Work place: Computer Science Dept. Faculty of Computers and Information, Menoufia University, Egypt
E-mail: mssakr@ymail.com
Website:
Research Interests: Data Mining, Machine Learning
Biography
Mohamed Sakr received the B.Sc, M.Sc. and Ph.D. in Computer Science from Menoufia University, Faculty of computers and information. His research interests are data mining and machine learning.
By Mohamed Sakr Walid Atwa Arabi Keshk
DOI: https://doi.org/10.5815/ijisa.2021.01.05, Pub. Date: 8 Feb. 2021
Outlier detection is one of the important tasks in data mining. Detecting outliers over streaming data has become an important task in many applications, such as network analysis, fraud detections, and environment monitoring. One of the well-known outlier detection algorithms called Local Outlier Factor (LOF). However, the original LOF has many drawbacks that can’t be used with data streams: 1- it needs a lot of processing power (CPU) and large memory to detect the outliers. 2- it deals with static data which mean that in any change in data the LOF recalculates the outliers from the beginning on the whole data. These drawbacks make big challenges for existing outlier detection algorithms in terms of their accuracies when they are implemented in the streaming environment. In this paper, we propose a new algorithm called GSILOF that focuses on detecting outliers from data streams using genetics. GSILOF solve the problem of large memory needed as it has fixed memory bound. GSILOF has two phases. First, the summarization phase that tries to summarize the past data arrived. Second, the detection phase detects the outliers from the new arriving data. The summarization phase uses a genetic algorithm to try to find the subset of points that can represent the whole original set. our experiments have been done over real datasets. Our experiments confirming the effectiveness of the proposed approach and the high quality of approximate solutions in a set of real-world streaming data.
[...] Read more.By Mohamed Sakr Hany Mahgoub Arabi Keshk
DOI: https://doi.org/10.5815/ijmecs.2014.07.02, Pub. Date: 8 Jul. 2014
Smart phones and its applications gain a lot of popularity nowadays. Many people depend on them to finish their tasks banking, social networking, fun and a lot other things. Games with a purpose (GWAP) and microtask crowdsourcing are considered two techniques of the human-computation. GWAPs depend on humans to accomplish their tasks. Porting GWAPs to smart phones will be great in increasing the number of humans in it. One of the systems of human-computation is ESP Game. ESP Game is a type of games with a purpose. ESP game will be good candidate to be ported to smart phones. This paper presents a new mobile game called MemoryLabel. It is a single player mobile game. It helps in labeling images and gives description for them. In addition, the game gives description for objects in the image not the whole image. We deploy our algorithm at the University of Menoufia for evaluation. In addition, the game is published on Google play market for android applications. In this trial, we first focused on measuring the total number of labels generated by our game and also the number of objects that have been labeled. The results reveal that the proposed game has promising results in describing images and objects.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals