Work place: Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Nottingham, Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor
E-mail: keyx1mha@nottingham.edu.my
Website:
Research Interests: Earth & Environmental Sciences, Earth Sciences
Biography
Muhsin Hassan was born in Klang, Malaysia in 1986. He received the B.Eng, degree (with First Class Honors) in Electronics and Communications from the University of Nottingham in 2009. He is now currently pursuing his PhD degree in Engineering at University of Nottingham, Malaysia Campus. His current research interests include Artificial Intelligence and Kalman Filter to monitor and predict disaster such as pipeline defects, landslides and flood. Concurrently works on forecast and prediction of stocks market using Artificial Intelligence.
By Muhsin Hassan Dino Isa Rajprasad Rajkumar Nik Ahmad Akram Roselina Arelhi
DOI: https://doi.org/10.5815/ijisa.2013.09.02, Pub. Date: 8 Aug. 2013
The aim of this is to demonstrate the capability of Kalman Filter to reduce Support Vector Machine classification errors in classifying pipeline corrosion depth. In pipeline defect classification, it is important to increase the accuracy of the SVM classification so that one can avoid misclassification which can lead to greater problems in monitoring pipeline defect and prediction of pipeline leakage. In this paper, it is found that noisy data can greatly affect the performance of SVM. Hence, Kalman Filter + SVM hybrid technique has been proposed as a solution to reduce SVM classification errors. The datasets has been added with Additive White Gaussian Noise in several stages to study the effect of noise on SVM classification accuracy. Three techniques have been studied in this experiment, namely SVM, hybrid of Discrete Wavelet Transform + SVM and hybrid of Kalman Filter + SVM. Experiment results have been compared to find the most promising techniques among them. MATLAB simulations show Kalman Filter and Support Vector Machine combination in a single system produced higher accuracy compared to the other two techniques.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals