Work place: Department of Informatics, Faculty of Information Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
E-mail: agusza@cs.its.ac.id
Website:
Research Interests: Computer Vision, Image Processing, Information Retrieval
Biography
Agus Zainal Arifin, male, received S.Kom degree from Informatics Engineering, Institut Technology Sepuluh Nopember (ITS), Surabaya, Indonesia received his M.Kom degree from University of Indonesia (UI), Jakarta, Indonesia and received Dr. degree in Hiroshima University, Japan. He is currently a dean of Informatics Engineering Department in ITS Surabaya. His research interest included computer vision, image processing, information retrieval for Indonesian or Arabic document, and computer aided diagnosis.
By Agus Zainal Arifin Yuita Arum Sari Evy Kamilah Ratnasari Siti Mutrofin
DOI: https://doi.org/10.5815/ijisa.2014.09.07, Pub. Date: 8 Aug. 2014
Emotion detection is an application that is widely used in social media for industrial environment, health, and security problems. Twitter is ashort text messageknown as tweet. Based on content and purposes, the tweet can describes as information about a user’s emotion. Emotion detection by means oftweet, is a challenging problem because only a few features can be extracted. Getting features related to emotion is important at the first phase of extraction, so the appropriate features such as a hashtag, emoji, emoticon, and adjective terms are needed. We propose a new method for analyzing the linkages among features and reducedsemantically using Non-Negative Matrix Factorization (NMF). The dataset is taken from a Twitter application using Indonesian language with normalization of informal terms in advance. There are 764 tweets in corpus which have five emotions, i.e. happy (senang), angry (marah), fear (takut), sad (sedih), and surprise(terkejut). Then, the percentage of user’s emotion is computed by k-Nearest Neighbor(kNN) approach. Our proposed model achieves the problem of emotion detectionwhich is proved by the result near ground truth.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals