3].  
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One major atrocious feature of multi stage attack is that when it attacks a device on the network, there exist a 

huge possible of compromising the entire network. In such scenarios in other to protect the network, the 

compromised device is placed on a blacklist.   

A blacklist is a group of entities such as IP addresses, MAC addresses or software programs that are blocked 

from interacting with other computing devices on the network [4].  

The means of identifying the malicious computing devices is to use the IP address of the device which 

uniquely identifies the malicious device on the Network. An IP address is malicious if the device for which the 

IP address is associated on the network is used to perpetuate a network attack. Such attack could be access 

attack, data manipulation attack or denial of service attack to mention but a few.   

In [5], they reported a multi stage attack on an organization. The attack occurred in four stages and took a 

period of four months to successfully complete the attack. The attack crippled the organization and they 

incurred a huge loss. In recent past, several techniques have been applied in detecting multi-stage 

[2,5,6,7,8,9,10,11,12,13] but they generated a lot of false negative during testing and were unable to detect 

malicious IP addresses used to perpetuate multistage attacks. 

In this paper, Bayesian Belief Network (BBN) was utilized in detecting multi-stage attacks with malicious IP 

addresses.  BBN is a complex probabilistic network that combines expert knowledge and observed datasets. It 

maps out cause and effect relationships between variables and encodes them with probability that signify the 

amount in which one variable is probable to influence another. In this paper, BBN was our technique of choice 

because of its capability to make predictive inference. 

2. Related Works 

Several studies have been conducted on detecting Multi-Stage Attacks using IP address.    

In [2], an online system that detects multi-step attack was developed. It utilized Online Multistep Attack 

Detection Tool (OMADT). The system was trained and tested with cyber security dataset. The system 

demonstrated high ability in terms of accuracy, speed, alert correlation, online multi-step attacks detection and 

generating online attack scenarios but it failed to detect malicious IP addresses. 

In [5], a Network Intrusion Detection Systems (NIDS) for detecting Multi-step Attack was designed. The 

system offer both real-time and historical traffic analysis to identify Multi-step Attack.  Although, the system 

failed to classify malicious IP addresses. 

In [6], a hybrid system comprising of Principal Component Analysis (PCA) and Deep learning was utilized 

in detecting multistage attack. The system was able to predict accurately two (2) out of the four (4) broad 

classes of attacks analyzed. Despite the high level of prediction accuracy, the system failed in classifying 

malicious IP addresses. 

In [7] Fuzzy Logic was employed to detect multi-step attacks. The proposed detection system was able to 

achieve a high detection rate. However, the system was unable to make bi-directional inferences from the 

dataset. 

In [8] fuzzy logic was employed in predicting multistage attack. In their work they proposed and designed a 

multi-stage attack prediction framework placing emphasis on IP address information. Although the system had 

a high multistage attack prediction accuracy, it was unable to identify multi-stage attacks in situations where 

the IP addresses were involved in the flow of packets and messages on a network.   

In a similar study conducted in [9], they combined data mining and fuzzy logic to predict multistage attack.  

The model was incapable in classifying malicious IP addresses on the network. 

Multi-stage attacks were detected using Bayesian Belief Network in [10]. In this work, the author showed the 

problem associated with multistage attack in the presence of uncertainty and his model solely focused on the 

linear attack topology. The outcome of the experiment indicated that the model failed to detect malicious IP 

addresses.  
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In [11], Data Mining was utilized in capturing behavioural patterns of advanced persistent threat. The system 

results showed a high level of accuracy in terms of predicting multistage attacks. However, the system failed to 

detect malicious IP addresses utilized to perpetuate multistage attacks. 

In [12], Hidden Markov Models (HMM) was employed in detecting multi stage attack.  The system results 

showcased the use of HMMs as a defense against complex cyber attacks. The result of system showed the 

model was unable to detect malicious IP addresses. 

In [13], casual networks were employed in recognizing and predicting network attack plan. In their work, 

they used Bayesian network to correlate and evaluate attack scenarios. They tested the model using DARPA’s 

Grand Challenge Problem (GCP) data set. The outcome of their experiment showed that the model is capable 

of predicting relationship in similar attack events and capable of predicting multistage attack plan. The outcome 

of the experiment indicated that the model failed to detect malicious IP addresses.  

3. Bayesian Belief Network 

Bayesian Belief Network (BBN) is directed acyclic graphical model that uses probability to show conditional 

dependencies that exist amongst nodes on a graph [14].It is a complex probabilistic network that combine 

expert knowledge and observed datasets. It maps out cause and effect relationships between variables and 

encodes them with probability that signify the amount in which one variable is probable to influence another.   

Bayesian network is based on the Bayes theorem which relies on probability.   

The Bayes theorem is represented in the mathematical equation below: 

P(a|b) =
P(b|a)P(a)

P(b)
                                                                                                                                              (1) 

Where, 

P(a) is the probability of event “a” happening without any information about event “b”. It is called the 

“Prior”. 

P(a/b) is the conditional probability of event “a” happening given that event “b” has already occurred. It is 

otherwise called the “Posterior”. 

P(b/a) is the conditional probability of event “b” happening given that event “a” has already occurred. It is 

called the “Likelihood”. 

P(b) is the probability of event “b” happening without  any information about event “a”. It is called the 

“Marginal Likelihood”. 

The Naive Bayes classifiers are often represented as a type of directed acyclic graph (DAG).  

The Directed Acyclic Graph (DAG) comprises of vertices representing random variables and arrows 

connecting pairs of nodes. Figure 1 shows a pictorial representation of a Bayesian Network 

 

Fig. 1. A pictorial representation of a Bayesian Network 



 A Bayesian Belief Network Model For Detecting Multi-stage Attacks With Malicious IP Addresses 33 

Some advantages of this model are: it is quite fast in making inferences, the resulting probabilities are easy 

to interpret and the learning algorithm is quite simple and the model adequately combines with utility functions 

to make optimal inferences. In this paper, we intend to detect multistage attack with malicious IP addresses 

using Bayesian Belief Network (BBN).  A model consisting of 61 nodes where each node represents a form of 

network attack will be designed using Bayes Server.  A cybersecurity dataset will be used to train and test the 

system. Using the Pareto Principle, 80% of the dataset will be used to train the model while the remainder will 

be used in testing the model. The aim of the model is to achieve a high level of detection accuracy with the use 

of IP address.  

4. Methodology 

Simulation, Result and Discussion 

The dataset used in training, testing and predicting Multi-stage attack was retrieved from [15]. The dataset 

consist of 61 attacks and each attack has a value which represents the probability of such attack in causing 

multi stage attack. These attacks are Access Attack (AA), Active Attack (ACA), Advance Attack (ADA), 

Application Attack (APPA), Address Resolution Protocol Spoofing (ARPS), Scanning Attack (SA), 

Barbedwire Attack (BARBWA), Brute Force Attack (BFA), Blackhole Attack (BLA), Byzantine 

Attack(BYZA), CPU Hogging Attack (CHA), Cryptography(Crypto), Distributed Denial Of Service (DDoS), 

Domain Network Server Spoofing Attack (DNSA), Denial of Service (DoS), Eavesdropping Attack (EA), 

Tribe Flood Network 2000 Attack (TFN2A), Email Bomb Attack(EMBA), Fabrication Attack (FA), Hacking 

Software Programs (HSP), Hyper Text Transfer Protocol Flooding Attack (HTTPA), Internet Control Message 

Protocol Packet Internet Groper (ICMP Ping), IP Spoofing Attack (IPSA), Land.C Attack (Land.C), Location 

Disclosure Attack (LDA), Masquerading Attack (MA), Multi- Stage Attack (MSA), Network Ping (NP), 
Network Time Protocol Amplification Attack(NTPAA), Passive Attack (PA), Protocol Analyzer (PAZ), 

Password Cracking Programs (PCP), Repudiation Attack (REPA), Ping of Death Attack (PINGDA), Packet 

Sniffing (PS), Port Scanning Utility (PSU), Packet Traffic Monitoring (PTM), Reconnaissance Attack (RA), 

Rerouting Attack (RERA), Rushing Attack (RUSHA), Social Engineering (SE), Session Attack (SESA), 

Session Hijacking Attack (SHA), Slowloris Attack (SLOWA), Smurf Attack (SMA), Session Replay Attack 

(SRA), Sybil Attack (SYBA), Transmission Control Protocol Syn Flood Attack (TCPSFA), Trinoo Attack 

(TRIA), Trinity Attack(TRINA), Trojan Horse (TRJH), User Datagram Protocol Flood Attack (UDPFA), 

Unauthorized Attack (UA), Tribe Flood Network Attack (TFNA), Wormhole Attack (WA), Botnet (Bot), 

Password Guessing (PG), Man-in-The-Middle Attack (MITMA), Data Manipulation Attack (DMA) and a 

column which indicated the class (Malicious) of the IP Address associated to such multi stage attack.  

