Javad Ghiasi-Freez

Work place: Iranian Central Oil Fields Company, National Iranian Oil Company (NIOC), Tehran, Iran

E-mail: javadghiasi86@gmail.com

Website:

Research Interests: Pattern Recognition, Computer Architecture and Organization, Image Compression, Image Manipulation, Image Processing

Biography

Javad Ghiasi-Freez is a petroleum geologist working on the importance and implementation of intelligent systems in reservoir characterization and geoscience. Ghiasi-Freez holds an MSc in petroleum engineering from Shahrood University of Technology, Iran. Up to now, he has presented several articles related to integrated intelligent models in international periodicals and conferences. He is an active referee of several ISI journals. In addition, application of Image analysis and pattern recognition in geosciences is his interest.

Author Articles
Application of Optimized Neural Network Models for Prediction of Nuclear Magnetic Resonance Parameters in Carbonate Reservoir Rocks

By Javad Ghiasi-Freez Amir Hatampour Payam Parvasi

DOI: https://doi.org/10.5815/ijisa.2015.06.02, Pub. Date: 8 May 2015

Neural network models are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went to step forward by optimizing neural network models using three intelligent optimization algorithms, including genetic algorithm (GA), particle swarm optimization (PSO), and ant colony (AC), to eliminate the risk of being exposed to local minima. This strategy was capable of significantly improving the accuracy of a neural network by optimizing network parameters such as weights and biases. Nuclear magnetic resonance (NMR) log measures some of the most useful characteristics of reservoir rock; the capabilities of the optimized models were used for prediction of nuclear magnetic resonance (NMR) log parameters in a carbonate reservoir rock of Iran. Conventional porosity logs, which are the easily accessible tools compared to NMR log’s parameters, were introduced to the models as inputs while free fluid porosity and permeability, which were measured by NMR log, are desire outputs. The performance of three optimized models was verified by some unseen test data. The results show that PSO-based network and ACO-based network is the best and poorest method, respectively, in terms of accuracy; however, the convergence time of GA-based model is considerably smaller than PSO-based and GA-based models.

[...] Read more.
Other Articles