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Abstract 

The optimal capacity expansion of base station subsystems in Next Generation Wireless Network (NGW N) 
problem with respect to mult i-demand type and system capacity constraints is known to be NP-complete. In  
this paper, we propose a novel ant colony optimization algorithm to solve a network topology has two levels 
in which  mobile users are sources and both base stations and base station controllers are concentrators. There 
are two important aspects of upgrading to NGWN. The first importance of backward compatib ility with pre-
existing networks, and the second is the cost and operational benefit of gradually enhancing networks, by 
replacing, upgrading and installing new wireless network infrastructure elements that can accommodate both 
voice and data demand. Our objective function is the sources to concentrators connectivity costas well as the 
cost of the installation, connection, rep lacement, and capacity upgrade of infrastructure equipment. We 
evaluate the performance of our algorithm with a set of real world and data randomly generated. Numerical 
results show that our algorithms is a promising approach to solve this problem. 
 
Index Terms:Next  Generation W ireless Network, Multi-Object ives, Capacity Expansion, Base Station 
Subsystems, Ant Colony Optimizat ion. 
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1. Introduction 

The Next Generation Wireless Networks (NGW Ns) are expected to provide high data rate and optimized  
quality of service to multimedia and real-t ime applicat ions over the Internet Protocol (IP) networks to 
anybody, anywhere, and anytime. The wireless network infrastructure consists of equipment required by 
mobile network operators to enable mobile telephony calls or to connect fix subscribers by radio technology. 
The interacting layers architecture of next generation wireless network is shown in fig.1.
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Fig. 1. The next generation wireless network infrastructure 

The architectural building blocks enabling mobile telephony are: 

i) The core network : comprised of the mobile switching centers (MSC), the packet data serving 
nodes (PDSN), and home agents (HA), and 

ii) The base station subsystem (BSS) also known as the radio access network, consisting of base 
station controllers (BSC), base transceiver stations (BS), and mobile stations (MS). 

Each BS is typically assigned a group of radio channels to support a number of mobile stations in its cell. 
BS’s at adjacent cells are assigned different sets of frequencies. The antennas of a BS are designed to achieve 
coverage only within the particu lar cell. By limiting coverage of a BS to its cell area, the set of frequencies 
assigned to this BS can be reused at other BS’s that are d istant enough to keep co-channel interference within  
acceptable limits. The MSC is a modified central o ffice switch, with extensions for mobile subscriber 
databases and intelligent network links, which enable the MSC to decide where to route an incoming call. If 
the requested subscriber for example is registered to be located in the MSCs area, the call will be routed to the 
respective BSC. The BSC is part of the link between the BS and the MSC and is responsible for allocating 
and releasing radio channels to the MSs by way of the BS. In addit ion to managing channels on a radio 
interface, the BSC is also responsible for managing MS handovers to other radio channels. Other BSC 
functions include routing calls to the MSC, handling call control processes, and maintain ing a database of 
subscribers and records of calls for b illing [2]. The BSC is directly connected to the MSC and the PDSN. The 
PDSN is the point of entry into the wireless packet data network for mobile subscribers. The PDSN performs  
two basic functions [1], which  are (1) exchanging packets with the mobile station over the rad io network and 
(2) exchanging packets with other IP networks. The PDSN is generally coupled with HA, which is a router on 
a mobile node's home network that maintains information about the device's current location, as identified in  
its care-of address [3]. Corresponding to the architectural build ing blocks of a wireless network, are three 
types of interconnects [4]. These are (1) mobile device to BS interconnect, which includes both forward and 
reverse radio links, (2) the BS to BSC interconnect, which  is called  the backhaul, and (3) BSC to MSC 
interconnect.  

In the network design and capacity planning literature, conventional approaches to meeting demand growth 
include location and installation of addit ional network elements [5-6]. The more commonly  known 
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hierarchical capacitated concentrator location problem, which  is an extension of the concentrator location 
problem to mult iple levels and a classical research issue in the telecommunications literature [7-10]. However, 
this approach ignores two important aspects of upgrading to NGW N. The first importance of backward  
compatibility with pre-existing networks, and the second is the cost and operational benefit of gradually 
enhancing networks, by replacing, upgrading and installing new wireless network infrastructure elements that 
can accommodate both voice and data demand. In [6], the author used a greedy heuristic algorithm to solve 
the maximal coverage location problem in cellular communication Systems. A Tabu search algorithm and 
genetic algorithm approach to cellu lar capacity expansion to maximizing the coverage area and minimizing 
the number of trans mitters is presented in [11-12]. Yu et al in [13] proposed a set covering algorithm for g iven 
traffic and find ing optimal solution configuration in a CDMA network. A greedy strategy to optimal 
positioning of base stations for cellu lar radio networks and capacity planning of UMTS networks studied in 
[14-15]. An alternate approach to capacity planning and expansion is introduced for 3G network system 
capacity without an increase in base stations using a cell splitting approach [16]. In [17], the authors studied 
the base station location and service assignment problem in a W-CDMA.  

The recently research in [18-22], we have proposed a novel particle swarm optimizat ion (PSO) and ant 
colony optimization (ACO) algorithms to optimal location of controllers in wireless networks and centralized  
wireless access network. In this paper, we focus on the Multi-Objectives Optimal of Capacity Expansion 
(MOOCE) in NGW N and propose a novel ACO algorithm to solve it. The rest of this paper is organized as 
follows: Section 2 presents the MOOCE problem formulat ion. Section 3 presents our new algorithm to solve 
it based on ACO algorithm. Section 4 presents our simulat ion and analysis results, and finally, section 5 
concludes the paper. 

2. Problem formulation 

In this section, we assume the network topology of base station subsystems havem mobile users, n base 
stations, and p base station controllers. We introduce the following notation: 

Table 1.  Notation defininition. 

Notation Meaning 
M Index set of Mobile user locations: { }, 1..iM MS i m= ∀ =  
N Index set of all Base Station (BS): { }1 2 , 1..jN N N BS j n= ∪ = ∀ =  
 N1: Index set of existing BS; N2: Index set of potential BS 
P Index set of Base Station Controllers (BSC):  

 { }1 2 , 1..kP P P BSC k p= ∪ = ∀ =  
 P1: Index set of existing BSC; P2: Index set of potential BSC 
Tj Set of types available for ,jBS j N∀ ∈  

S 
Set of commodity types: 

1 if commondity typeis voice
2 if commondity typeisdata

s 
= 


 

tN  Index set of all BS of typet. 1 2t t tN N N= ∪  
s
iD  Demand of commodity type sfor mobile user ,iMS i M∀ ∈  

_
tj

MaxBS Cap  Maximum capacity of jBS type t, tj N∀ ∈ . 

_ kMaxBSC Cap  Maximum capacity of ,kBSC k P∀ ∈  

tijd  Distance of mobile user iMS from jBS of typet , ti M j N∀ ∈ ∀ ∈  
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Notation Meaning 
_

tj
MaxBS Cov  Maximum coverage range for jBS of typet 

cost_connect
tj k  Cost of connecting jBS of type tto kBSC  

cost_installk  Cost of installing , 2kBSC k P∀ ∈  

cost_upgrade j  Per channel cost of upgrading , 1jBS j N∀ ∈  

cost_setup
tj
 Cost of constructing and connecting , 2jBS j N∀ ∈  

  

 
The MOOCE in NGWN problem has two steps the initial assignment of MSs to BS and the connection of 

BS to BSC and capacity expansion and traffic increase with constraint specifies that: 

• Each mobile user MSi will be assigned to exactly one base station BSj of type t 
• Mobile usersare within that base stations’ maximum range _MaxBS Cov  
• At most one base station of type t can exist at location j 
• if a  base station BSj is operated, it has to be connected to a BSCk and the BSC has to be active. 
• The capacity constraints of the model, in which we argue that BSs must have the necessary 

capacity to accommodate traffic demand of all demand types s for all MSs assigned to it and the 
BSC must have the necessary capacity to accommodate all BSs assigned to it. 

In the first step, we use the indicator variables are: 
 

 

 
1 if of type is operated
0 otherwiset

j
j

BS t
α


= 


 

1 if of type is connected to
0 otherwiset

j k
j k

BS t BSC
β


= 


 

1 if is operated in initialassigment
0 otherwise

k
k

BSC
δ


= 


 

 

Fig. 2. The Initial Assignment step with indicator variables 

Fig.2 show an example of an existing initial assignment that each mobile user can be assigned to only one 
BS, while each BS has to be connected to a single BSC. 

In the second step, we use the decision variables are: 
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1 if mobile user is connected to
0 otherwiset

i j
ij

MS BS
X 

= 


 

1 if of type is connected to
0 otherwiset

j k
j k

BS t BSC
Y 

= 


 

1 if of type is operated
0 otherwiset

j
j

BS t
Z 

= 


 

1 if is operated
0 otherwise

k
k

BSC
W 

= 


 

Fig. 3. The assignment after capacity expansion and traffic increase with decision variables 

Fig.3 illustrates an assignment after capacity expansion and traffic increase, and indicates the respective 
decision variables. New wireless BSS infrastructure equipment with BS and BSC in red shades. The objective 
of MOOCE is to min imize the total cost of expanding an in itial wireless BSS to accommodate increased 
traffic demand. The MOOCE problem can be defined as follows: 

( ) ( )

( )
2

1 2

1 1
cost_connect cost_intall

cost_upgrade _ cost_setup

t t t
j

t t t t
j j

pn

j k j k j k k k k
j k t T k P

j j j jt j j
j N t T j N t T

Min Y W

MaxBS cap Z Z

β δ

α

= = ∈ ∈

∈ ∈ ∈ ∈

− + −

 
+ − +  

 

∑∑∑ ∑

∑ ∑ ∑ ∑
 (1) 

Subject to: 

1
1, 1..

t
j

n

ij
j t T

X i m
= ∈

= ∀ =∑∑  (2) 

, 1.. , 1.. ,
t t tij ij j j jd X MaxCov Z i m j n t T≤ ∀ = = ∈  (3) 

1, 1..
t

j

j
t T

Z j n
∈

≤ ∀ =∑  (4) 

1
, 1.. ,

t t

p

j j k j
k

Z Y j n t T
=

≤ ∀ = ∈∑  (5) 

, 1.. , 1.. ,
tj k k jY W k p j n t T≤ ∀ = = ∈  (6) 

2

1 1
_ , 1.. ,

t t t

m
s
i ij j j j

i s
D X MaxBS Cap Z j n t T

= =

≤ × ∀ = ∈∑∑  (7) 
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1
_ , 1..

t
j

n

j k k k
j t T

Y MaxBSC Cap W k p
= ∈

≤ × ∀ =∑∑  (8) 

{ } { } { } { }0,1 , 0,1 , 0,1 , 0,1

1.. , 1.. , 1.. ,
t t tij j k j k

j

X Y Z W

i m j n k p t T

∈ ∈ ∈ ∈

∀ = = = ∈
 (9) 

3. ACO based Algorithm for The MOOCE 

3.1. Ant Colony Optimization 

The ACO algorithm is originated from ant behavior in the food searching. When an ant travels through 
paths, from nest food location, it drops pheromone. According to the pheromone concentration the other ants 
choose appropriate path. The paths with the greatest pheromone concentration are the shortest ways to the 
food. The optimization algorithm can be developed from such ant behavior. The first ACO algorithm was the 
Ant System [23], and after then, other implementations of the algorithm have been developed [24]. 

3.2. Solving the MOOCE based on ACO 

In this section, we present application of ACO technique with the dynamic local heuristic information for 
the MOOCE problem. Our new algorithm is described as follows: 

In the first step, we construct a transportnetwork ( )1 1, 1G V E= , where 1 1 1V M N P= ∪ ∪  in which

{ }1,2,...,M m= is the set of MSs, { }1 1,2,..., 1N n= is the set of existing BSs, { }1 1,2,..., 1P p= is the set of 
existing BSCs and E1 is the set of edge connections between MSi toexisting BSjand existing BSjto existing 
BSCk satisfy constraints. We find the maximum flowof the transport networkG1 by adding two vertices S 
(Source) and D (Destination) is shown in Fig.4 to defines indicator variables. 

 
 

 

Fig. 4. The Initial Graph G1 determine the indicator variables 

In Fig.4, nodes has white color isset of existingMS, BS, BSC. The weight of the edges on the graph G1is 
defined as follows: 

• The edges from vertex S to MSi is demand of commodity type s for mobile user, denoted as 
c(S,MSi)= s

iD , (i=1..m).
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• The edges from MSito BSj is capacity of MSi if MSi is connected to BSj,denoted as c(i,j)= s
iD , (i=1..m, 

j=1..n1). 
• The edges from BSj to BSCk is total capacity of MSi is connected to BSj,denoted as  

( ) ( ), , 1. 1,  1.. 1
i j

s
i

MS connected BS
c j k D j n k p= = =∑  (10) 

• The edges from BSCkto vertex D is total capacity of BSj connected to BSCk,denoted as  

( ) ( ) ( ), , , 1.. 1,  1.. 1 .
j kBS connected BSC

c k D c i j j n k p= = =∑  (11) 

In the second step, we construct a transportnetwork ( )2 2, 2G V E= , where 2V M N P= ∪ ∪  in which

{ }1,2,...,M m= is the set of MSs, { }1,2,...,N n= is the set of BSs, { }1,2,...,P p= is the set of BSCs and E2 is 
the set of all edge connections between MSi toBSjand BSjto BSCk.  

 

 

Fig. 5. The FullGraph G2 determine the decision variables 

Fig.5 show all edge connections possible satisfy the constraints (2)-(9). In  which, red nodes areset of 
potential BSs, and blue nodes are set of potential BSCs.  

A colony of art ificial ants is created to find solutions. Optimization problems  solutions can be expressed in 
terms o f feasible paths on the graph G2. The encoding of the ant  Antk configuration is by means of binary  
string { }1 2, ,...k m n pAnt x x x + += , where  

[ ]
[ ] ( )
[ ] ( )

1 1..

1 1..

1 1..
0

i

j
i

k

if i m then MS is operated

if i m m n then BS is operated j i m
x

if i m n m n p then BSC is operated k i m n
otherwise

 ∈


∈ + + = −= 
∈ + + + + = − −




 (12) 
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In our case, we use real encoding to express an element of the pheromone matrix is generated by graph G2 
that represent a location for ant movement, and in  the same time it is possible receiver location. A path by 
each Antk, pheromone intensities on links are evaporated with a pheromone update rule. Each edge ( ),i j of 

the graph G2 is associated a total pheromone concentration ijτ . At each node, each  Antkexecutes a decision 
policy to determine the next node of the path. If Antkis currently located at node i and it  selects the next  node

k
ij N∈ according to the transition probability defined by: 

k
i

ij ijk
ij

ij ij
l N

p
α β

α β

τ η

τ η
∈

      =
      ∑

 (13) 

where, ijτ is the pheromone content of the path from node i to node j, k
iN is the neighborhood includes only 

locations that have not been visited by ant k  when it  is at node i, ηijis the desirability of node j, and it is a  
problem-dependent function to be minimized given by: 

1
ij

ijd
η =  (14) 

where  ijd is the cost of connect from iMS  to jBS or iBS to jBSC . 
The influence of the pheromone concentration to the probability value is presented by the constant α, while 

constant β do the same for the desirability. The ants deposit pheromone on the locations they visited according 
to the relation. 

new current k
j j jτ τ τ= + ∆  (15) 

where k
jτ∆  is the amount of pheromone that Antk exudes to the node j when it  is going from node i to node j. 

This additional amount of pheromone is defined by: 

( )
1

cost_connect +cost_intall cost_upgrade cost_setup
k
j

ij j j j

τ∆ =
+ +

 (16) 

The cost functionfor the Antkby the formula (1). This algorithm will terminate either when the maximum 
number of iterat ions is reached or an acceptable solution is found. 

3.3. Our Algorithm 

The pseudo-code of ACO algorithm to solving MOOCEas fo llows: 
ACO ALGORITHM 
INITIALIZATION: 

Algorithmparameters: α β,  
Antpopulationsize: K.
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Maximumnumberofiteration:NMax. 
GENERATION:  

Generating the pheromonematrixfor the Antk. 
Update t he pheromonevaluesandset x*=k;  
i=1. 

REPEAT 
FORk = 1 TOKDO 

Computing the costfunctionfor the antkby the formula (1) 
Computingprobabilitymoveofantindividualby the formula (13) 
IFf(k) <f(x*)THEN   
Update t he pheromonevaluesby the formula (15)   
Setx*=k. 

ENDIF 
ENDFOR 

UNTILi>NMax 

4. Experiments and Results 

4.1. The problems tackled 

In our experiments, we have tackled several MOOCEinstances of different difficulty levels. There are 10 
MOOCEinstances with values for M, N and P shown in Table 2. 

Table 2.  Main characteristic of the problems tackled. 

Problem # Mobile Users 
(M) 

Base Stations Base Stations Controllers 
N N1 N2 Types P P1 P2 Types 

1.  10 4 3 1 1 3 2 1 1 
2.  20 5 3 2 2 4 3 1 2 
3.  30 6 3 3 3 4 2 2 3 
4.  40 7 3 4 3 5 2 3 3 
5.  50 10 6 4 3 5 2 3 3 
6.  60 15 10 5 4 10 5 5 4 
7.  70 15 8 7 4 10 6 4 4 
8.  80 20 10 10 5 15 10 5 5 
9.  90 25 15 10 7 15 8 7 6 
10.  150 40 20 20 10 20 10 10 7 

 

4.2. Parameters for the ACO algorithm 

We have already defined parameters for the ACO algorithm shown in Tab le 3: 

Table 3.  TheACO Algorithm Specifications 

Ant Population size K  = 100 
Maximum number of interaction  NMax = 500 
Parameter α=1, β=10 
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4.3. Numerical Analysis 

We evaluate the performance of our algorithms to optimize o f capacity expansionwith multi-objectives. 
The experiment was conducted on Genuine Intel® CPU DuoCore 3.0 GHz, 2 GB of RAM machine. We ran  
experiment ACO algorithm implemented using C language. The experimental results of our algorithm shown 
in Fig.6 and Fig.7. 
 

 

Fig.6.The results obtained in the MOOCEinstances tackle. 

 

Fig.7. Time processing MOOCEinstances tackle 

The results show that problems with the small number of M, N, P such as problem #1, #2, #3, #4 and #5, 
algorithm has approximate optimal results fast with small interactions.However, when the problem size is 
large, the optimal results may be slower such as problem #6, #7, #8, #9 and #10.Convergence speed is not the 
same and depend on the distribution of parameters data.  

Fig.8 show an existing init ial assignment of prob lem #4. In which, BSC2, BSC4 are existing BSCs; BSC1, 
BSC3 are potential BSCs; BS3, BS4, BS6 areexisting BSs;   BS1, BS2, BS5 arepotential BSs. MS6, MS29, 
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MS16, MS22 are not connected. Fig.9 show an optimal solution with BSC2 is replaced by BSC3, BS4 is 
replaced by BS2 and BS5. BS1 is added and connect to BSC4. Red edges are replace connections. 
 

 

Fig.8. An existing initial assignment of problem #4 

 

Fig.9. An optimal capacity expansion of problem #4 

From this result, we confirmed that this isa promising approach to solve this problem. 

5. Conclusions 

In this paper, we propose a novel ant colony optimizat ion algorithm to solve a network topology has two 
levels in which mobile users are sources and both base stations and base station controllers are concentrators. 
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Our objective function is the sources to concentrators connectivity costas well as the cost of the installation, 
connection, replacement, and capacity upgrade of infrastructure equipment. Our experiment results show that 
our algorithms is a promising approach to solve this problem. 
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