Figure 2 below shows a sample the dataset  
 

 

Fig. 2. Snapshot of Dataset 

The Bayesian model was designed using Bayes-Server platform.  The Bayesian belief network for predicting 

multi stage attack was designed such that the nodes on the network are linked based on the probability of an 

attack resulting to another. To blacklist an IP address on the network we analyze the attack perpetuated by the 

device. 

http://www.cybersecurity.unsw.adfa.edu.au/ADFA%20IDS%20Datasets/
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In our model for an IP address to be denoted as a malicious IP such IP must have perform any of the 

following attacks; Reconnaissance Attack, Access Attack, Session Attack, Data Manipulation Attack, Man-In-

The-Middle-Attack, Denial of Service Attack,  Distributed Denial of Service Attack, Active Attack, Advance 

Attack and Passive Attacks.  The malicious IP address is categorized into various classes each class indicating 

the risk level of such IP address.   

Figure 3 shows the BBN model for detecting multistage attack with malicious IP Addresses. 

 

 

Fig. 3. Bayesian Belief Network Model for Detecting Multi-stage attacks with Malicious IP. 

So, to mathematically represent our model we have: 

Multi Stage Attack =  ∏61
i=1 P(Attacki|Parents(Attacki)                                                                            (2) 

Where, 

Attack: Node with an attack 

Parents (Attacki) = Nodes that converge on Attacki..  

The dataset was used to train and test the model.  Upon completion of training and testing the BBN model, 

the test data converged at time series 3. The log likelihood value for each case was recorded.   

Figures 4, 5, 6,7,8,9 and 10 shows log likelihood batch query chart for predicting multi-stage attack with IP 

Information, association/strengths of nodes of the model, feature importance chart for nodes in the model, the 

in-sample anomaly detection chart, the log likelihood Attack Graph for Detecting Multi-stage Attack with IP 

Information, the mesh query plot for the loglikelihood chart and Multi-stage Attack Detection Results chart 

respectively. The result generated from the simulation indicated that the network was able to predict 99% 

multistage attack on the dataset accurately and it had a log likelihood of 62.99 on the test dataset.  
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Fig. 4. The Loglikelihood Chart Batch Query for Detecting Multi-stage Attack with IP Information 

This loglikelihood chart batch shows the result of the test data.  

In Experiment 1: the value of Predict(Multistage) was 0.000939 compared to 9.39E-05 and the value of 

Predict(IP) was 0.706 compared to 0.706222843330884. Experiment 2: the value of Predict(Multistage) was 

0.705 compared to 0.705495650811725 and Predict(IP) was 0.805 compared to 0.804881363796469. 

Experiment 3: the value of Predict(Multistage) was 0.908 compared to 0.908040834959557 and  (IP) was 0.236 

compared to 0.236028234904242 up to Experiment 10. Hence, the system results showed a 0.01% value 

difference between the prediction results and original test data of 100% resulting to 99% prediction accuracy. 

 

 

Fig. 5. The Association/Strengths  Chart  of Nodes of the model. 
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The association/strength chart shows the association that exist amongst nodes given evidence of a node event 

occuring. This chart consists of Mutual Information, symmetric Information, For (X Given Y). For (Y Given 

X), Entropy X and Entopy Y respectively. 

Mutual Information: specifies the relationship with nodes directly connected to one another and assigned a 

value (e.g. the mutual relationship between Multistage Attack and SA(Scanning Attack) nodes and has the 

value of 0.191 to show the closeness). 

Sysmmetric information: shows nodes that are around the axis of the location of SA and Multistage Attack 

nodes in the model and having a value of 3.35 showing it is quite futher away from the two nodes. 

For (X Given Y): shows the probability of Event X(SA) happeniing given there is evidence that an Event 

Y(multistage attack) has already occurred and having a value of -0.677. 

For (Y Given X): ): shows the probability of Event Y(Multistage Attack) happening given there is evidence 

that an Event (SA) has already occurred and having a value of 0.477. Entropy X: is the degree of disorderness 

or randomness of X in the model. 

Entropy Y: is the degree of disorderness or randomness of Y in the model. 

 

 

Fig. 6. The Feature Importance Chart for Nodes in the Model 

The Feature Importance Chart shows p-value of the variable (nodes), feature and mutual information in 

reference to the Multistage Attack Node.  

The p-value signifies the likelihood (probability)of the nodes being involved in the execution of  a multistage 

attack.  

The Feature box is checked if that particular node is fully involved in the said attack. 

The mutual information shows the relationship with nodes directly connected to one another (i.e. in this case 

the direct relationship of the nodes with the multistage attack node)and assigned a value.  

The Significance Level signifies the margin of error in the detection of multistage attack. 
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Fig.7. The In-sample Anomaly Detection Chart 

The In-sample Anomaly Detection Chart shows 10 experimental results of detecting Multistage attack. Each 

Case is assigned an ID(Identification value) which is the value of the Predict(Multistage) in Fig.4. The 

IsAnomaly checkbox is checked to identify that each case is an executed multistage attack. The 10 cases of 

multistage attack has a case count value of 4.998 (weighted) which signifies the importance of the cases leading 

to a execution of a multistage attack. The tolerance is the margin of error that could be encoutered as regards to 

the detection of the multistage attacks. 

 

 

Fig. 8. The Loglikelihood Attack Graph for Detecting Multi-stage Attack with IP Information 
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This loglikelihood graph for detecting multistage attack shows the residual values on the vertical axis plotted 

against the loglikelihood values on the horizontal axis which are independent variables. A residual value is a 

measure of how much a regression line vertically misses a data point. Regression lines are the best fit of a set of 

data. The lines are categorized as averages; a few data points will fit the line and others will miss. 

In this graph, it shows that 10 experimental cases resulted in value of 59.6, 60.1, 60.4, 60.49, 60.99, 61.3, 

61.3, 61.7, 61.99, 62.6 and 62.99 respectively. 

Ideally, residual values should be equally and randomly spaced around the horizontal lines. Taking a view of 

the system’ experimental results values obtained from the horizontal lines on the graph, it can be seen that the 

point where the residual value and the loglikelihood independent variable meets at 62.99 on the horizontal line 

with 63 being the highest value that can be reached.  

The residual value attained is 62.99 and loglikelihood independent value is -62.29, the difference between 

both values is 0.71 which is the predicted value.  

Hence, in this system the highest residual value, a loglikelihood independent value can attain is 63. With 63, 

being the 100 % residual value mark, to get our prediction accuracy percentage, we have highest residual value 

subtracted from predicted value i.e. 100% -0.71= 99.29% residual loglikelihood percentage value. 

 

 

Fig. 9. The Mesh Query Plot for the Loglikelihood of a Single Attack (Access Attack, [AA]) Being involved in a Multi-stage Attack. 

The mesh query plot shows the loglikelihood/likelihood of a node in this case Access Attack (AA) being 

involved in the execution of a multistage attack. The Node (multistage attack) is plotted on the Y-axis and the 

other node Access attack (AA) plotted along the X-axis. 

In this context, the Red contour signifies the likelihood of an AA being involved in a multistage attack with 

the contour ranging from interval -1.600 to 1.000 on the Y-axis and interval -1.500 to1.500 on the X-axis. 

The Yellow contour shows the loglikelihood of an AA being involved in a multistage attack with the contour 

ranging from interval -0.600 to 0.600 on the Y-axis and interval -1.000 to 1.000 on the X-axis. 
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Fig. 10. Multi-stage Attack Detection Results Chart 

This chart shows the probabilities of 10 main attacks namely Reconnaissance Attack (RA), Access Attack 

(AA), Passive Attack (PA), Session Attack (SESA), Denial of Service Attack (DoS), Distributed Denial of 

Service (DDoS), Man in the Middle Attack (MITMA), Active Attacks (ACA) and Advance Attack (ADA) 

respectively.  

This detection results showed the probability of having all the aforementioned attacks involved in a 

multistage attack denoted as: 

P(Multistage Attack| RA,AA,PA,SESA, DoS, DDoS, MITMA,ACA,ADA)= 0.70157 

From the experiment it can be seen that our model has a higher residual log likelihood value which is 62.99.  

Comparing the log likelihood from the experiments conducted by Qin and Lee (2004) and Cole (2013) which 

are 6.55 and 9.84 respectively, it is obvious our model has a better prediction accuracy. The higher prediction 

accuracy achieved by our model could be due to the size of the dataset used in training and testing the model. 

5. Conclusion 

Detecting multi-stage attack is very difficult because of its intelligent design. To safeguard a network, 

network security experts need to improve on existing technologies for detecting multi stage attacks. In this 

paper we utilized a Bayesian Belief Network model to predict multi stage attack. The network had 61 nodes 

with each node representing a unique attack.  The model was trained and tested and it had an accuracy of 99% 

in predicting multi stage attack with malicious IP addresses. The system can be deployed on computer network 

infrastructures to provide information which will be used to safeguard computer networks. It will also bring 

about improvement in the following areas: Multi-stage Attack Prediction, Multi-stage attacks Detection, 

Blacklisting of malicious IP addresses and Computer Network Security in general. Future research should be 

geared towards improving multistage attacks prediction using MAC address and devices that utilizes VPN. 
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