Zaid Al-Huda

Work place: School of computing and artificial intelligence, Southwest Jiaotong University, Chengdu, Sichuan, China

E-mail: zaidalhuda@swjtu.edu.cn

Website:

Research Interests: Image Processing, Image Manipulation, Image Compression, Pattern Recognition, Computer Vision, Computational Learning Theory, Computer systems and computational processes

Biography

Zaid Al-Huda received his master degree in artificial intelligence from University of, Hyderabad, India in 2015, and the Ph.D. degree in computer science and technology from School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, Sichuan, China, in July 2021. Currently, he is a Postdoctoral Research Fellow with School of Computing and Artificial Intelligent, Southwest Jiaotong University, Chengdu, Sichuan, China since August 2021. His research interests include computer vision, deep learning applications, image segmentation, segmentation quality evaluation, and pattern recognition.

Author Articles
FeatureGAN: Combining GAN and Autoencoder for Pavement Crack Image Data Augmentations

By Xinkai Zhang Bo Peng Zaid Al-Huda Donghai Zhai

DOI: https://doi.org/10.5815/ijigsp.2022.05.03, Pub. Date: 8 Oct. 2022

In the pavement crack segmentation task, the accurate pixel-level labeling required in the fully supervised training of deep neural networks (DNN) is challenging. Although cracks often exhibit low-level image characters in terms of edges, there might be various high-level background information based on the complex pavement conditions. In practice, crack samples containing various semantic backgrounds are scarce. To overcome these problems, we propose a novel method for augmenting the training data for DNN based crack segmentation task. It employs the generative adversarial network (GAN), which utilizes a crack-free image, a crack image, and a corresponding image mask to generate a new crack image. In combination with an auto-encoder, the proposed GAN can be used to train crack segmentation networks. By creating a manual mask, no additional crack images are required to be labeled, and data augmentation and annotation are achieved simultaneously. Our experiments are conducted on two public datasets using five segmentation models of different sizes to verify the effectiveness of the proposed method. Experimental results demonstrate that the proposed method is effective for crack segmentation.

[...] Read more.
Other Articles