International Journal of Image, Graphics and Signal Processing(IJIGSP)

ISSN: 2074-9074 (Print), ISSN: 2074-9082 (Online)

Published By: MECS Press

IJIGSP Vol.6, No.7, Jun. 2014

Image Segmentation Method for Identifying Convective and Stratiform Rain using MSG SEVIRI Data

Full Text (PDF, 337KB), PP.28-35

Views:125   Downloads:2


Mounir Sehad, Mourad Lazri, Soltane Ameur, Jean Michel Brucker, Fethi Ouallouche

Index Terms

Classification;Artificial neural network;Radar;MSG image


This paper provides a new method for the classification of rainfall areas in convective and stratiform rain using MSG/SEVIRI (Spinning Enhanced Visible and Infrared) data. The proposed approach is based on spectral and temporal properties of clouds. The spectral parameters used are: brightness temperature (BT) and brightness temperature differences (BTDs), and the temporal parameter (RCT10.8) is the rate of change of (BT) in the 10.8µm channel over two consecutive images. The developed rain area classification technique (RACT-DN) is based on two multilayer perceptron neural networks (MLP-D for daytime and MLP-N for nighttime) which relies on the correlation of satellite data with convective and stratiform rain. The two algorithms (MLP-D and MLP-N) are trained using as reference data from ground meteorological radar over northern Algeria. The results show that RACT-DN classifier gives accurate discrimination between convective and stratiform areas during daytime and nighttime.

Cite This Paper

Mounir Sehad, Mourad Lazri, Soltane Ameur, Jean Michel Brucker, Fethi Ouallouche,"Image Segmentation Method for Identifying Convective and Stratiform Rain using MSG SEVIRI Data", IJIGSP, vol.6, no.7, pp.28-35, 2014.DOI: 10.5815/ijigsp.2014.07.04


[1]E.E. Ebert, M.J. Manton, "Performance of satellite rainfall estimation algorithms during TOGA COARE". J Atmos Sci,vol. 55, pp.1538–1557, 1998.

[2]B. Thies, T. Nauss, J. Bendix, "Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat Second Generation SEVIRI nighttime data". Meteorological Applications,vol.15, pp. 219–230, 2008.

[3]M. Lazri, S. Ameur, Y. Mohia, "Instantaneous rainfall estimation using neural network from multispectral observations of SEVIRI radiometer and its application in estimation of daily and monthly rainfall" Advances in Space Research, vol.53, no.1, pp. 138-155, 2014. 

[4]M.Lazri, Z. Ameur, S. Ameur, Y. Mohia, J.M. Brucker, J. Testud, "Rainfall estimation over a Mediterranean region using a method based on variou s spectral parameters of SEVIRI MSG", .Advances in Space Research, vol.52, pp. 1450-1466,2013,

[5]H. Feidas, A. Giannakos, "Classifying convective and stratiform rain using multispectral infrared Meteosat Second Generation satellite data". Theor Appl Climatol , vol. 108, no. 3pp.613–630, 2012.

[6]R. Kaur, A. Ganju, "Cloud classification in NOAA AVHRR imageries using spectral and textural features". J Indian Soc Remote Sens,vol. 36, pp. 167–174, 2008.

[7]T. Bellerby, M. Todd, D. Kniveton, C. Kidd, "Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network". J. Appl. Meteor, vol. 39, pp. 2115–2128, 2000.

[8]D.I.F. Grimes, E. Coppola, M. Verdecchia, G. Visconti, "A neural network approach to real-time rainfall estimation for Africa using satellite data". J. Hydrometeor, vol. 4, pp. 1119–1133, 2003.

[9]F.J. Tapiador, C. Kidd, V. Levizzani, F.S. Marzano, A neural networks–based fusion technique to estimate halfhourly rainfall estimates at 0.18 resolution from satellite passive microwave and infrared data. J. Appl. Meteor., vol. 43, pp. 576–594, 2004.

[10]Y. Hong, K. Hsu, S. Sorooshian, X. Gao, "Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system". J Appl Meteor, vol. 43, pp.1834–1852, 2004. 

[11]Lionello P, Malanotte-Rizzoli P, Boscolo R ,Alpert P, Artale V, Li L, Luterbacher J, May W, Trigo R, Tsimplis M, Ulbrich U, Xoplaki E, "The Mediterranean climate: an overview of the main characteristics and issues", Mediterranean Climate Variability. Elsevier B.V, pp. 1–26, 2006.

[12]R.M. Trigo, E. Xoplaki, J. Lüterbacher, S.O. Krichak, P. Alpert, J. Jacobeit, J. Sàenz, J. Fernàndez, J.F. Gonzàlez-Rouco, "Relations between variability in the Mediterranean region and mid-latitude variability", Mediterranean Climate Variability. Elsevier B.V, pp. 179–226, 2006. 

[13]P. Alpert, M. Baldi, R. Ilani, S. Krichak, C. Price, X. Rodό, H. Saaroni, B. Ziv, P. Kishcha, J. Barkan, A. Mariotti, E. Xoplaki, "Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust", Mediterranean Climate Variability. Elsevier B.V, pp. 149–177, 2006.

[14]EUMETSAT, "Applications of Meteosat Second Generation - Conversion from Counts to Radiances and from Radiances to Brightness Temperatures and Reflectance",2004,

[15]G.A. Vicente, J.C. Davenport, R.A. Scofield, "The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution". Int. J. Rem. Sens, vol. 23, no. 2, pp. 221–230), 2002.

[16]H. Feidas, "Study of a mesoscale convective complex over the eastern Mediterranean basin with Meteosat data". Eumetsat Meteorological Satellite Conference, Oslo, Norway, 5-9 September, 2011.

[17]H. Feidas, A. Giannakos, "Classifying convective and stratiform rain using multispectral infrared Meteosat Second Generation satellite data, 2011. Theor.Appl.Climatol.doi:10.1007/s00704-011-0557-y.

[18]H. Feidas, A. Giannakos, Identifying precipitating clouds in Greece using multispectral infrared Meteosat Second Generation satellite data..Theor.Appl.Climatol, 2010. doi:10.1007/s00704-010- 0316-5.

[19]H. Feidas, G. Kokolatos, A. Negri, M. Manyin, N. Chrysoulakis, Y. Kamarianakis, "Validation of an infrared-based satellite algorithm to estimate accumulated rainfall over the Mediterranean basin". Theor. Appl. Climatol.,2008,

[20]B. Thies, T. Nauss, J. Bendix, Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat Second Generation SEVIRI daytime data. Atmospheric Chemistry and Physics,vol.8,pp.2341–2349,2008,

[21]T. Inoue, "On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bi-spectral measurements in the 10-mm window region". J. Meteorol. Soc. Japan, vol. 63, pp. 88–99, 1985.

[22]T. Inoue, "A cloud type classification with NOAA-7 split-window measurements". J. Geophys. Res, vol. 92, pp. 3991–4000, 1987. 

[23]T.Inoue, X. Wu, K. Bessho, "Life cycle of convective activity in terms of cloud type observed by split window", 11th Conference on Satellite Meteorology and Oceanography, Madison, WI, USA, 2001.

[24]T. Inoue, "An instantaneous delineation of convective rainfall areas using split window data of NOAA-7 AVHRR". J. Meteorol. Soc. Japan, vol. 65, pp. 469–481, 1987. 

[25]T. Inoue, Day-to-night cloudiness change of cloud types inferred from split window measurements aboard NOAA polar-orbiting satellites. J Meteor Soc Japan ,vol. 75, pp. 59–66, 1997.

[26]H.J. Lutz, T. Inoue, J. Schmetz, "NOTES AND CORRESPONDENCE Comparison of a split-window and a multi-spectral cloud classification for MODIS observations". J Meteor Society of Japan vol. 81, no. 3, pp. 623–631, 2003.

[27]S. Fritz, I. Laszlo, "Detection of water vapor in the stratosphere over very high clouds in the tropics". J Geophys Res vol. 98, no. D12, pp. 22959–22967, 1993.

[28]J. Schmetz, S.A. Tjemkes, M. Gube, L. van de Berg, "Monitoring deep convection and convective overshooting with Meteosat". Advances in Space Research, vol.19, no. 3, pp. 433–441, 1997.

[29]S.A. Ackerman, K.I. Strabala, W.P. Menzel, R.A. Frey, C.C. Moeller, L.E. Gumley, "Discriminating clear sky from clouds with MODIS". Journal of Geophysical Research, vol. 103, no. D24, pp. 32141–3215, 1998 .

[30]K.I. Strabala, S.A. Ackerman, W.P. Menzel, "Cloud properties inferred from 8–12 μm data". Journal of Applied Meteorology, vol.33, pp. 212–229, 1994.

[31]B.A. Baum, P.F. Soulen, K.I. Strabala, M.D. King, S.A. Ackerman, W.P. Menzel, P. Yang, "Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase". J Geophys Res , vol. 105, no. D9, pp. 11,781-11,792, 2000.

[32]B.A. Baum, S. Platnick, "Introduction to MODIS cloud products". Earth Science Satellite Remote Sensing, pp. 87–108, 2006.

[33]M.J. Pavolonis, A.K. Heidinger, T.Uttal, "Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons". J. Appl. Meteor., Vol. 44, Issue 6, pp. 804–826, 2005.

[34]M. Lazri, S. Ameur, J.M. Brucker, J. Testud, B. Hamadache, S. Hameg, F. Ouallouche, Y. Mohia, "Identification of raining clouds using a method based on optical and microphysical cloud properties from Meteosat second generation daytime and nighttime data", Appl Water Sci, 2013. DOI 10.1007/s13201-013-0079-0.

[35]G.A. Vicente, R.S. Scofield, W.P. Menzel, "The operational GOES infrared rainfall estimation technique". Bull. Am. Meteorol. Soc. 79, pp. 1883–1898, 1998.

[36]B. Krose, P. van der Smagt, "An introduction to neural networks". University of Amsterdam, pp. 44–45, 1996.

[37]C. Reudenbach, G. Heinemann, E. Heuel, J. Bendix, M. Winiger, "Investigation of summertime convective rainfall in Western Europe based on a synergy of remote sensing data and numerical models". Meteorol.Atmos.Phys, vol. 76, pp. 23–41, 2001. 

[38]R. Adler, A.J. Negri, "A satellite infrared technique to estimate tropical convective and stratiform rainfall". Journal of Applied Meteorology, vol. 27, pp. 30–51, 1988. 

[39]S.A. Tjemkes, L. van de Berg, J. Schmetz, "Warm water vapour pixels over high clouds as observed by Meteosat". Beiträge zur Physik der Atmosphäre, vol.70, no. 1, pp.15–21, 1997.